Abstract

Ultra-high precision dual-comb spectroscopy traditionally requires two mode-locked, fully stabilized lasers with complex feedback electronics. We present a novel mode-locked operation regime in a thulium-holmium co-doped fiber laser, a frequency-halved state with orthogonally polarized interlaced pulses, for dual comb generation from a single source. In a linear fiber laser cavity, an ultrafast pulse train composed of co-generated, equal intensity and orthogonally polarized consecutive pulses at half of the fundamental repetition rate is demonstrated based on vector solitons. Upon optical interference of the orthogonally polarized pulse trains, two stable microwave RF beat combs are formed, effectively down-converting the optical properties into the microwave regime. These co-generated, dual polarization interlaced pulse trains, from one all-fiber laser configuration with common mode suppression, thus provide an attractive compact source for dual-comb spectroscopy, optical metrology and polarization entanglement measurements.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen
Opt. Express 23(8) 10111-10116 (2015)

Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

Ya Liu, Xin Zhao, Guoqing Hu, Cui Li, Bofeng Zhao, and Zheng Zheng
Opt. Express 24(19) 21392-21398 (2016)

Picometer-resolution dual-comb spectroscopy with a free-running fiber laser

Xin Zhao, Guoqing Hu, Bofeng Zhao, Cui Li, Yingling Pan, Ya Liu, Takeshi Yasui, and Zheng Zheng
Opt. Express 24(19) 21833-21845 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  2. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [Crossref] [PubMed]
  3. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  4. M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
    [Crossref]
  5. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref] [PubMed]
  6. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  7. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
    [Crossref]
  8. N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, “Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response,” Opt. Lett. 23(4), 280–282 (1998).
    [Crossref] [PubMed]
  9. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
    [Crossref]
  10. F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
    [Crossref]
  11. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  12. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
    [Crossref]
  13. I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16(8), 539–541 (1991).
    [Crossref] [PubMed]
  14. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
    [Crossref]
  15. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12(8), 614–616 (1987).
    [Crossref] [PubMed]
  16. S. Cundiff, B. Collings, and W. Knox, “Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser,” Opt. Express 1(1), 12–21 (1997).
    [Crossref] [PubMed]
  17. N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23(11), 852–854 (1998).
    [Crossref] [PubMed]
  18. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
    [Crossref]
  19. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008).
    [Crossref] [PubMed]
  20. H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
    [Crossref] [PubMed]
  21. A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
    [Crossref]
  22. Y. F. Song, H. Zhang, D. Y. Tang, and D. Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012).
    [Crossref] [PubMed]
  23. V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
    [Crossref] [PubMed]
  24. C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011).
    [Crossref] [PubMed]
  25. J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
    [Crossref]
  26. Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
    [Crossref]
  27. R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector Soliton Bunching in Thulium-Holmium Fiber Laser Mode-Locked With PbS Quantum-Dot-Doped Glass Absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
    [Crossref]
  28. Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
    [Crossref] [PubMed]
  29. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  30. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  31. J. Thévenin, M. Vallet, and M. Brunel, “Dual-polarization mode-locked Nd:YAG laser,” Opt. Lett. 37(14), 2859–2861 (2012).
    [Crossref] [PubMed]
  32. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
    [Crossref] [PubMed]
  33. S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization,” Opt. Express 24(3), 1889–1902 (2016).
    [Crossref] [PubMed]
  34. Y. Liu, X. Zhao, G. Hu, C. Li, B. Zhao, and Z. Zheng, “Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser,” Opt. Express 24(19), 21392–21398 (2016).
    [Crossref] [PubMed]
  35. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
    [Crossref] [PubMed]
  36. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
    [Crossref]
  37. S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
    [Crossref]
  38. M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9, 450-455 (2015).  http://www.nature.com/nphoton/journal/v9/n7/full/nphoton.2015.92.html .
  39. A. E. Akosman and M. Y. Sander, “Low Noise, Mode-Locked 253 MHz Tm/Ho Fiber Laser With Core Pumping at 790 nm,” IEEE Photonics Technol. Lett. 28(17), 1878–1881 (2016).
    [Crossref]
  40. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
    [Crossref]

2016 (8)

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

A. E. Akosman and M. Y. Sander, “Low Noise, Mode-Locked 253 MHz Tm/Ho Fiber Laser With Core Pumping at 790 nm,” IEEE Photonics Technol. Lett. 28(17), 1878–1881 (2016).
[Crossref]

S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization,” Opt. Express 24(3), 1889–1902 (2016).
[Crossref] [PubMed]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
[Crossref]

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
[Crossref]

Y. Liu, X. Zhao, G. Hu, C. Li, B. Zhao, and Z. Zheng, “Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser,” Opt. Express 24(19), 21392–21398 (2016).
[Crossref] [PubMed]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

2015 (2)

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9, 450-455 (2015).  http://www.nature.com/nphoton/journal/v9/n7/full/nphoton.2015.92.html .

