Abstract

This article reports our investigation of the potential of optical Söller collimators in combination with luminescent concentrators for lens-less, short-distance, and shape-independent thin-film imaging. We discuss optical imaging capabilities and limitations, and present first prototypes and results. Modern 3D laser lithography and deep X-ray lithography support the manufacturing of extremely fine collimator structures that pave the way for flexible and scalable thin-film cameras that are far thinner than 1 mm (including optical imaging and color sensor layers).

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexander Koppelhuber and Oliver Bimber, "Thin-film camera using luminescent concentrators and an optical Söller collimator: publisher’s note," Opt. Express 25, 19084-19084 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-16-19084

26 July 2017: A typographical correction was made to the author listing.


OSA Recommended Articles
Multi-exposure color imaging with stacked thin-film luminescent concentrators

Alexander Koppelhuber and Oliver Bimber
Opt. Express 23(26) 33713-33720 (2015)

Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators

Alexander Koppelhuber and Oliver Bimber
Opt. Express 21(4) 4796-4810 (2013)

A transparent thin-film sensor for multi-focal image reconstruction and depth estimation

Alexander Koppelhuber, Clemens Birklbauer, Shahram Izadi, and Oliver Bimber
Opt. Express 22(8) 8928-8942 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
    [Crossref]
  2. T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
    [Crossref]
  3. A. Koppelhuber and O. Bimber, “Towards a transparent, flexible, scalable and disposable image sensor using thin-film luminescent concentrators,” Opt. Express 21, 4796–4810 (2013).
    [Crossref] [PubMed]
  4. A. Koppelhuber, C. Birklbauer, S. Izadi, and O. Bimber, “A transparent thin-film sensor for multi-focal image reconstruction and depth estimation,” Opt. Express 22, 8928–8942 (2014).
    [Crossref] [PubMed]
  5. A. Koppelhuber, S. Fanello, C. Birklbauer, D. Schedl, S. Izadi, and O. Bimber, “Enhanced learning-based imaging with thin-film luminescent concentrators,” Opt. Express 22, 29531–29543 (2014).
    [Crossref]
  6. A. Koppelhuber and O. Bimber, “A classification sensor based on compressed optical radon transform,” Opt. Express 23, 9397–9406 (2015).
    [Crossref] [PubMed]
  7. A. Koppelhuber and O. Bimber, “Multi-exposure color imaging with stacked thin-film luminescent concentrators,” Opt. Express 23, 33713–33720 (2015).
    [Crossref]
  8. A. Koppelhuber and O. Bimber, “Computational imaging, relighting and depth sensing using flexible thin-film sensors,” Opt. Express 25, 2694–2702 (2017).
    [Crossref]
  9. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
    [Crossref]
  10. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (tombo): concept and experimentalverification,” Appl. Opt. 40, 1806–1813 (2001).
    [Crossref]
  11. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
    [Crossref]
  12. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
    [Crossref] [PubMed]
  13. D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.
  14. E. E. Fenimore and T. Cannon, “Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337–347 (1978).
    [Crossref] [PubMed]
  15. M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (2015), pp. 663–666.
  16. W. Soller, “A new precision x-ray spectrometer,” Phys. Rev. 24, 158 (1924).
    [Crossref]
  17. F. Piegsa, “Highly collimating neutron optical devices,” Nuclear Instrum. Methods Phys. Res. 603, 401–405 (2009).
    [Crossref]
  18. J. Balsam, M. Ossandon, H. A. Bruck, and A. Rasooly, “Modeling and design of micromachined optical soller collimators for lensless ccd-based fluorometry,” Analyst 137, 5011–5017 (2012).
    [Crossref] [PubMed]
  19. J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
    [Crossref]
  20. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
    [Crossref] [PubMed]
  21. N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.
  22. D. G. Stork and P. R. Gill, “Optical, mathematical, and computational foundations of lensless ultra-miniature diffractive imagers and sensors,” Int. J. Adv. Sys. Measurements 7, 4 (2014).
  23. F. Heide, Q. Fu, Y. Peng, and W. Heidrich, “Encoded diffractive optics for full-spectrum computational imaging,” Sci. Rep. 6, 33543 (2016).
    [Crossref] [PubMed]

2017 (2)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

A. Koppelhuber and O. Bimber, “Computational imaging, relighting and depth sensing using flexible thin-film sensors,” Opt. Express 25, 2694–2702 (2017).
[Crossref]

2016 (2)

F. Heide, Q. Fu, Y. Peng, and W. Heidrich, “Encoded diffractive optics for full-spectrum computational imaging,” Sci. Rep. 6, 33543 (2016).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

2015 (2)

2014 (3)

2013 (1)

2012 (1)

J. Balsam, M. Ossandon, H. A. Bruck, and A. Rasooly, “Modeling and design of micromachined optical soller collimators for lensless ccd-based fluorometry,” Analyst 137, 5011–5017 (2012).
[Crossref] [PubMed]

2009 (2)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[Crossref]

F. Piegsa, “Highly collimating neutron optical devices,” Nuclear Instrum. Methods Phys. Res. 603, 401–405 (2009).
[Crossref]

2005 (1)

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

2004 (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

2001 (1)

1998 (1)

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

1978 (1)

1924 (1)

W. Soller, “A new precision x-ray spectrometer,” Phys. Rev. 24, 158 (1924).
[Crossref]

Adams, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

Antipa, N.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

Antunez, E.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Asif, M. S.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (2015), pp. 663–666.

