Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase Retrieval with Application to Optical Imaging: A contemporary overview,” IEEE Signal Processing Magazine 32, 87–109 (2015).

[Crossref]

S. Bubeck, “Convex Optimization: Algorithms and Complexity,” Foundations and Trends in Machine Learning 8, 231–357 (2015).

[Crossref]

M. Molaei and J. Sheng, “Imaging bacterial 3d motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Optics Express 22, 32119 (2014).

[Crossref]

F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A. Kolb, “High-quality computational imaging through simple lenses,” ACM Transactions on Graphics (TOG) 32, 149 (2013).

[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Optics Express 21, 10850 (2013).

[Crossref]
[PubMed]

P. Getreuer, “Total Variation Deconvolution using Split Bregman,” Image Processing On Line 2, 158–174 (2012).

[Crossref]

W. Qu, C. O. Choo, V. R. Singh, Y. Yingjie, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 26, 2005–2011 (2009).

[Crossref]

A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging Sciences 2, 183–202 (2009).

[Crossref]

J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A. Höft, “Atmospheric turbulence correction using digital holographic detection: experimental results,” Optics express 17, 11638–11651 (2009).

[Crossref]
[PubMed]

A. Beck and M. Teboulle, “Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems,” IEEE Transactions on Image Processing 18, 2419–2434 (2009).

[Crossref]
[PubMed]

S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Review of Scientific Instruments 78, 011301 (2007).

[Crossref]

S. Marchesini, “Invited Article: A unified evaluation of iterative projection algorithms for phase retrieval,” Review of Scientific Instruments 78, 011301 (2007).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space,” Journal of Approximation Theory 141, 63–69 (2006).

[Crossref]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Optics express 14, 4300–4306 (2006).

[Crossref]
[PubMed]

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Transactions on Graphics (TOG) 25, 787–794 (2006).

[Crossref]

D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” Inverse Problems 21, 37–50 (2005).

[Crossref]

T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” Image Processing, IEEE Transactions on 7, 370–375 (1998).

[Crossref]

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Applied Optics 21, 2758–2769 (1982).

[Crossref]
[PubMed]

R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Optics express 14, 4300–4306 (2006).

[Crossref]
[PubMed]

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” in “Proc. SPIE 9271, Holography, Diffractive Optics, and Applications VI,”, 9271, 927128-927128-9 (2014).

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space,” Journal of Approximation Theory 141, 63–69 (2006).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334–1345 (2002).

[Crossref]

A. Beck and M. Teboulle, “Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems,” IEEE Transactions on Image Processing 18, 2419–2434 (2009).

[Crossref]
[PubMed]

A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging Sciences 2, 183–202 (2009).

[Crossref]

S. Bubeck, “Convex Optimization: Algorithms and Complexity,” Foundations and Trends in Machine Learning 8, 231–357 (2015).

[Crossref]

T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent developments in total variation image restoration,” Mathematical Models of Computer Vision17 (2005).

T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” Image Processing, IEEE Transactions on 7, 370–375 (1998).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase Retrieval with Application to Optical Imaging: A contemporary overview,” IEEE Signal Processing Magazine 32, 87–109 (2015).

[Crossref]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Optics express 14, 4300–4306 (2006).

[Crossref]
[PubMed]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase Retrieval with Application to Optical Imaging: A contemporary overview,” IEEE Signal Processing Magazine 32, 87–109 (2015).

[Crossref]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Optics express 14, 4300–4306 (2006).

[Crossref]
[PubMed]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space,” Journal of Approximation Theory 141, 63–69 (2006).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334–1345 (2002).

[Crossref]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Optics express 14, 4300–4306 (2006).

[Crossref]
[PubMed]

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Zero-order-free image reconstruction in digital holographic microscopy,” in “Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on,” (IEEE, 2009), 201–204.

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Optics Express 21, 10850 (2013).

[Crossref]
[PubMed]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Deconvolution using natural image priors,” Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory (2007).

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase Retrieval with Application to Optical Imaging: A contemporary overview,” IEEE Signal Processing Magazine 32, 87–109 (2015).

[Crossref]

R. Escalante and M. Raydan, Alternating projection methods, no. FA08 in Fundamentals of algorithms (Society for Industrial and Applied Mathematics, 2011).