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

2013 (2)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

2012 (4)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector Soliton Bunching in Thulium-Holmium Fiber Laser Mode-Locked With PbS Quantum-Dot-Doped Glass Absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

J. Thévenin, M. Vallet, and M. Brunel, “Dual-polarization mode-locked Nd:YAG laser,” Opt. Lett. 37(14), 2859–2861 (2012).
[Crossref] [PubMed]

Y. F. Song, H. Zhang, D. Y. Tang, and D. Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012).
[Crossref] [PubMed]

2011 (2)

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011).
[Crossref] [PubMed]

2010 (3)

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

2009 (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

2008 (2)

2004 (1)

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2001 (1)

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[Crossref]

2000 (1)

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
[Crossref]

1999 (1)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

1998 (2)

1997 (1)

1996 (1)

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

1992 (2)

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

1991 (1)

1987 (1)

Aditya, S.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Akhmediev, N. N.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, “Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response,” Opt. Lett. 23(4), 280–282 (1998).
[Crossref] [PubMed]

N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23(11), 852–854 (1998).
[Crossref] [PubMed]

Akosman, A. E.

A. E. Akosman and M. Y. Sander, “Low Noise, Mode-Locked 253 MHz Tm/Ho Fiber Laser With Core Pumping at 790 nm,” IEEE Photonics Technol. Lett. 28(17), 1878–1881 (2016).
[Crossref]

Amrani, F.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Ankiewicz, A.

Balle, S.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9, 450-455 (2015).  http://www.nature.com/nphoton/journal/v9/n7/full/nphoton.2015.92.html .

Barland, S.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9, 450-455 (2015).  http://www.nature.com/nphoton/journal/v9/n7/full/nphoton.2015.92.html .

Bergman, K.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Brunel, M.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Cassinerio, M.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Chernov, A.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Coddington, I.

Collings, B.

Collings, B. C.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23(11), 852–854 (1998).
[Crossref] [PubMed]

Coluccelli, N.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Cundiff, S.

Cundiff, S. T.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23(11), 852–854 (1998).
[Crossref] [PubMed]

Duling, I. N.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Fu, S.

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

Galzerano, G.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Gambetta, A.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Gaponenko, M. S.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector Soliton Bunching in Thulium-Holmium Fiber Laser Mode-Locked With PbS Quantum-Dot-Doped Glass Absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Ge, Y.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Giudici, M.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9, 450-455 (2015).  http://www.nature.com/nphoton/journal/v9/n7/full/nphoton.2015.92.html .

Goda, K.

Golling, M.

Grudinin, A.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Gumenyuk, R.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector Soliton Bunching in Thulium-Holmium Fiber Laser Mode-Locked With PbS Quantum-Dot-Doped Glass Absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Hänsch, T. W.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Haus, H. A.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hu, G.

Ideguchi, T.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Ippen, E. P.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Javaloyes, J.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9, 450-455 (2015).  http://www.nature.com/nphoton/journal/v9/n7/full/nphoton.2015.92.html .

Jiang, K.

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

Jung, I. D.

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

Kartner, F. X.

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

Kelleher, E. J. R.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Keller, U.

S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization,” Opt. Express 24(3), 1889–1902 (2016).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[Crossref]

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

Kieu, K.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Klenner, A.

Knox, W.

Knox, W. H.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23(11), 852–854 (1998).
[Crossref] [PubMed]

Kobayashi, Y.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Komarov, A.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Komarov, K.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Laporta, P.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Lederer, M. J.

Li, C.

Li, H.

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

Li, L.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Link, S. M.

Liu, D.

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

Liu, H. H.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Liu, Y.

Luo, J.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Luther-Davies, B.

Mangold, M.

Marconi, M.

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9, 450-455 (2015).  http://www.nature.com/nphoton/journal/v9/n7/full/nphoton.2015.92.html .

Mehravar, S.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Menyuk, C. R.

Meshcheriakov, D.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Mikhailov, V.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

Mou, C.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011).
[Crossref] [PubMed]

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Nakamura, T.

