Abstract

We propose a novel configuration for an improved and compact all fiber Faraday rotator based on phase matching between the Faraday rotation and bend-induced birefringence. The device utilizes a coiled fiber within two electro-magnetic toroids, such that the fiber length required for getting the beat length is quite long and several rounds of fiber are needed. Analysis of the capabilities of the proposed device and its sensitivity to different parameters is presented. Faraday rotation of 13° was experimentally measured in six meters of single mode silica fiber, with a magnetic field of about 0.06T at a wavelength of 1064nm. We show that phase matching between the two phenomena significantly improves the polarization rotation by a factor of 4-10. In addition, we demonstrate the ability to achieve higher rotation by using Fabry Perot resonator in low terbium doped glass.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effective Verdet constant in a terbium-doped-core phosphate fiber

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante
Opt. Lett. 34(11) 1699-1701 (2009)

All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber

L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante
Opt. Lett. 35(5) 706-708 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Jeong, A. J. Boyland, J. K. Sahu, S. H. Chung, J. Nilsson, and D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009).
    [Crossref]
  2. J. T. Kohli, and J. E. Shelby, “Magnetic and magneto-optical properties of high-rare earth glasses,” in Ceramics Transactions, 28, A.J. Bruce and B.V. Hiremath, Eds., (American Ceramics Society, 1992).
  3. E. H. Turner and R. H. Stolen, “Fiber Faraday circulator or isolator,” Opt. Lett. 6(7), 322–323 (1981).
    [Crossref] [PubMed]
  4. V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multi-turn figure-of-eight coil with matched birefringence,” J. Lightw. Tech. 13(12), 2349–2353 (1995).
    [Crossref]
  5. J. F. Lafortune and R. Vallée, “Short length fiber Faraday rotator,” Opt. Commun. 86(6), 497–503 (1991).
    [Crossref]
  6. T. Findakly, “Single-mode fiber isolator in toroidal configuration,” Appl. Opt. 20(23), 3989–3990 (1981).
    [Crossref] [PubMed]
  7. L. Sun, S. Jiang, and J. R. Marciante, “Compact all-fiber optical Faraday components using 65-wt%-terbium–doped fiber with a record Verdet constant of- 32 rad/(Tm),” Opt. Express 18(12), 12191-12196 (2010).
    [Crossref] [PubMed]
  8. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995).
    [Crossref] [PubMed]
  9. K. Shiraishi, S. Sugaya, and S. Kawakami,“Fiber faraday rotator,” Appl. Opt. 23(7), 1103–1106 (1984).
    [Crossref] [PubMed]
  10. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “Effective Verdet constant in a terbium-doped-core phosphate fiber,” Opt. Lett. 34(11), 1699–1701 (2009).
    [Crossref] [PubMed]
  11. L. Sun, S. Jiang, J. D. Zuegel, and J. R. Marciante, “All-fiber optical isolator based on Faraday rotation in highly terbium-doped fiber,” Opt. Lett. 35(5), 706–708 (2010).
    [Crossref] [PubMed]
  12. Y. Huang, H. Chen, W. Dong, F. Pang, J. Wen, Z. Chen, and T. Wang, “Fabrication of europium-doped silica optical fiber with high Verdet constant,” Opt. Express 24(16), 18709–18717 (2016).
    [Crossref] [PubMed]
  13. K. Lingannal, S. Ju, B. H. Kim, and W. T. Han, “Fabrication and characterization of lanthanum boroaluminosilicate glass fiber for magneto-optical device applications,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016 21st. IEEE), pp. 1–3.
  14. S. Ju, Y. Kim, P. R. Watekar, S. Jeong, and W. T. Han, ” Development of a novel all-optical fiber isolator using a CdSe quantum dots doped optical fiber,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference, (IEEE,2012), pp. 1–3.
    [Crossref]
  15. F. Wen, B. J. Wu, C. Z. Li, S. J. Wu, and S. Perumal, “Magnetic field response of erbium-doped magneto-optic fiber Bragg grating,” Opt. Eng. 51(6), 064402 (2012).
    [Crossref]
  16. G. W. Day, D. N. Payne, A. J. Barlow, and J. J. Ramskov-Hansen, “Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors,” Opt. Lett. 7(5), 238–240 (1982).
    [Crossref] [PubMed]
  17. R. H. Stolen and E. H. Turner, “Faraday rotation in highly birefringent optical fibers,” Appl. Opt. 19(6), 842–845 (1980).
    [Crossref] [PubMed]
  18. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, and D. H. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41(3), 483–492 (2002).
    [Crossref] [PubMed]
  19. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,”‏ Opt. Express.  15(18), 11255–11261 (2007).
    [Crossref] [PubMed]
  20. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.  5(6), 273–275 (1980).
    [Crossref] [PubMed]
  21. V. Annovazzi-Lodi and S. Donati, “Combined reciprocal and non-reciprocal birefringence in optical monomode fibers,” Opt. Quantum Electron.  15(5), 381–388 (1983).
    [Crossref] [PubMed]
  22. W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
    [Crossref]
  23. J. L. Cruz, M. V. Andres, and M. A. Hernandez, “Faraday effect in standard optical fibers: dispersion of the effective Verdet constant,” Appl. Opt. 35(6), 922–927 (1996).
    [Crossref] [PubMed]
  24. D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A, Pure Appl. Opt. 6(1), 98–105 (2004).
    [Crossref]

