Abstract

Automotive coating systems are designed to protect vehicle bodies from corrosion and enhance their aesthetic value. The number, size and orientation of small metallic flakes in the base coat of the paint has a significant effect on the appearance of automotive bodies. It is important for quality assurance (QA) to be able to measure the properties of these small flakes, which are approximately 10μm in radius, yet current QA techniques are limited to measuring layer thickness. We design and develop a time-domain (TD) full-field (FF) optical coherence tomography (OCT) system to scan automotive panels volumetrically, non-destructively and without contact. We develop and integrate a segmentation method to automatically distinguish flakes and allow measurement of their properties. We test our integrated system on nine sections of five panels and demonstrate that this integrated approach can characterise small flakes in automotive coating systems in 3D, calculating the number, size and orientation accurately and consistently. This has the potential to significantly impact QA testing in the automotive industry.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nondestructive analysis of automotive paints with spectral domain optical coherence tomography

Yue Dong, Samuel Lawman, Yalin Zheng, Dominic Williams, Jinke Zhang, and Yao-Chun Shen
Appl. Opt. 55(13) 3695-3700 (2016)

Automatic segmentation of choroidal thickness in optical coherence tomography

David Alonso-Caneiro, Scott A. Read, and Michael J. Collins
Biomed. Opt. Express 4(12) 2795-2812 (2013)

3D nondestructive testing system with an affordable multiple reference optical-delay-based optical coherence tomography

Roshan Dsouza, Hrebesh M. Subhash, Kai Neuhaus, Josh Hogan, Carol Wilson, and Martin Leahy
Appl. Opt. 54(18) 5634-5638 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
    [Crossref]
  2. M. Nichols and J. Tardiff, Active Protective Coatings (SpringerNetherlands, 2016), Chap. 13.
  3. F. J. Maile, G. Pfaff, and P. Reynders, “Effect pigments-past, present and future,” Prog. Org. Coat. 54(3), 150–163 (2005).
    [Crossref]
  4. J. Allin, P. Cawley, and M. Lowe, “Adhesive disbond detection of automotive components using first mode ultrasonic resonance,” NDT & E International 36(7), 503–514 (2003).
    [Crossref]
  5. S. A. Titov, R. G. Maev, and A. N. Bogachenkov, “Pulse-echo NDT of adhesively bonded joints in automotive assemblies,” Ultrasonics 48(6), 537–546 (2008).
    [Crossref] [PubMed]
  6. B. Auld and J. Moulder, “Review of advances in quantitative eddy current nondestructive evaluation,” J. Nondestruct. Eval. 18(1), 3–36 (1999).
    [Crossref]
  7. J. García-Martín, J. Gómez-Gil, and E. Vázquez-Sánchez, “Non-destructive techniques based on eddy current testing,” Sensors 11(3), 2525–2565 (2011).
    [Crossref] [PubMed]
  8. K. Su, Y.-C. Shen, and J. A. Zeitler, “Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity,” IEEE T. Thz Sci. Technol. 4(4), 432–439 (2014).
    [Crossref]
  9. S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
    [Crossref]
  10. M. Sudo, J. Takayanagi, and H. Ohtake, “Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies,” J. Infrared Millim. Terahertz Waves 37(11), 1139–1147 (2016).
    [Crossref]
  11. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
    [Crossref]
  12. Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  13. Y.-C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417(1), 48–60 (2011).
    [Crossref] [PubMed]
  14. R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427 (1996).
    [Crossref]
  15. J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35, 2765–2766 (1996).
    [Crossref]
  16. E. Kirchner and J. Houweling, “Measuring flake orientation for metallic coatings,” Prog. Org. Coat. 64(2), 287–293 (2009).
    [Crossref]
  17. L.-P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” Journal of Coatings Technology 74(932), 55–63 (2002).
    [Crossref]
  18. X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley, 2001).
  19. M. Omar, K. Chuah, K. Saito, A. Numasato, and M. Sakakibara, “Infrared seed inspection system (IRSIS) on painted car shells,” Infrared Phys. Techn. 48(3), 240–248 (2006).
    [Crossref]
  20. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239 (2003).
    [Crossref]
  21. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
    [Crossref] [PubMed]
  22. R. J. Antcliff, D. J. Spalton, M. R. Stanford, E. M. Graham, and J. Marshall, “Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study,” Ophthalmology 108(4), 765–772 (2001).
    [Crossref] [PubMed]
  23. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
    [Crossref] [PubMed]
  24. M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” in Seminars in cutaneous medicine and surgery (SCMS, 2009), pp. 196–202.
    [Crossref]
  25. H. Lin, Y. Dong, Y.-C. Shen, and J. A. Zeitler, “Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation,” J. Pharm. Sci. 104(10), 3377–3385 (2015).
    [Crossref] [PubMed]
  26. J. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski, “Imaging pharmaceutical tablets with optical coherence tomography,” J. Pharm. Sci. 99(1), 385–391 (2010).
    [Crossref]
  27. S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
    [Crossref]
  28. C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
    [Crossref]
  29. J. Zhang, Y.-C. Shen, and Y. Zheng, “The application of full-field optical coherence tomography on evaluating film coating of pharmaceutical pellets,” in IEEE International Conference on Computer and Information Technology (2015), pp. 1046–1050.
  30. Y. Dong, S. Lawman, Y. Zheng, D. Williams, J. Zhang, and Y.-C. Shen, “Nondestructive analysis of automotive paints with spectral domain optical coherence tomography,” Appl. Opt. 55(13), 3695–3700 (2016).
    [Crossref] [PubMed]
  31. N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
    [Crossref] [PubMed]
  32. D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pur. Appl. Math. 42(5), 577–685 (1989).
    [Crossref]
  33. T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE T. Image Process. 10(2), 266–277 (2001).
    [Crossref]
  34. C. Gout, C. Le Guyader, and L. Vese, “Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods,” Numer. Algorithms 39(1), 155–173 (2005).
    [Crossref]
  35. N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).
  36. M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
    [Crossref]
  37. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  38. Q. Yang, C. A. Reisman, Z. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
    [Crossref] [PubMed]
  39. A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
    [Crossref]
  40. K. Vermeer, J. Van der Schoot, H. Lemij, and J. De Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express 2(6), 1743–1756 (2011).
    [Crossref] [PubMed]
  41. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79(1), 12–49 (1988).
    [Crossref]
  42. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena 60, 259–268 (1992).
    [Crossref]
  43. A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE T. Med. Imaging 30(2), 484–496 (2011).
    [Crossref]
  44. B. M. Williams, J. A. Spencer, K. Chen, Y. Zheng, and S. Harding, “An effective variational model for simultaneous reconstruction and segmentation of blurred images,” J. Algor. Comput. Technol. 10(4), 244–264 (2016).
    [Crossref]
  45. T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
    [Crossref]
  46. A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” J. Math. Imaging Vis. 40(1), 120–145 (2011).
    [Crossref]
  47. B. Ghanbari, L. Rada, and K. Chen, “A restarted iterative homotopy analysis method for two nonlinear models from image processing,” Int. J. Comput. Math. 91(3), 661–687 (2014).
    [Crossref]