Newbury, N.

Newbury, N. R.

Norwood, R. A.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Obraztsova, E. D.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Okhotnikov, O.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Okhotnikov, O. G.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector Soliton Bunching in Thulium-Holmium Fiber Laser Mode-Locked With PbS Quantum-Dot-Doped Glass Absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Onushchenko, A. A.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector Soliton Bunching in Thulium-Holmium Fiber Laser Mode-Locked With PbS Quantum-Dot-Doped Glass Absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Ouyang, C.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Pan, Y.

Paschotta, R.

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[Crossref]

Pessa, M.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Peyghambarian, N.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Picqué, N.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Rabin, B.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Rozhin, A.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett. 36(19), 3831–3833 (2011).
[Crossref] [PubMed]

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sanchez, F.

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Sander, M. Y.

A. E. Akosman and M. Y. Sander, “Low Noise, Mode-Locked 253 MHz Tm/Ho Fiber Laser With Core Pumping at 790 nm,” IEEE Photonics Technol. Lett. 28(17), 1878–1881 (2016).
[Crossref]

Sergeyev, S.

Sergeyev, S. V.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

Shen, D.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Shen, D. Y.

Shum, P.

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Song, J.

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

Song, Y. F.

Soto-Crespo, J. M.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
[Crossref]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, and W. H. Knox, “Phase locking and periodic evolution of solitons in passively mode-locked fiber lasers with a semiconductor saturable absorber,” Opt. Lett. 23(11), 852–854 (1998).
[Crossref] [PubMed]

Swann, W.

Tamura, K.

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

Tang, D.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Tang, D. Y.

Tang, M.

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

Thévenin, J.

Tilma, B. W.

Tsatourian, V.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

Turistyn, S.

Turitsyn, S. K.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Vallet, M.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Wang, H.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Wang, S.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Wang, Y.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Westbrook, P. S.

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

Wise, F. W.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Wong, J. H.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Wu, K.

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Wu, X.

Wu, Z.

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

Xiang, N.

Yasui, T.

Yumashev, K. V.

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector Soliton Bunching in Thulium-Holmium Fiber Laser Mode-Locked With PbS Quantum-Dot-Doped Glass Absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

Zaugg, C. A.

Zhang, H.

Zhang, S.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Zhao, B.

Zhao, L.

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

Zhao, L. M.

Zhao, X.

Zheng, Z.

Appl. Phys. B (1)

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[Crossref]

Appl. Phys. Lett. (2)

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Electron. Lett. (1)

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28(24), 2226–2228 (1992).
[Crossref]

IEEE J. Quantum Electron. (2)

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992).
[Crossref]

R. Gumenyuk, M. S. Gaponenko, K. V. Yumashev, A. A. Onushchenko, and O. G. Okhotnikov, “Vector Soliton Bunching in Thulium-Holmium Fiber Laser Mode-Locked With PbS Quantum-Dot-Doped Glass Absorber,” IEEE J. Quantum Electron. 48(7), 903–907 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

F. X. Kartner, I. D. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 540–556 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Wang, S. Wang, J. Luo, Y. Ge, L. Li, D. Tang, D. Shen, S. Zhang, F. W. Wise, and L. Zhao, “Vector Soliton Generation in a Tm Fiber Laser,” IEEE Photonics Technol. Lett. 26(8), 769–772 (2014).
[Crossref]

A. E. Akosman and M. Y. Sander, “Low Noise, Mode-Locked 253 MHz Tm/Ho Fiber Laser With Core Pumping at 790 nm,” IEEE Photonics Technol. Lett. 28(17), 1878–1881 (2016).
[Crossref]

JOSA B (1)

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” JOSA B 17(3), 354–365 (2000).
[Crossref]

Nat. Commun. (1)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Nat. Photonics (4)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

M. Marconi, J. Javaloyes, S. Barland, S. Balle, and M. Giudici, “Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays,” Nat. Photonics 9, 450-455 (2015).  http://www.nature.com/nphoton/journal/v9/n7/full/nphoton.2015.92.html .