[Crossref]

T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent developments in total variation image restoration,” Mathematical Models of Computer Vision17 (2005).

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Transactions on Graphics (TOG) 25, 787–794 (2006).

[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Deconvolution using natural image priors,” Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory (2007).

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Applied Optics 21, 2758–2769 (1982).

[Crossref]
[PubMed]

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Transactions on Graphics (TOG) 25, 787–794 (2006).

[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Deconvolution using natural image priors,” Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory (2007).

R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

P. Getreuer, “Total Variation Deconvolution using Split Bregman,” Image Processing On Line 2, 158–174 (2012).

[Crossref]

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

M. Gross, F. Joud, F. Verpillat, M. Lesaffre, and N. Verrier, “Two-step distortion-free reconstruction scheme for holographic microscopy,” in “Digital Holography and Three-Dimensional Imaging,” (OSA, 2013), DW1A.7.

[Crossref]

J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A. Höft, “Atmospheric turbulence correction using digital holographic detection: experimental results,” Optics express 17, 11638–11651 (2009).

[Crossref]
[PubMed]

Y. Haugazeau, Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes, Thèse (Université de Paris, 1968).

F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A. Kolb, “High-quality computational imaging through simple lenses,” ACM Transactions on Graphics (TOG) 32, 149 (2013).

[Crossref]

F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A. Kolb, “High-quality computational imaging through simple lenses,” ACM Transactions on Graphics (TOG) 32, 149 (2013).

[Crossref]

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Transactions on Graphics (TOG) 25, 787–794 (2006).

[Crossref]

J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A. Höft, “Atmospheric turbulence correction using digital holographic detection: experimental results,” Optics express 17, 11638–11651 (2009).

[Crossref]
[PubMed]

F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A. Kolb, “High-quality computational imaging through simple lenses,” ACM Transactions on Graphics (TOG) 32, 149 (2013).

[Crossref]

M. Gross, F. Joud, F. Verpillat, M. Lesaffre, and N. Verrier, “Two-step distortion-free reconstruction scheme for holographic microscopy,” in “Digital Holography and Three-Dimensional Imaging,” (OSA, 2013), DW1A.7.

[Crossref]

J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A. Höft, “Atmospheric turbulence correction using digital holographic detection: experimental results,” Optics express 17, 11638–11651 (2009).

[Crossref]
[PubMed]

M. K. Kim, “Diffraction and Fourier Optics,” in “Digital Holographic Microscopy,”, 162 (Springer2011),11–28.

[Crossref]

C. Zelenka and R. Koch, “Restoration of images with wavefront aberrations,” in “Pattern Recognition (ICPR), 2016 23rd International Conference on,” (IEEE, 2016), 1388–1393.

F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A. Kolb, “High-quality computational imaging through simple lenses,” ACM Transactions on Graphics (TOG) 32, 149 (2013).

[Crossref]

J. Kotera, F. Šroubek, and P. Milanfar, “Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors,” in “Computer Analysis of Images and Patterns,” (Springer, 2013), 59–66.

[Crossref]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Optics express 14, 4300–4306 (2006).

[Crossref]
[PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Optics Express 21, 10850 (2013).

[Crossref]
[PubMed]

F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A. Kolb, “High-quality computational imaging through simple lenses,” ACM Transactions on Graphics (TOG) 32, 149 (2013).

[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Optics Express 21, 10850 (2013).

[Crossref]
[PubMed]

M. Gross, F. Joud, F. Verpillat, M. Lesaffre, and N. Verrier, “Two-step distortion-free reconstruction scheme for holographic microscopy,” in “Digital Holography and Three-Dimensional Imaging,” (OSA, 2013), DW1A.7.

[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Deconvolution using natural image priors,” Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory (2007).

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space,” Journal of Approximation Theory 141, 63–69 (2006).

[Crossref]

D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” Inverse Problems 21, 37–50 (2005).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334–1345 (2002).

[Crossref]

S. Marchesini, “Invited Article: A unified evaluation of iterative projection algorithms for phase retrieval,” Review of Scientific Instruments 78, 011301 (2007).

[Crossref]

S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Review of Scientific Instruments 78, 011301 (2007).

[Crossref]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Optics express 14, 4300–4306 (2006).