2016 (1)

2012 (1)

F. Wen, B. J. Wu, C. Z. Li, S. J. Wu, and S. Perumal, “Magnetic field response of erbium-doped magneto-optic fiber Bragg grating,” Opt. Eng. 51(6), 064402 (2012).
[Crossref]

2010 (2)

2009 (2)

2007 (1)

2004 (1)

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A, Pure Appl. Opt. 6(1), 98–105 (2004).
[Crossref]

2002 (1)

1996 (1)

1995 (2)

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multi-turn figure-of-eight coil with matched birefringence,” J. Lightw. Tech. 13(12), 2349–2353 (1995).
[Crossref]

J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34(30), 6848–6854 (1995).
[Crossref] [PubMed]

1991 (1)

J. F. Lafortune and R. Vallée, “Short length fiber Faraday rotator,” Opt. Commun. 86(6), 497–503 (1991).
[Crossref]

1984 (1)

1983 (1)

V. Annovazzi-Lodi and S. Donati, “Combined reciprocal and non-reciprocal birefringence in optical monomode fibers,” Opt. Quantum Electron.  15(5), 381–388 (1983).
[Crossref] [PubMed]

1982 (1)

1981 (2)

1980 (2)

R. H. Stolen and E. H. Turner, “Faraday rotation in highly birefringent optical fibers,” Appl. Opt. 19(6), 842–845 (1980).
[Crossref] [PubMed]

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.  5(6), 273–275 (1980).
[Crossref] [PubMed]

1969 (1)

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[Crossref]

Abraham, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A, Pure Appl. Opt. 6(1), 98–105 (2004).
[Crossref]

Andreev, N.

Andres, M. V.

Annovazzi-Lodi, V.

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multi-turn figure-of-eight coil with matched birefringence,” J. Lightw. Tech. 13(12), 2349–2353 (1995).
[Crossref]

V. Annovazzi-Lodi and S. Donati, “Combined reciprocal and non-reciprocal birefringence in optical monomode fibers,” Opt. Quantum Electron.  15(5), 381–388 (1983).
[Crossref] [PubMed]

Ballato, J.

Barlow, A. J.

Boyland, A. J.

Chen, F. S.

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[Crossref]

Chen, H.

Chen, Z.

Chung, S. H.

Cruz, J. L.

Day, G. W.

Donati, S.

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multi-turn figure-of-eight coil with matched birefringence,” J. Lightw. Tech. 13(12), 2349–2353 (1995).
[Crossref]

V. Annovazzi-Lodi and S. Donati, “Combined reciprocal and non-reciprocal birefringence in optical monomode fibers,” Opt. Quantum Electron.  15(5), 381–388 (1983).
[Crossref] [PubMed]

Dong, W.

Eickhoff, W.

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.  5(6), 273–275 (1980).
[Crossref] [PubMed]

Findakly, T.

Goldring, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A, Pure Appl. Opt. 6(1), 98–105 (2004).
[Crossref]

Han, W. T.

S. Ju, Y. Kim, P. R. Watekar, S. Jeong, and W. T. Han, ” Development of a novel all-optical fiber isolator using a CdSe quantum dots doped optical fiber,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference, (IEEE,2012), pp. 1–3.
[Crossref]

Hernandez, M. A.

Huang, Y.

Jeong, S.

S. Ju, Y. Kim, P. R. Watekar, S. Jeong, and W. T. Han, ” Development of a novel all-optical fiber isolator using a CdSe quantum dots doped optical fiber,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference, (IEEE,2012), pp. 1–3.
[Crossref]

Jeong, Y. C.

Jiang, S.

Ju, S.

S. Ju, Y. Kim, P. R. Watekar, S. Jeong, and W. T. Han, ” Development of a novel all-optical fiber isolator using a CdSe quantum dots doped optical fiber,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference, (IEEE,2012), pp. 1–3.
[Crossref]

Kan, H.

Kawakami, S.