2016 (6)

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
[Crossref]

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

M. Sudo, J. Takayanagi, and H. Ohtake, “Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies,” J. Infrared Millim. Terahertz Waves 37(11), 1139–1147 (2016).
[Crossref]

Y. Dong, S. Lawman, Y. Zheng, D. Williams, J. Zhang, and Y.-C. Shen, “Nondestructive analysis of automotive paints with spectral domain optical coherence tomography,” Appl. Opt. 55(13), 3695–3700 (2016).
[Crossref] [PubMed]

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

B. M. Williams, J. A. Spencer, K. Chen, Y. Zheng, and S. Harding, “An effective variational model for simultaneous reconstruction and segmentation of blurred images,” J. Algor. Comput. Technol. 10(4), 244–264 (2016).
[Crossref]

2015 (1)

H. Lin, Y. Dong, Y.-C. Shen, and J. A. Zeitler, “Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation,” J. Pharm. Sci. 104(10), 3377–3385 (2015).
[Crossref] [PubMed]

2014 (3)

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

K. Su, Y.-C. Shen, and J. A. Zeitler, “Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity,” IEEE T. Thz Sci. Technol. 4(4), 432–439 (2014).
[Crossref]

B. Ghanbari, L. Rada, and K. Chen, “A restarted iterative homotopy analysis method for two nonlinear models from image processing,” Int. J. Comput. Math. 91(3), 661–687 (2014).
[Crossref]

2011 (6)

A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” J. Math. Imaging Vis. 40(1), 120–145 (2011).
[Crossref]

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE T. Med. Imaging 30(2), 484–496 (2011).
[Crossref]

J. García-Martín, J. Gómez-Gil, and E. Vázquez-Sánchez, “Non-destructive techniques based on eddy current testing,” Sensors 11(3), 2525–2565 (2011).
[Crossref] [PubMed]

Y.-C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417(1), 48–60 (2011).
[Crossref] [PubMed]

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

K. Vermeer, J. Van der Schoot, H. Lemij, and J. De Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomed. Opt. Express 2(6), 1743–1756 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

E. Kirchner and J. Houweling, “Measuring flake orientation for metallic coatings,” Prog. Org. Coat. 64(2), 287–293 (2009).
[Crossref]

T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
[Crossref]

2008 (2)

S. A. Titov, R. G. Maev, and A. N. Bogachenkov, “Pulse-echo NDT of adhesively bonded joints in automotive assemblies,” Ultrasonics 48(6), 537–546 (2008).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref]

2007 (1)

A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
[Crossref]

2006 (1)

M. Omar, K. Chuah, K. Saito, A. Numasato, and M. Sakakibara, “Infrared seed inspection system (IRSIS) on painted car shells,” Infrared Phys. Techn. 48(3), 240–248 (2006).
[Crossref]

2005 (5)

F. J. Maile, G. Pfaff, and P. Reynders, “Effect pigments-past, present and future,” Prog. Org. Coat. 54(3), 150–163 (2005).
[Crossref]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

C. Gout, C. Le Guyader, and L. Vese, “Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods,” Numer. Algorithms 39(1), 155–173 (2005).
[Crossref]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

2003 (2)

J. Allin, P. Cawley, and M. Lowe, “Adhesive disbond detection of automotive components using first mode ultrasonic resonance,” NDT & E International 36(7), 503–514 (2003).
[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239 (2003).
[Crossref]

2002 (1)

L.-P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” Journal of Coatings Technology 74(932), 55–63 (2002).
[Crossref]

2001 (2)

R. J. Antcliff, D. J. Spalton, M. R. Stanford, E. M. Graham, and J. Marshall, “Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study,” Ophthalmology 108(4), 765–772 (2001).
[Crossref] [PubMed]

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE T. Image Process. 10(2), 266–277 (2001).
[Crossref]

1999 (1)

B. Auld and J. Moulder, “Review of advances in quantitative eddy current nondestructive evaluation,” J. Nondestruct. Eval. 18(1), 3–36 (1999).
[Crossref]

1996 (2)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427 (1996).
[Crossref]

J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35, 2765–2766 (1996).
[Crossref]

1992 (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena 60, 259–268 (1992).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

1989 (1)

D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pur. Appl. Math. 42(5), 577–685 (1989).
[Crossref]

1988 (1)

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79(1), 12–49 (1988).
[Crossref]

1975 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).