Ayremlou, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (2015), pp. 663–666.

Balsam, J.

J. Balsam, M. Ossandon, H. A. Bruck, and A. Rasooly, “Modeling and design of micromachined optical soller collimators for lensless ccd-based fluorometry,” Analyst 137, 5011–5017 (2012).
[Crossref] [PubMed]

Baraniuk, R.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (2015), pp. 663–666.

Barth, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

Bimber, O.

Birklbauer, C.

Bovik, A. C.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Bruck, H. A.

J. Balsam, M. Ossandon, H. A. Bruck, and A. Rasooly, “Modeling and design of micromachined optical soller collimators for lensless ccd-based fluorometry,” Analyst 137, 5011–5017 (2012).
[Crossref] [PubMed]

Cannon, T.

Fanello, S.

Fenimore, E. E.

Fu, Q.

F. Heide, Q. Fu, Y. Peng, and W. Heidrich, “Encoded diffractive optics for full-spectrum computational imaging,” Sci. Rep. 6, 33543 (2016).
[Crossref] [PubMed]

Giessen, H.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gill, P. R.

D. G. Stork and P. R. Gill, “Optical, mathematical, and computational foundations of lensless ultra-miniature diffractive imagers and sensors,” Int. J. Adv. Sys. Measurements 7, 4 (2014).

Gissibl, T.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Heeger, A. J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Heide, F.

F. Heide, Q. Fu, Y. Peng, and W. Heidrich, “Encoded diffractive optics for full-spectrum computational imaging,” Sci. Rep. 6, 33543 (2016).
[Crossref] [PubMed]

Heidrich, W.

F. Heide, Q. Fu, Y. Peng, and W. Heidrich, “Encoded diffractive optics for full-spectrum computational imaging,” Sci. Rep. 6, 33543 (2016).
[Crossref] [PubMed]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Herkommer, A. M.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Horowitz, M.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

Iba, S.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Ichioka, Y.

Ishida, K.

Izadi, S.

Joshi, N.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

Kato, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Kawaguchi, H.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Kondou, N.

Koppelhuber, A.

Kumagai, T.

Levoy, M.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

McElvain, J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Nayar, S. K.

D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

Necula, S.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

Ng, R.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

Noguchi, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Ossandon, M.

J. Balsam, M. Ossandon, H. A. Bruck, and A. Rasooly, “Modeling and design of micromachined optical soller collimators for lensless ccd-based fluorometry,” Analyst 137, 5011–5017 (2012).
[Crossref] [PubMed]

Peng, Y.

F. Heide, Q. Fu, Y. Peng, and W. Heidrich, “Encoded diffractive optics for full-spectrum computational imaging,” Sci. Rep. 6, 33543 (2016).
[Crossref] [PubMed]

Piegsa, F.

F. Piegsa, “Highly collimating neutron optical devices,” Nuclear Instrum. Methods Phys. Res. 603, 401–405 (2009).
[Crossref]

Rasooly, A.

J. Balsam, M. Ossandon, H. A. Bruck, and A. Rasooly, “Modeling and design of micromachined optical soller collimators for lensless ccd-based fluorometry,” Analyst 137, 5011–5017 (2012).
[Crossref] [PubMed]

Sakurai, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Sankaranarayanan, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (2015), pp. 663–666.

Schedl, D.

Sekitani, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Sheikh, H. R.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Simoncelli, E. P.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Sims, D. C.

D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

Soller, W.

W. Soller, “A new precision x-ray spectrometer,” Phys. Rev. 24, 158 (1924).
[Crossref]

Someya, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

Stork, D. G.

D. G. Stork and P. R. Gill, “Optical, mathematical, and computational foundations of lensless ultra-miniature diffractive imagers and sensors,” Int. J. Adv. Sys. Measurements 7, 4 (2014).

Talvala, E.-V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

Tanida, J.

Thiele, S.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Vaish, V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

Veeraraghavan, A.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (2015), pp. 663–666.

Waller, L.

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

Wang, J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Wang, Z.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Weiner, J.

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[Crossref]

Wilburn, B.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

Yamada, K.

Yu, G.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Yue, Y.

D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

Adv. Mater. (1)

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater. 10, 1431–1434 (1998).
[Crossref]

Analyst (1)

J. Balsam, M. Ossandon, H. A. Bruck, and A. Rasooly, “Modeling and design of micromachined optical soller collimators for lensless ccd-based fluorometry,” Analyst 137, 5011–5017 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

IEEE Trans. Electron Devices (1)

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE Trans. Electron Devices 52, 2502–2511 (2005).
[Crossref]

IEEE Trans. Image Process. (1)

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process. 13, 600–612 (2004).
[Crossref] [PubMed]

Int. J. Adv. Sys. Measurements (1)

D. G. Stork and P. R. Gill, “Optical, mathematical, and computational foundations of lensless ultra-miniature diffractive imagers and sensors,” Int. J. Adv. Sys. Measurements 7, 4 (2014).