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Opt. Commun. (1)

J. H. Wong, K. Wu, H. H. Liu, C. Ouyang, H. Wang, S. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun. 284(7), 2007–2011 (2011).
[Crossref]

Opt. Express (9)

S. Cundiff, B. Collings, and W. Knox, “Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser,” Opt. Express 1(1), 12–21 (1997).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express 16(14), 10053–10058 (2008).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

Y. F. Song, H. Zhang, D. Y. Tang, and D. Y. Shen, “Polarization rotation vector solitons in a graphene mode-locked fiber laser,” Opt. Express 20(24), 27283–27289 (2012).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

S. M. Link, A. Klenner, and U. Keller, “Dual-comb modelocked lasers: semiconductor saturable absorber mirror decouples noise stabilization,” Opt. Express 24(3), 1889–1902 (2016).
[Crossref] [PubMed]

Y. Liu, X. Zhao, G. Hu, C. Li, B. Zhao, and Z. Zheng, “Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser,” Opt. Express 24(19), 21392–21398 (2016).
[Crossref] [PubMed]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

Opt. Lett. (6)

Optica (2)

Phys. Rev. A (1)

A. Komarov, K. Komarov, D. Meshcheriakov, F. Amrani, and F. Sanchez, “Polarization dynamics in nonlinear anisotropic fibers,” Phys. Rev. A 82(1), 013813 (2010).
[Crossref]

Phys. Rev. Lett. (1)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of Polarization-Locked Vector Solitons in an Optical Fiber,” Phys. Rev. Lett. 82(20), 3988–3991 (1999).
[Crossref]

Sci. Rep. (2)

V. Tsatourian, S. V. Sergeyev, C. Mou, A. Rozhin, V. Mikhailov, B. Rabin, P. S. Westbrook, and S. K. Turitsyn, “Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser,” Sci. Rep. 3(1), 3154 (2013).
[Crossref] [PubMed]

Z. Wu, S. Fu, K. Jiang, J. Song, H. Li, M. Tang, P. Shum, and D. Liu, “Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton,” Sci. Rep. 6(1), 34844 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the mode-locked fiber laser. The linear laser cavity consists of a section of 70 cm long Tm/Ho co-doped single-mode gain fiber and 5 cm of SMF-28e + , which is butt-coupled to the SBR. An inline polarization controller (PC) controls the cavity birefringence. The output is obtained through a 10% output coupler (OC) and separated from the pump light through a dichroic mirror (DM). A linear polarizer is placed in the output pulse train to characterize the polarization constituents of the mode-locked pulse train, as shown for the frequency-halved state in (b).

Fig. 2
Fig. 2

Characterization of the mode-locked fiber laser in a scalar soliton state. (a) Optical spectrum centered at a wavelength of 1975 nm with a 9.8 nm FWHM spectral bandwidth, yielding 400 fs transform limited sech pulses. (b) RF spectrum of the fundamental repetition rate of 135.2 MHz with a signal-to-background suppression larger than 70 dB. (c) RF spectrum up to 30th harmonic. (d) Oscilloscope trace of the pulse train with a 7.4 ns periodicity.

Fig. 3
Fig. 3

The evolution of the VS mode-locked states with respect to the PC orientation for different fiber twists induced by an inline polarization controller. First column: Optical Spectrum with almost identical bandwidths for all states. Second column: RF spectrum with evolving PEFs.

Fig. 4
Fig. 4

The optical spectrum, RF spectrum and temporal characterization of the frequency-halved state, (a) without decomposing the orthogonal polarization constituents. (b) LP at the angle of α, corresponding to a purely linearly polarized pulse train. (c) LP at an angle of α + 90°, where the purely linearly polarized pulse train is the orthogonal counterpart of pulse train obtained in (b). (d) LP at the angle of α + 45°, resulting in an equal distribution of the orthogonal polarization constituents in each pulse.

Fig. 5
Fig. 5

Relative intensity and phase stability analysis of the frequency-halved state for different eigenstate polarization projections. (a) Relative intensity noise. (b) Corresponding integrated rms intensity fluctuations for the frequency interval of 10 Hz to 2 MHz. (c) Phase noise for the offset frequency interval of 10 Hz to 2 MHz with respect to the repetition rates of the measured pulse trains with (d) corresponding timing jitter.

Fig. 6
Fig. 6

The analysis of the generation of microwave RF beat combs with the frequency-halved state. (a) Frequency drifts of the two decomposed orthogonally polarized pulse trains over a frequency counting sampling size of 10000. (b) Schematic of set-up for optical interference of the individual pulse trains. (c) RF trace of the resulting microwave beat combs after low-pass filtering at 40 MHz and RF amplification. (d) High resolution bandwidth (10 Hz) RF trace of the beat combs, the inset includes the RF trace of the comb lines for a narrow bandwidth window of 3 kHz showing the individual line structure centered at a frequency of 31.254 MHz.

Metrics