Abràmoff, M. D.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref]

Akafuah, N. K.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
[Crossref]

Allin, J.

J. Allin, P. Cawley, and M. Lowe, “Adhesive disbond detection of automotive components using first mode ultrasonic resonance,” NDT & E International 36(7), 503–514 (2003).
[Crossref]

Andersen, P. E.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” in Seminars in cutaneous medicine and surgery (SCMS, 2009), pp. 196–202.
[Crossref]

Antcliff, R. J.

R. J. Antcliff, D. J. Spalton, M. R. Stanford, E. M. Graham, and J. Marshall, “Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study,” Ophthalmology 108(4), 765–772 (2001).
[Crossref] [PubMed]

Araie, M.

Auld, B.

B. Auld and J. Moulder, “Review of advances in quantitative eddy current nondestructive evaluation,” J. Nondestruct. Eval. 18(1), 3–36 (1999).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Beigang, R.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Bogachenkov, A. N.

S. A. Titov, R. G. Maev, and A. N. Bogachenkov, “Pulse-echo NDT of adhesively bonded joints in automotive assemblies,” Ultrasonics 48(6), 537–546 (2008).
[Crossref] [PubMed]

Cawley, P.

J. Allin, P. Cawley, and M. Lowe, “Adhesive disbond detection of automotive components using first mode ultrasonic resonance,” NDT & E International 36(7), 503–514 (2003).
[Crossref]

Chambolle, A.

A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” J. Math. Imaging Vis. 40(1), 120–145 (2011).
[Crossref]

Chan, K.

Chan, T. F.

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE T. Image Process. 10(2), 266–277 (2001).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Chen, K.

B. M. Williams, J. A. Spencer, K. Chen, Y. Zheng, and S. Harding, “An effective variational model for simultaneous reconstruction and segmentation of blurred images,” J. Algor. Comput. Technol. 10(4), 244–264 (2016).
[Crossref]

B. Ghanbari, L. Rada, and K. Chen, “A restarted iterative homotopy analysis method for two nonlinear models from image processing,” Int. J. Comput. Math. 91(3), 661–687 (2014).
[Crossref]

Chiu, S. J.

Choi, S.

A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
[Crossref]

Chuah, K.

M. Omar, K. Chuah, K. Saito, A. Numasato, and M. Sakakibara, “Infrared seed inspection system (IRSIS) on painted car shells,” Infrared Phys. Techn. 48(3), 240–248 (2006).
[Crossref]

Cole, B.

Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

De Boer, J.

Dong, Y.

Y. Dong, S. Lawman, Y. Zheng, D. Williams, J. Zhang, and Y.-C. Shen, “Nondestructive analysis of automotive paints with spectral domain optical coherence tomography,” Appl. Opt. 55(13), 3695–3700 (2016).
[Crossref] [PubMed]

H. Lin, Y. Dong, Y.-C. Shen, and J. A. Zeitler, “Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation,” J. Pharm. Sci. 104(10), 3377–3385 (2015).
[Crossref] [PubMed]

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239 (2003).
[Crossref]

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

Evans, M.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Farsiu, S.

Fatemi, E.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena 60, 259–268 (1992).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239 (2003).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Fukuma, Y.

Fuller, A.

A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
[Crossref]

García-Martín, J.

J. García-Martín, J. Gómez-Gil, and E. Vázquez-Sánchez, “Non-destructive techniques based on eddy current testing,” Sensors 11(3), 2525–2565 (2011).
[Crossref] [PubMed]

Garvin, M. K.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Ghanbari, B.

B. Ghanbari, L. Rada, and K. Chen, “A restarted iterative homotopy analysis method for two nonlinear models from image processing,” Int. J. Comput. Math. 91(3), 661–687 (2014).
[Crossref]

Goldstein, T.

T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
[Crossref]

Gómez-Gil, J.

J. García-Martín, J. Gómez-Gil, and E. Vázquez-Sánchez, “Non-destructive techniques based on eddy current testing,” Sensors 11(3), 2525–2565 (2011).
[Crossref] [PubMed]

Gordon, K. C.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Gout, C.

C. Gout, C. Le Guyader, and L. Vese, “Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods,” Numer. Algorithms 39(1), 155–173 (2005).
[Crossref]

Graham, E. M.

R. J. Antcliff, D. J. Spalton, M. R. Stanford, E. M. Graham, and J. Marshall, “Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study,” Ophthalmology 108(4), 765–772 (2001).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Guo, J.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Hamann, B.

A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
[Crossref]

Hamarneh, G.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE T. Med. Imaging 30(2), 484–496 (2011).
[Crossref]

Hangai, M.

Harding, S.

B. M. Williams, J. A. Spencer, K. Chen, Y. Zheng, and S. Harding, “An effective variational model for simultaneous reconstruction and segmentation of blurred images,” J. Algor. Comput. Technol. 10(4), 244–264 (2016).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239 (2003).
[Crossref]

Ho, L.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Hood, D. C.

Houweling, J.

E. Kirchner and J. Houweling, “Measuring flake orientation for metallic coatings,” Prog. Org. Coat. 64(2), 287–293 (2009).
[Crossref]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Huang, W.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Hutton, R. S.

J. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski, “Imaging pharmaceutical tablets with optical coherence tomography,” J. Pharm. Sci. 99(1), 385–391 (2010).
[Crossref]

Izatt, J. A.

Jemec, G.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” in Seminars in cutaneous medicine and surgery (SCMS, 2009), pp. 196–202.
[Crossref]

Jonuscheit, J.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Jørgensen, T. M.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” in Seminars in cutaneous medicine and surgery (SCMS, 2009), pp. 196–202.
[Crossref]

Kaminski, C. F.

J. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski, “Imaging pharmaceutical tablets with optical coherence tomography,” J. Pharm. Sci. 99(1), 385–391 (2010).
[Crossref]

Kardon, R.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref]

Kemp, M.

Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Kirchner, E.

E. Kirchner and J. Houweling, “Measuring flake orientation for metallic coatings,” Prog. Org. Coat. 64(2), 287–293 (2009).
[Crossref]

Klier, J.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

Krimi, S.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239 (2003).
[Crossref]

Laurenti, B.

L.-P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” Journal of Coatings Technology 74(932), 55–63 (2002).
[Crossref]

Lawler, K.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
[Crossref]

Lawman, S.

Le Guyader, C.

C. Gout, C. Le Guyader, and L. Vese, “Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods,” Numer. Algorithms 39(1), 155–173 (2005).
[Crossref]

Legge, C. H.

J. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski, “Imaging pharmaceutical tablets with optical coherence tomography,” J. Pharm. Sci. 99(1), 385–391 (2010).
[Crossref]

Lemij, H.

Li, C.

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

Li, X. T.

Li, Z.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Lin, H.

H. Lin, Y. Dong, Y.-C. Shen, and J. A. Zeitler, “Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation,” J. Pharm. Sci. 104(10), 3377–3385 (2015).
[Crossref] [PubMed]

Lo, T.

Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Lowe, M.

J. Allin, P. Cawley, and M. Lowe, “Adhesive disbond detection of automotive components using first mode ultrasonic resonance,” NDT & E International 36(7), 503–514 (2003).
[Crossref]

Maev, R. G.

S. A. Titov, R. G. Maev, and A. N. Bogachenkov, “Pulse-echo NDT of adhesively bonded joints in automotive assemblies,” Ultrasonics 48(6), 537–546 (2008).
[Crossref] [PubMed]

Maile, F. J.

F. J. Maile, G. Pfaff, and P. Reynders, “Effect pigments-past, present and future,” Prog. Org. Coat. 54(3), 150–163 (2005).
[Crossref]

Maldague, X.

X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley, 2001).

Marshall, J.

R. J. Antcliff, D. J. Spalton, M. R. Stanford, E. M. Graham, and J. Marshall, “Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study,” Ophthalmology 108(4), 765–772 (2001).
[Crossref] [PubMed]

Marx, E.

L.-P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” Journal of Coatings Technology 74(932), 55–63 (2002).
[Crossref]

Masters, B. R.

J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35, 2765–2766 (1996).
[Crossref]

Mauritz, J.

J. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski, “Imaging pharmaceutical tablets with optical coherence tomography,” J. Pharm. Sci. 99(1), 385–391 (2010).
[Crossref]

May, R. K.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

McKnight, M. E.

L.-P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” Journal of Coatings Technology 74(932), 55–63 (2002).
[Crossref]

Mei, H.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Mogensen, M.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” in Seminars in cutaneous medicine and surgery (SCMS, 2009), pp. 196–202.
[Crossref]

Morrisby, R. S.

J. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski, “Imaging pharmaceutical tablets with optical coherence tomography,” J. Pharm. Sci. 99(1), 385–391 (2010).
[Crossref]

Moulder, J.

B. Auld and J. Moulder, “Review of advances in quantitative eddy current nondestructive evaluation,” J. Nondestruct. Eval. 18(1), 3–36 (1999).
[Crossref]

Müller, R.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Mumford, D.

D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pur. Appl. Math. 42(5), 577–685 (1989).
[Crossref]

Nadal, M. E.

L.-P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” Journal of Coatings Technology 74(932), 55–63 (2002).
[Crossref]

Nicholas, P.

Nichols, M.

M. Nichols and J. Tardiff, Active Protective Coatings (SpringerNetherlands, 2016), Chap. 13.

Numasato, A.

M. Omar, K. Chuah, K. Saito, A. Numasato, and M. Sakakibara, “Infrared seed inspection system (IRSIS) on painted car shells,” Infrared Phys. Techn. 48(3), 240–248 (2006).
[Crossref]

Ohtake, H.

M. Sudo, J. Takayanagi, and H. Ohtake, “Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies,” J. Infrared Millim. Terahertz Waves 37(11), 1139–1147 (2016).
[Crossref]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Omar, M.

M. Omar, K. Chuah, K. Saito, A. Numasato, and M. Sakakibara, “Infrared seed inspection system (IRSIS) on painted car shells,” Infrared Phys. Techn. 48(3), 240–248 (2006).
[Crossref]

Osher, S.

T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
[Crossref]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena 60, 259–268 (1992).
[Crossref]

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79(1), 12–49 (1988).
[Crossref]

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).

Patrick, G.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
[Crossref]

Pawley, J.

J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35, 2765–2766 (1996).
[Crossref]

Pepper, M.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Pfaff, G.

F. J. Maile, G. Pfaff, and P. Reynders, “Effect pigments-past, present and future,” Prog. Org. Coat. 54(3), 150–163 (2005).
[Crossref]

Pock, T.

A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” J. Math. Imaging Vis. 40(1), 120–145 (2011).
[Crossref]

Poozesh, S.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
[Crossref]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Rada, L.

B. Ghanbari, L. Rada, and K. Chen, “A restarted iterative homotopy analysis method for two nonlinear models from image processing,” Int. J. Comput. Math. 91(3), 661–687 (2014).
[Crossref]

Rades, T.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Raza, A. S.

Reisman, C. A.

Reynders, P.

F. J. Maile, G. Pfaff, and P. Reynders, “Effect pigments-past, present and future,” Prog. Org. Coat. 54(3), 150–163 (2005).
[Crossref]

Rudin, L. I.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena 60, 259–268 (1992).
[Crossref]

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref]

Saito, K.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
[Crossref]

M. Omar, K. Chuah, K. Saito, A. Numasato, and M. Sakakibara, “Infrared seed inspection system (IRSIS) on painted car shells,” Infrared Phys. Techn. 48(3), 240–248 (2006).
[Crossref]

Sakakibara, M.