Kawanaka, J.

Kawashima, T.

Khazanov, E.

Kim, Y.

S. Ju, Y. Kim, P. R. Watekar, S. Jeong, and W. T. Han, ” Development of a novel all-optical fiber isolator using a CdSe quantum dots doped optical fiber,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference, (IEEE,2012), pp. 1–3.
[Crossref]

Lafortune, J. F.

J. F. Lafortune and R. Vallée, “Short length fiber Faraday rotator,” Opt. Commun. 86(6), 497–503 (1991).
[Crossref]

Leona, A.

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multi-turn figure-of-eight coil with matched birefringence,” J. Lightw. Tech. 13(12), 2349–2353 (1995).
[Crossref]

Li, C. Z.

F. Wen, B. J. Wu, C. Z. Li, S. J. Wu, and S. Perumal, “Magnetic field response of erbium-doped magneto-optic fiber Bragg grating,” Opt. Eng. 51(6), 064402 (2012).
[Crossref]

Marciante, J. R.

Mehl, O.

Mendlovic, D.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A, Pure Appl. Opt. 6(1), 98–105 (2004).
[Crossref]

Merlo, S.

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multi-turn figure-of-eight coil with matched birefringence,” J. Lightw. Tech. 13(12), 2349–2353 (1995).
[Crossref]

Nakatsuka, M.

Nilsson, J.

Palashov, O.

Pang, F.

Payne, D. N.

Perumal, S.

F. Wen, B. J. Wu, C. Z. Li, S. J. Wu, and S. Perumal, “Magnetic field response of erbium-doped magneto-optic fiber Bragg grating,” Opt. Eng. 51(6), 064402 (2012).
[Crossref]

Poteomkin, A.

Ramskov-Hansen, J. J.

Rashleigh, S. C.

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.  5(6), 273–275 (1980).
[Crossref] [PubMed]

Reitze, D. H.

Sahu, J. K.

Sergeev, A.

Shabtay, G.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A, Pure Appl. Opt. 6(1), 98–105 (2004).
[Crossref]

Shiraishi, K.

Snitzer, E.

Stolen, R. H.

Sugaya, S.

Sun, L.

Tabor, W. J.

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[Crossref]

Tokita, S.

Turner, E. H.

Ulrich, R.

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.  5(6), 273–275 (1980).
[Crossref] [PubMed]

Vallée, R.

J. F. Lafortune and R. Vallée, “Short length fiber Faraday rotator,” Opt. Commun. 86(6), 497–503 (1991).
[Crossref]

Wang, T.

Watekar, P. R.

S. Ju, Y. Kim, P. R. Watekar, S. Jeong, and W. T. Han, ” Development of a novel all-optical fiber isolator using a CdSe quantum dots doped optical fiber,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference, (IEEE,2012), pp. 1–3.
[Crossref]

Wen, F.

F. Wen, B. J. Wu, C. Z. Li, S. J. Wu, and S. Perumal, “Magnetic field response of erbium-doped magneto-optic fiber Bragg grating,” Opt. Eng. 51(6), 064402 (2012).
[Crossref]

Wen, J.

Wu, B. J.

F. Wen, B. J. Wu, C. Z. Li, S. J. Wu, and S. Perumal, “Magnetic field response of erbium-doped magneto-optic fiber Bragg grating,” Opt. Eng. 51(6), 064402 (2012).
[Crossref]

Wu, S. J.

F. Wen, B. J. Wu, C. Z. Li, S. J. Wu, and S. Perumal, “Magnetic field response of erbium-doped magneto-optic fiber Bragg grating,” Opt. Eng. 51(6), 064402 (2012).
[Crossref]

Yagi, H.

Yasuhara, R.

Zalevsky, Z.

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A, Pure Appl. Opt. 6(1), 98–105 (2004).
[Crossref]

Zuegel, J. D.

Appl. Opt. (6)

J. Appl. Phys. (1)

W. J. Tabor and F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” J. Appl. Phys. 40(7), 2760–2765 (1969).
[Crossref]

J. Lightw. Tech. (1)

V. Annovazzi-Lodi, S. Donati, S. Merlo, and A. Leona, “All-fiber Faraday rotator made by a multi-turn figure-of-eight coil with matched birefringence,” J. Lightw. Tech. 13(12), 2349–2353 (1995).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, “Magneto-optic-based devices for polarization control,” J. Opt. A, Pure Appl. Opt. 6(1), 98–105 (2004).
[Crossref]

J. Opt. Soc. Korea (1)

Opt. Commun. (1)

J. F. Lafortune and R. Vallée, “Short length fiber Faraday rotator,” Opt. Commun. 86(6), 497–503 (1991).
[Crossref]

Opt. Eng. (1)