[Crossref]
[PubMed]

J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A. Höft, “Atmospheric turbulence correction using digital holographic detection: experimental results,” Optics express 17, 11638–11651 (2009).

[Crossref]
[PubMed]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase Retrieval with Application to Optical Imaging: A contemporary overview,” IEEE Signal Processing Magazine 32, 87–109 (2015).

[Crossref]

J. Kotera, F. Šroubek, and P. Milanfar, “Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors,” in “Computer Analysis of Images and Patterns,” (Springer, 2013), 59–66.

[Crossref]

M. Molaei and J. Sheng, “Imaging bacterial 3d motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Optics Express 22, 32119 (2014).

[Crossref]

T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent developments in total variation image restoration,” Mathematical Models of Computer Vision17 (2005).

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Zero-order-free image reconstruction in digital holographic microscopy,” in “Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on,” (IEEE, 2009), 201–204.

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” in “Proc. SPIE 9271, Holography, Diffractive Optics, and Applications VI,”, 9271, 927128-927128-9 (2014).

R. Escalante and M. Raydan, Alternating projection methods, no. FA08 in Fundamentals of algorithms (Society for Industrial and Applied Mathematics, 2011).

[Crossref]

F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A. Kolb, “High-quality computational imaging through simple lenses,” ACM Transactions on Graphics (TOG) 32, 149 (2013).

[Crossref]

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Transactions on Graphics (TOG) 25, 787–794 (2006).

[Crossref]

R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Zero-order-free image reconstruction in digital holographic microscopy,” in “Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on,” (IEEE, 2009), 201–204.

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase Retrieval with Application to Optical Imaging: A contemporary overview,” IEEE Signal Processing Magazine 32, 87–109 (2015).

[Crossref]

J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A. Höft, “Atmospheric turbulence correction using digital holographic detection: experimental results,” Optics express 17, 11638–11651 (2009).

[Crossref]
[PubMed]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase Retrieval with Application to Optical Imaging: A contemporary overview,” IEEE Signal Processing Magazine 32, 87–109 (2015).

[Crossref]

M. Molaei and J. Sheng, “Imaging bacterial 3d motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Optics Express 22, 32119 (2014).

[Crossref]

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” in “Proc. SPIE 9271, Holography, Diffractive Optics, and Applications VI,”, 9271, 927128-927128-9 (2014).

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Transactions on Graphics (TOG) 25, 787–794 (2006).

[Crossref]

J. Kotera, F. Šroubek, and P. Milanfar, “Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors,” in “Computer Analysis of Images and Patterns,” (Springer, 2013), 59–66.

[Crossref]

A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging Sciences 2, 183–202 (2009).

[Crossref]

A. Beck and M. Teboulle, “Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems,” IEEE Transactions on Image Processing 18, 2419–2434 (2009).

[Crossref]
[PubMed]

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Zero-order-free image reconstruction in digital holographic microscopy,” in “Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on,” (IEEE, 2009), 201–204.

M. Gross, F. Joud, F. Verpillat, M. Lesaffre, and N. Verrier, “Two-step distortion-free reconstruction scheme for holographic microscopy,” in “Digital Holography and Three-Dimensional Imaging,” (OSA, 2013), DW1A.7.

[Crossref]

M. Gross, F. Joud, F. Verpillat, M. Lesaffre, and N. Verrier, “Two-step distortion-free reconstruction scheme for holographic microscopy,” in “Digital Holography and Three-Dimensional Imaging,” (OSA, 2013), DW1A.7.

[Crossref]

T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” Image Processing, IEEE Transactions on 7, 370–375 (1998).

[Crossref]

T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent developments in total variation image restoration,” Mathematical Models of Computer Vision17 (2005).

C. Zelenka and R. Koch, “Restoration of images with wavefront aberrations,” in “Pattern Recognition (ICPR), 2016 23rd International Conference on,” (IEEE, 2016), 1388–1393.

R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Transactions on Graphics (TOG) 25, 787–794 (2006).

[Crossref]

F. Heide, M. Rouf, M. B. Hullin, B. Labitzke, W. Heidrich, and A. Kolb, “High-quality computational imaging through simple lenses,” ACM Transactions on Graphics (TOG) 32, 149 (2013).

[Crossref]

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Applied Optics 21, 2758–2769 (1982).