M. Omar, K. Chuah, K. Saito, A. Numasato, and M. Sakakibara, “Infrared seed inspection system (IRSIS) on painted car shells,” Infrared Phys. Techn. 48(3), 240–248 (2006).
[Crossref]

Salaimeh, A.

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
[Crossref]

Sarunic, M. V.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE T. Med. Imaging 30(2), 484–496 (2011).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Sethian, J. A.

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79(1), 12–49 (1988).
[Crossref]

Shah, J.

D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pur. Appl. Math. 42(5), 577–685 (1989).
[Crossref]

Shen, Y.-C.

Y. Dong, S. Lawman, Y. Zheng, D. Williams, J. Zhang, and Y.-C. Shen, “Nondestructive analysis of automotive paints with spectral domain optical coherence tomography,” Appl. Opt. 55(13), 3695–3700 (2016).
[Crossref] [PubMed]

H. Lin, Y. Dong, Y.-C. Shen, and J. A. Zeitler, “Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation,” J. Pharm. Sci. 104(10), 3377–3385 (2015).
[Crossref] [PubMed]

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

K. Su, Y.-C. Shen, and J. A. Zeitler, “Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity,” IEEE T. Thz Sci. Technol. 4(4), 432–439 (2014).
[Crossref]

Y.-C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417(1), 48–60 (2011).
[Crossref] [PubMed]

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

J. Zhang, Y.-C. Shen, and Y. Zheng, “The application of full-field optical coherence tomography on evaluating film coating of pharmaceutical pellets,” in IEEE International Conference on Computer and Information Technology (2015), pp. 1046–1050.

Smith, B. R.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE T. Med. Imaging 30(2), 484–496 (2011).
[Crossref]

Sonka, M.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref]

Spalton, D. J.

R. J. Antcliff, D. J. Spalton, M. R. Stanford, E. M. Graham, and J. Marshall, “Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study,” Ophthalmology 108(4), 765–772 (2001).
[Crossref] [PubMed]

Spencer, J. A.

B. M. Williams, J. A. Spencer, K. Chen, Y. Zheng, and S. Harding, “An effective variational model for simultaneous reconstruction and segmentation of blurred images,” J. Algor. Comput. Technol. 10(4), 244–264 (2016).
[Crossref]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

Stanford, M. R.

R. J. Antcliff, D. J. Spalton, M. R. Stanford, E. M. Graham, and J. Marshall, “Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study,” Ophthalmology 108(4), 765–772 (2001).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Su, K.

K. Su, Y.-C. Shen, and J. A. Zeitler, “Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity,” IEEE T. Thz Sci. Technol. 4(4), 432–439 (2014).
[Crossref]

Sudo, M.

M. Sudo, J. Takayanagi, and H. Ohtake, “Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies,” J. Infrared Millim. Terahertz Waves 37(11), 1139–1147 (2016).
[Crossref]

Sun, Z.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Sung, L.-P.

L.-P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” Journal of Coatings Technology 74(932), 55–63 (2002).
[Crossref]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Taday, P.

Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Taday, P. F.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Takayanagi, J.

M. Sudo, J. Takayanagi, and H. Ohtake, “Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies,” J. Infrared Millim. Terahertz Waves 37(11), 1139–1147 (2016).
[Crossref]

Tardiff, J.

M. Nichols and J. Tardiff, Active Protective Coatings (SpringerNetherlands, 2016), Chap. 13.

Thrane, L.

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” in Seminars in cutaneous medicine and surgery (SCMS, 2009), pp. 196–202.
[Crossref]

Titov, S. A.

S. A. Titov, R. G. Maev, and A. N. Bogachenkov, “Pulse-echo NDT of adhesively bonded joints in automotive assemblies,” Ultrasonics 48(6), 537–546 (2008).
[Crossref] [PubMed]

Tomidokoro, A.

Toth, C. A.

Tribe, W.

Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Urbansky, R.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Van der Schoot, J.

Vázquez-Sánchez, E.

J. García-Martín, J. Gómez-Gil, and E. Vázquez-Sánchez, “Non-destructive techniques based on eddy current testing,” Sensors 11(3), 2525–2565 (2011).
[Crossref] [PubMed]

Vermeer, K.

Vese, L.

C. Gout, C. Le Guyader, and L. Vese, “Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods,” Numer. Algorithms 39(1), 155–173 (2005).
[Crossref]

Vese, L. A.

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE T. Image Process. 10(2), 266–277 (2001).
[Crossref]

von Freymann, G.

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Wang, C.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Wang, Z.

Webb, R. H.

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427 (1996).
[Crossref]

Werner, J.

A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
[Crossref]

Wiley, D.

A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
[Crossref]

Williams, B. M.

B. M. Williams, J. A. Spencer, K. Chen, Y. Zheng, and S. Harding, “An effective variational model for simultaneous reconstruction and segmentation of blurred images,” J. Algor. Comput. Technol. 10(4), 244–264 (2016).
[Crossref]

Williams, D.

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

Wu, X.

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref]

Xie, L.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Xu, L.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Xu, X.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Yan, Y.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Yang, Q.

Yazdanpanah, A.

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE T. Med. Imaging 30(2), 484–496 (2011).
[Crossref]

Yoshimura, N.

Zawadzki, R.

A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
[Crossref]

Zeitler, J. A.

H. Lin, Y. Dong, Y.-C. Shen, and J. A. Zeitler, “Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation,” J. Pharm. Sci. 104(10), 3377–3385 (2015).
[Crossref] [PubMed]

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

K. Su, Y.-C. Shen, and J. A. Zeitler, “Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity,” IEEE T. Thz Sci. Technol. 4(4), 432–439 (2014).
[Crossref]

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Zhang, J.