Nat. Photonics (1)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Nuclear Instrum. Methods Phys. Res. (1)

F. Piegsa, “Highly collimating neutron optical devices,” Nuclear Instrum. Methods Phys. Res. 603, 401–405 (2009).
[Crossref]

Opt. Express (6)

Phys. Rev. (1)

W. Soller, “A new precision x-ray spectrometer,” Phys. Rev. 24, 158 (1924).
[Crossref]

Rep. Prog. Phys. (1)

J. Weiner, “The physics of light transmission through subwavelength apertures and aperture arrays,” Rep. Prog. Phys. 72, 064401 (2009).
[Crossref]

Sci. Adv. (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3d-printed eagle eye: Compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Heide, Q. Fu, Y. Peng, and W. Heidrich, “Encoded diffractive optics for full-spectrum computational imaging,” Sci. Rep. 6, 33543 (2016).
[Crossref] [PubMed]

Other (4)

D. C. Sims, Y. Yue, and S. K. Nayar, “Towards flexible sheet cameras: Deformable lens arrays with intrinsic optical adaptation,” in 2016 IEEE International Conference on Computational Photography (ICCP) (2016), pp. 1–11.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” in ACM Transactions on Graphics (TOG) (ACM, 2005), pp. 765–776.
[Crossref]

N. Antipa, S. Necula, R. Ng, and L. Waller, “Single-shot diffuser-encoded light field imaging,” in 2016 IEEE International Conference on Computational Photography (ICCP) (IEEE, 2016), pp. 1–11.

M. S. Asif, A. Ayremlou, A. Veeraraghavan, R. Baraniuk, and A. Sankaranarayanan, “Flatcam: Replacing lenses with masks and computation,” in 2015 IEEE International Conference on Computer Vision Workshop (ICCVW) (2015), pp. 663–666.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical imaging options: Single lens (A), microlens array with micro aperture array (B), single aperture (C), (coded) micro aperture array (D), Söller colimator (E). Height (H) and field of view (FOV) are indicated.

Fig. 2
Fig. 2

Thin-film camera design: Two 300 µm luminescent concentrator layers for color sensing (bottom) [7], and a 300 µm Söller collimator layer for optical imaging (top). Optical principle and image reconstruction are described in Sections 2 and 3.

Fig. 3
Fig. 3

Collimator geometry with positive (A), zero (B), and negative (C) curvature.

Fig. 4
Fig. 4

Image formation at the same collimation angle: Short (A) and long (B,C) distance to point emitter. Thin (A,B) and thick (C) aperture walls. Corresponding PSFs are shown beneath.

Fig. 5
Fig. 5

Experimental setup and prototype: (A) The image focussed on a diffuser (top) at distances between 0 cm and 13 cm from the sensor (bottom) is to be reconstructed from the blurred image formed optically on the sensor surface (bottom). The example shows a distance of 13 cm. The sensor is covered by a second diffuser to make the blurred image formed on its surface visible. (B–D) 3D-printed Söller collimator prototype put on top of a single LC layer for monochrome imaging.

Fig. 6
Fig. 6

Experimental results: Reconstructed images captured at distances of 3 cm and 13 cm. Note that the distance of 0 cm applies to images captured without collimator. The SSIM [20] values compare the reconstruction results to the ground truth images (blue frames). Top rows illustrate the optical image formed on the sensor plane without collimator. Bottom rows present the reconstructed images captured with collimator.

Fig. 7
Fig. 7

Simulated PSFs of 6 mm (A) and 300 µm (B) collimators with same collimation angle (α = 15.19°): While the blur diameters are identical, the light gathering of the 300 µm collimator approximately quadruples when compared to the 6 mm collimator.

Fig. 8
Fig. 8

Light-gathering ability over various collimation angles (between 0° and 90°) and for different collimator configurations: zero aperture wall thickness (g = 0, f = 1/2), aperture wall thickness equals aperture hole size (g = 1/2w, f = 1/4), and an intermediate case of f = 3/8).

Fig. 9
Fig. 9

Effect of curvature on collimator’s optical properties for example collimation angles of close to 0° (A), 15.19° (B, our prototype), and 90° (C), achieved with different collimator heights H, and plotted over an increasing curvature κ.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α 2 arccos ( H 1 ( ( w g ) κ 2 ) 2 ( w g ) 2 + ( w g ) 2 H κ + H 2 ) , κ = 1 / r ,
F O V = α + β = α + W κ 180 π ,
b = 2 tan ( α 2 ) d ,
f = 2 i = 0 max ( 0 , w g ( i w + g ) H 2 ( d H ) ) b .
f = w g 2 w .
L N A f 2 .
l = T H p + e = X p + e ,
p = ( T H ) 1 ( l e ) = X 1 ( l e ) .
P = X 1 L .
P = L X ,
X 1 = [ ( L L ) 1 L P ] .

Metrics