F. Wen, B. J. Wu, C. Z. Li, S. J. Wu, and S. Perumal, “Magnetic field response of erbium-doped magneto-optic fiber Bragg grating,” Opt. Eng. 51(6), 064402 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett (1)

R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.  5(6), 273–275 (1980).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron (1)

V. Annovazzi-Lodi and S. Donati, “Combined reciprocal and non-reciprocal birefringence in optical monomode fibers,” Opt. Quantum Electron.  15(5), 381–388 (1983).
[Crossref] [PubMed]

Other (3)

K. Lingannal, S. Ju, B. H. Kim, and W. T. Han, “Fabrication and characterization of lanthanum boroaluminosilicate glass fiber for magneto-optical device applications,” in OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), (2016 21st. IEEE), pp. 1–3.

S. Ju, Y. Kim, P. R. Watekar, S. Jeong, and W. T. Han, ” Development of a novel all-optical fiber isolator using a CdSe quantum dots doped optical fiber,” in Optical Fiber Communication Conference and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conference, (IEEE,2012), pp. 1–3.
[Crossref]

J. T. Kohli, and J. E. Shelby, “Magnetic and magneto-optical properties of high-rare earth glasses,” in Ceramics Transactions, 28, A.J. Bruce and B.V. Hiremath, Eds., (American Ceramics Society, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Suggested device for 1064nm all-fiber Faraday rotator.
Fig. 2
Fig. 2 Simulation results. (a) Power transfer between the slow and fast axes along the fiber. (b) Phase difference between slow and fast axes along the fiber. (c) Poincare sphere: input and output polarizations.
Fig. 3
Fig. 3 Simulation results of the reversed direction. (a) Power transfer between the slow and fast axes along the fiber. (b) Phase difference between slow and fast axes along the fiber. (c) Poincare sphere: input and output polarizations.
Fig. 4
Fig. 4 E x to E y power transfer dependence on wavelength as obtained in the suggested setup.
Fig. 5
Fig. 5 The energy transferred as function of the coiling radius.
Fig. 6
Fig. 6 Experimental setup: 1064 nm polarized fiber optic source connected to optical polarimeter via single mode fiber which coiling in two electro-magnetic toroids.
Fig. 7
Fig. 7 Cooling mechanism: The two toroids in an aluminum box with heat sink.
Fig. 8
Fig. 8 The rotation angle as function of the magnetic field: (a). 0.8mm wire toroid and (b). in 0.4mm wire toroid.
Fig. 9
Fig. 9 Verdet constant as function of wavelength for standard silica fiber.
Fig. 10
Fig. 10 The angles of rotation in relation to the wavelength dependent Verdet constant.
Fig. 11
Fig. 11 Experimental setup: Improved Faraday rotator by using two optical polarization maintaining (PM) couplers.
Fig. 12
Fig. 12 The rotation angle as function of the magnetic field at the feedback system in: (a). 0.8mm wire toroid and (b). in 0.4mm wire toroid.
Fig. 13
Fig. 13 Experimental setup: Sample glass disk in magnetic solenoid. Polarized fiber optic source at wavelength of 1310nm being collimated into the glass and directed to the polarimeter input.

Tables (3)

Tables Icon

Table 1 Rotation angle as function of wavelength

Tables Icon

Table 2 The angles of rotation in relation to the wavelength dependent Verdet constant.

Tables Icon

Table 3 The angles of rotation as function of the number of rounds of the fiber. Case (1) current direction is changed every 8 rounds. (2) current direction is changed every 8 rounds. (3) constant current direction

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ϕ=VBl
L p = 2π Δβ ,
Δβ= k x k y =k( δ n x δ n y )= 0.845 λ r 2 R 2    [ rad m ],
N= 1 2ΔβR ,
Δβ= 0.845 λ r 2 R 2 =2.661  [ rad m ].
  M i =( A i B i B i A i * ).
   A i =cos( Φ( z i )Δz 2 )+i Δβ Φ sin( Φ( z i )Δz 2 )
B i = 2F( z i ) Φ sin( Φ( z i )Δz 2 )
( Φ( z i ) 2 ) 2 = ( Δβ 2 ) 2 +F ( z i ) 2
F( z )=VB( z i ),  i=0  L ΔZ  ,    z i =iΔz
( E x ( z i ) E y ( z i ) )= j=0 i M j ( E 0,x E 0,y )
 E out = t 2 ( cosα+ r 2 cos(3α )+ r 4 cos( 5α )+)   X ^ + t 2 ( sin( α )+ r 2 sin(3α )+ r 4 sin( 5α )+) Y ^

Metrics