Y. Dong, S. Lawman, Y. Zheng, D. Williams, J. Zhang, and Y.-C. Shen, “Nondestructive analysis of automotive paints with spectral domain optical coherence tomography,” Appl. Opt. 55(13), 3695–3700 (2016).
[Crossref] [PubMed]

J. Zhang, Y.-C. Shen, and Y. Zheng, “The application of full-field optical coherence tomography on evaluating film coating of pharmaceutical pellets,” in IEEE International Conference on Computer and Information Technology (2015), pp. 1046–1050.

Zhang, N.

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

Zheng, Y.

Y. Dong, S. Lawman, Y. Zheng, D. Williams, J. Zhang, and Y.-C. Shen, “Nondestructive analysis of automotive paints with spectral domain optical coherence tomography,” Appl. Opt. 55(13), 3695–3700 (2016).
[Crossref] [PubMed]

B. M. Williams, J. A. Spencer, K. Chen, Y. Zheng, and S. Harding, “An effective variational model for simultaneous reconstruction and segmentation of blurred images,” J. Algor. Comput. Technol. 10(4), 244–264 (2016).
[Crossref]

J. Zhang, Y.-C. Shen, and Y. Zheng, “The application of full-field optical coherence tomography on evaluating film coating of pharmaceutical pellets,” in IEEE International Conference on Computer and Information Technology (2015), pp. 1046–1050.

Zhong, S.

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Krimi, J. Klier, J. Jonuscheit, G. von Freymann, R. Urbansky, and R. Beigang, “Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology,” Appl. Phys. Lett. 109(2), 021105 (2016).
[Crossref]

Y.-C. Shen, T. Lo, P. Taday, B. Cole, W. Tribe, and M. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Automatica (1)

N. Otsu, “A threshold selection method from gray-level histograms,” Automatica 11, 23–27 (1975).

Biomed. Opt. Express (1)

Coatings (1)

N. K. Akafuah, S. Poozesh, A. Salaimeh, G. Patrick, K. Lawler, and K. Saito, “Evolution of the automotive body coating process - a review,” Coatings 6(2), 24 (2016).
[Crossref]

Commun. Pur. Appl. Math. (1)

D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Commun. Pur. Appl. Math. 42(5), 577–685 (1989).
[Crossref]

Forensic Sci. Int. (1)

N. Zhang, C. Wang, Z. Sun, H. Mei, W. Huang, L. Xu, L. Xie, J. Guo, Y. Yan, Z. Li, and X. Xu, “Characterization of automotive paint by optical coherence tomography,” Forensic Sci. Int. 266, 239–244 (2016).
[Crossref] [PubMed]

IEEE T. Image Process. (1)

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE T. Image Process. 10(2), 266–277 (2001).
[Crossref]

IEEE T. Med. Imaging (2)

M. K. Garvin, M. D. Abràmoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE T. Med. Imaging 27(10), 1495–1505 (2008).
[Crossref]

A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach,” IEEE T. Med. Imaging 30(2), 484–496 (2011).
[Crossref]

IEEE T. Thz Sci. Technol. (1)

K. Su, Y.-C. Shen, and J. A. Zeitler, “Terahertz sensor for non-contact thickness and quality measurement of automobile paints of varying complexity,” IEEE T. Thz Sci. Technol. 4(4), 432–439 (2014).
[Crossref]

IEEE T. Vis. Comput. Gr. (1)

A. Fuller, R. Zawadzki, S. Choi, D. Wiley, J. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE T. Vis. Comput. Gr. 13(6), 1719–1726 (2007).
[Crossref]

Infrared Phys. Techn. (1)

M. Omar, K. Chuah, K. Saito, A. Numasato, and M. Sakakibara, “Infrared seed inspection system (IRSIS) on painted car shells,” Infrared Phys. Techn. 48(3), 240–248 (2006).
[Crossref]

Int. J. Comput. Math. (1)

B. Ghanbari, L. Rada, and K. Chen, “A restarted iterative homotopy analysis method for two nonlinear models from image processing,” Int. J. Comput. Math. 91(3), 661–687 (2014).
[Crossref]

Int. J. Pharm. (1)

Y.-C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417(1), 48–60 (2011).
[Crossref] [PubMed]

J. Algor. Comput. Technol. (1)

B. M. Williams, J. A. Spencer, K. Chen, Y. Zheng, and S. Harding, “An effective variational model for simultaneous reconstruction and segmentation of blurred images,” J. Algor. Comput. Technol. 10(4), 244–264 (2016).
[Crossref]

J. Comput. Phys. (1)

S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comput. Phys. 79(1), 12–49 (1988).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

M. Sudo, J. Takayanagi, and H. Ohtake, “Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies,” J. Infrared Millim. Terahertz Waves 37(11), 1139–1147 (2016).
[Crossref]

J. Math. Imaging Vis. (1)

A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” J. Math. Imaging Vis. 40(1), 120–145 (2011).
[Crossref]

J. Nondestruct. Eval. (1)

B. Auld and J. Moulder, “Review of advances in quantitative eddy current nondestructive evaluation,” J. Nondestruct. Eval. 18(1), 3–36 (1999).
[Crossref]

J. Pharm. Sci. (3)

H. Lin, Y. Dong, Y.-C. Shen, and J. A. Zeitler, “Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation,” J. Pharm. Sci. 104(10), 3377–3385 (2015).
[Crossref] [PubMed]

J. Mauritz, R. S. Morrisby, R. S. Hutton, C. H. Legge, and C. F. Kaminski, “Imaging pharmaceutical tablets with optical coherence tomography,” J. Pharm. Sci. 99(1), 385–391 (2010).
[Crossref]