[Crossref]
[PubMed]

S. Bubeck, “Convex Optimization: Algorithms and Complexity,” Foundations and Trends in Machine Learning 8, 231–357 (2015).

[Crossref]

Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao, and M. Segev, “Phase Retrieval with Application to Optical Imaging: A contemporary overview,” IEEE Signal Processing Magazine 32, 87–109 (2015).

[Crossref]

A. Beck and M. Teboulle, “Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems,” IEEE Transactions on Image Processing 18, 2419–2434 (2009).

[Crossref]
[PubMed]

P. Getreuer, “Total Variation Deconvolution using Split Bregman,” Image Processing On Line 2, 158–174 (2012).

[Crossref]

T. F. Chan and C.-K. Wong, “Total variation blind deconvolution,” Image Processing, IEEE Transactions on 7, 370–375 (1998).

[Crossref]

D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” Inverse Problems 21, 37–50 (2005).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334–1345 (2002).

[Crossref]

R. G. Lane, “Blind deconvolution of speckle images,” J. Opt. Soc. Am. A 9, 1508–1514 (1992).

[Crossref]

E. Sánchez-Ortiga, P. Ferraro, M. Martínez-Corral, G. Saavedra, and A. Doblas, “Digital holographic microscopy with pure-optical spherical phase compensation,” J. Opt. Soc. Am. A 28, 1410–1417 (2011).

[Crossref]

W. Qu, C. O. Choo, V. R. Singh, Y. Yingjie, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 26, 2005–2011 (2009).

[Crossref]

H. H. Bauschke, P. L. Combettes, and D. R. Luke, “A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space,” Journal of Approximation Theory 141, 63–69 (2006).

[Crossref]

M. Molaei and J. Sheng, “Imaging bacterial 3d motion using digital in-line holographic microscopy and correlation-based de-noising algorithm,” Optics Express 22, 32119 (2014).

[Crossref]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Optics Express 21, 10850 (2013).

[Crossref]
[PubMed]

J. C. Marron, R. L. Kendrick, N. Seldomridge, T. D. Grow, and T. A. Höft, “Atmospheric turbulence correction using digital holographic detection: experimental results,” Optics express 17, 11638–11651 (2009).

[Crossref]
[PubMed]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Optics express 14, 4300–4306 (2006).

[Crossref]
[PubMed]

R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Optik 35, 237–246 (1972).

S. Marchesini, “Invited Article: A unified evaluation of iterative projection algorithms for phase retrieval,” Review of Scientific Instruments 78, 011301 (2007).

[Crossref]

S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Review of Scientific Instruments 78, 011301 (2007).

[Crossref]

A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging Sciences 2, 183–202 (2009).

[Crossref]

T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent developments in total variation image restoration,” Mathematical Models of Computer Vision17 (2005).

C. Zelenka and R. Koch, “Restoration of images with wavefront aberrations,” in “Pattern Recognition (ICPR), 2016 23rd International Conference on,” (IEEE, 2016), 1388–1393.

J. Kotera, F. Šroubek, and P. Milanfar, “Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors,” in “Computer Analysis of Images and Patterns,” (Springer, 2013), 59–66.

[Crossref]

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Deconvolution using natural image priors,” Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory (2007).

C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Zero-order-free image reconstruction in digital holographic microscopy,” in “Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on,” (IEEE, 2009), 201–204.

M. Gross, F. Joud, F. Verpillat, M. Lesaffre, and N. Verrier, “Two-step distortion-free reconstruction scheme for holographic microscopy,” in “Digital Holography and Three-Dimensional Imaging,” (OSA, 2013), DW1A.7.

[Crossref]

J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).

M. K. Kim, “Diffraction and Fourier Optics,” in “Digital Holographic Microscopy,”, 162 (Springer2011),11–28.

[Crossref]

R. Escalante and M. Raydan, Alternating projection methods, no. FA08 in Fundamentals of algorithms (Society for Industrial and Applied Mathematics, 2011).

[Crossref]

I. A. Shevkunov, N. S. Balbekin, and N. V. Petrov, “Comparison of digital holography and iterative phase retrieval methods for wavefront reconstruction,” in “Proc. SPIE 9271, Holography, Diffractive Optics, and Applications VI,”, 9271, 927128-927128-9 (2014).

Y. Haugazeau, Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes, Thèse (Université de Paris, 1968).