C. Li, J. A. Zeitler, Y. Dong, and Y.-C. Shen, “Non-destructive evaluation of polymer coating structures on pharmaceutical pellets using full-field optical coherence tomography,” J. Pharm. Sci. 103(1), 161–166 (2014).
[Crossref]

Journal of Coatings Technology (1)

L.-P. Sung, M. E. Nadal, M. E. McKnight, E. Marx, and B. Laurenti, “Optical reflectance of metallic coatings: effect of aluminum flake orientation,” Journal of Coatings Technology 74(932), 55–63 (2002).
[Crossref]

NDT & E International (1)

J. Allin, P. Cawley, and M. Lowe, “Adhesive disbond detection of automotive components using first mode ultrasonic resonance,” NDT & E International 36(7), 503–514 (2003).
[Crossref]

Numer. Algorithms (1)

C. Gout, C. Le Guyader, and L. Vese, “Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods,” Numer. Algorithms 39(1), 155–173 (2005).
[Crossref]

Ophthalmology (2)

R. J. Antcliff, D. J. Spalton, M. R. Stanford, E. M. Graham, and J. Marshall, “Intravitreal triamcinolone for uveitic cystoid macular edema: an optical coherence tomography study,” Ophthalmology 108(4), 765–772 (2001).
[Crossref] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology 112(10), 1734–1746 (2005).
[Crossref] [PubMed]

Opt. Eng. (1)

J. Pawley and B. R. Masters, “Handbook of biological confocal microscopy,” Opt. Eng. 35, 2765–2766 (1996).
[Crossref]

Opt. Express (2)

Opt. Laser. Eng. (1)

S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, and R. Müller, “Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography,” Opt. Laser. Eng. 49(3), 361–365 (2011).
[Crossref]

Physica D: Nonlinear Phenomena (1)

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena 60, 259–268 (1992).
[Crossref]

Prog. Org. Coat. (2)

E. Kirchner and J. Houweling, “Measuring flake orientation for metallic coatings,” Prog. Org. Coat. 64(2), 287–293 (2009).
[Crossref]

F. J. Maile, G. Pfaff, and P. Reynders, “Effect pigments-past, present and future,” Prog. Org. Coat. 54(3), 150–163 (2005).
[Crossref]

Rep. Prog. Phys. (2)

R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59(3), 427 (1996).
[Crossref]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239 (2003).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178 (1991).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications - explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266 (2005).
[Crossref]

Sensors (1)

J. García-Martín, J. Gómez-Gil, and E. Vázquez-Sánchez, “Non-destructive techniques based on eddy current testing,” Sensors 11(3), 2525–2565 (2011).
[Crossref] [PubMed]

SIAM J. Imaging Sci. (1)

T. Goldstein and S. Osher, “The split Bregman method for L1-regularized problems,” SIAM J. Imaging Sci. 2(2), 323–343 (2009).
[Crossref]

Ultrasonics (1)

S. A. Titov, R. G. Maev, and A. N. Bogachenkov, “Pulse-echo NDT of adhesively bonded joints in automotive assemblies,” Ultrasonics 48(6), 537–546 (2008).
[Crossref] [PubMed]

Other (4)

M. Nichols and J. Tardiff, Active Protective Coatings (SpringerNetherlands, 2016), Chap. 13.

X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing (Wiley, 2001).

M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” in Seminars in cutaneous medicine and surgery (SCMS, 2009), pp. 196–202.
[Crossref]

J. Zhang, Y.-C. Shen, and Y. Zheng, “The application of full-field optical coherence tomography on evaluating film coating of pharmaceutical pellets,” in IEEE International Conference on Computer and Information Technology (2015), pp. 1046–1050.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of our FF-OCT system showing the beam splitter (BS), plano-convex lenses (L1, L2, L3), complementary metal-oxide semiconductor camera (CMOS), reference mirror (RM) and infrared light-emitting diode light source (LED). (b) An OCT en-face image of USAF 1951 resolution target measured by our FF-OCT system. (c) Schematic diagram of the depth profile of the car paint sample. (d) Photograph of car paint panel used in this work where the nine sections of the measured areas are highlighted in red.

Fig. 2
Fig. 2

Cross-section images of four samples (right side) and their corresponding average depth profiles (left side). (a) Indus silver sample #1; (b) Mauritius blue sample; (c) Barolo black sample; (d) Santorini black sample; The cross-sectional images show that there are more flakes in the Indus silver and Mauritius blue samples than Barolo black. (n is the refractive index of the sample.)

Fig. 3
Fig. 3

3D view and cross-section images of base coat of Indus silver #1 after 3D segmentation. (a) 3D view of segmented flakes. (b), (c), (d) show three cross-section images of flakes within base coat layer after segmentation in three orthogonal planes.

Fig. 4
Fig. 4

Example showing part of the segmentation of an en-face OCT image of car paint. An en-face OCT volume image (a) of metallic flakes is segmented by determining the level set function ϕ (b) in order to obtain the segmentation result (c). The segmentation is calculated on the whole 3D volume rather than slice-by-slice. For each individual flake, the orientation is defined as the angle between the fitting plane of the flake and horizontal plane and calculated using their normal vectors. Given the orientation, we measure a flake (d) by flattening it to a plane (e) and rotating it to be parallel with the horizontal plane (f).

Fig. 5
Fig. 5

A set of en-face images of 5 repeated OCT measurements with their segmentation results overlaid. The consistency between repeated data demonstrates the repeatability of our OCT system and segmentation method. Each column represents 5 different repeated data and each row denotes two different optical depths (72μm and 76μm).

Fig. 6
Fig. 6

Comparison of B-scans from our OCT device (left column) with micrographs (right column) for four samples: Indus silver, Mauritius blue, Barolo black and Santorini black.

Tables (2)

Tables Icon

Table 1 The numbers, sizes and orientations of flakes in five paint samples. (Std: standard deviation of mean flake sizes of nine sections.)

Tables Icon

Table 2 Comparison of mean flake orientations from our OCT and microscopy.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

min c , ϕ { f ( c , ϕ ) = λ 1 Ω ( z c 1 ) 2 H ( ϕ ) d x + λ 2 Ω ( z c 2 ) 2 ( 1 H ( ϕ ) ) d x : = f F ( c , ϕ ) + α Ω | H ( ϕ ) | β d x : = f R ( ϕ ) }
c 1 f ( c , ϕ ) = 2 λ 1 Ω ( z c 1 ) H ε ( ϕ ) d x , c 2 f ( c , ϕ ) = 2 λ 2 Ω ( z c 2 ) ( 1 H ε ( ϕ ) ) d x .
c 1 = Ω z ( x ) H ε ( ϕ ( x ) ) d x Ω H ε ( ϕ ) d x , c 2 = Ω z ( x ) ( 1 H ε ( ϕ ( x ) ) ) d x Ω 1 H ε ( ϕ ) d x .
η f F ( c , ϕ + η ψ ) | η = 0 = Ω [ λ 1 ( z c 1 ) 2 λ 2 ( z c 2 ) 2 ] H ε ( ϕ ) ψ d x .
η f R ( ϕ + η ψ ) | η = 0 = Ω ψ H ε ( ϕ ) ϕ | ϕ | β d x + Γ ψ H ε ( ϕ ) ϕ | ϕ | β n ˜ d x ,
E f ( ϕ ( x ) ) = λ 1 ( z ( x ) c 1 ) 2 λ 2 ( z ( x ) c 2 ) 2 α ϕ ( x ) | ϕ ( x ) | β , x = ( x 1 , x 2 , x 3 )
ϕ ( x ; t ) t = f [ ϕ ( x ; t ) ] , ϕ ( x , 0 ) = ϕ 0 ( x ) ,
𝒩 [ ϕ ( x , t ) ] = 0 where 𝒩 [ ϕ ( x , t ) ] : = ϕ ( x ; t ) t + f [ ϕ ( x ; t ) ]
( 1 q ) [ φ ( x ; t , q ) ϕ 0 ( x ; t ) ] = q ( x ; t ) 𝒩 [ φ ( x ; t , q ) ]
φ ( x ; t , q ) = m = 0 ϕ m ( x , t ) q m = ϕ 0 ( x , t ) + m = 1 ϕ m ( x , t ) q m s . t . ϕ m ( x , t ) = 1 m ! φ m ( x ; t , q ) q m | q = 0 .
φ ( x ; t , 1 ) = m = 0 ϕ m ( x , t ) and m φ ( x ; t , q ) q m | q = 0 = m ! ϕ m ( x ; t )
[ ϕ m ( x ; t ) χ m ϕ m 1 ( x ; t ) = ( x ; t ) ] m [ ϕ m 1 ( x ; t ) ]
χ m = { 1 if m > 1 0 if m 1 , m [ ϕ m 1 ( x ; t ) ] = 1 ( m 1 ) ! m 1 𝒩 [ φ ( x ; t , q ) ] q m 1 | q = 0
[ φ ( x ; t , q ) ] = φ t ( x ; t , q ) + θ φ ( x ; t , q ) s . t . 1 = e θ t 0 t e θ τ φ ( x ; τ , q ) d τ
ϕ m + 1 = χ m + 1 ϕ m + e θ t 0 t e ( θ 2 ) τ m + 1 [ ϕ m ( x ; τ ) ] d τ .
𝒩 [ ϕ ( x ; t ) ] = ϕ t ( x ; t ) + λ 1 ( z ( x ) c 1 ) 2 λ 2 ( z ( x ) c 2 ) 2 α ϕ ( x ) | ϕ ( x ) | β = 0 .
1 [ ϕ 0 ( x ; t ) ] = 𝒩 [ φ ( x ; t , q ) ] | q = 0 = λ 1 ( z ( x ) c 1 ) 2 λ 2 ( z ( x ) c 2 ) 2 α ϕ 0 ( x ) | ϕ 0 ( x ) | β = σ ( x ) ,
ϕ 1 = e θ t 0 t e ( θ 2 ) τ σ ( x ) d τ = e θ t 0 t e ( θ 2 ) τ d τ σ ( x ) = e 2 t e θ t θ 2 σ ( x ) ,
2 [ ϕ 1 ( x ; t ) ] = θ e θ t 2 e 2 t θ 2 σ ( x ) α β ϕ 1 | ϕ 0 | ,
ϕ 2 = ϕ 1 + e θ t 0 t e ( θ 2 ) τ 2 [ ϕ 1 ] d τ = ϕ 1 + 2 ( θ ( θ 4 ) e ( θ + 2 ) t 4 e 4 t + ( θ 2 ) 2 e θ t 2 ( θ 2 ) ( θ 4 ) ) ( σ ( x ) α β σ ( x ) | ϕ 0 | ) .
ϕ k = i = 0 2 ϕ i , k = 1 n max
F i = δ ( ρ h i ) , δ ( x ) = { 1 if x = 0 0 otherwise
n i x = n i p i
min n i { j ( n i ( p j i p ¯ i ) n i n i | n i | ) 2 } , | n | = n 1 2 + n 2 2 + n 3 2 .
θ i = cos 1 ( n i ( 0 , 0 , 1 ) | n i | | ( 0 , 0 , 1 ) | ) = cos 1 ( n 3 i )
1 ( p i ) = p i + n i ( p ¯ i p i ) n i n i n i , 1 ( z ) = z + n i ( p ¯ i z ) n i n i n i ,
S i = ! { min z j ( z j p ) } p 1 ( p i )