Abstract

One of the key issues in conventional stereoscopic displays is the well-known vergence-accommodation conflict problem due to the lack of the ability to render correct focus cues for 3D scenes. Recently several light field display methods have been explored to reconstruct a true 3D scene by sampling either the projections of the 3D scene at different depths or the directions of the light rays apparently emitted by the 3D scene and viewed from different eye positions. These methods are potentially capable of rendering correct or nearly correct focus cues and addressing the vergence-accommodation conflict problem. In this paper, we describe a generalized framework to model the image formation process of the existing light-field display methods and present a systematic method to simulate and characterize the retinal image and the accommodation response rendered by a light field display. We further employ this framework to investigate the trade-offs and guidelines for an optimal 3D light field display design. Our method is based on quantitatively evaluating the modulation transfer functions of the perceived retinal image of a light field display by accounting for the ocular factors of the human visual system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A systematic method for designing depth-fused multi-focal plane three-dimensional displays

Sheng Liu and Hong Hua
Opt. Express 18(11) 11562-11573 (2010)

Measurement of static convergence and accommodation responses to images of integral photography and binocular stereoscopy

Hitoshi Hiura, Kazuteru Komine, Jun Arai, and Tomoyuki Mishina
Opt. Express 25(4) 3454-3468 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
    [Crossref] [PubMed]
  2. D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref]
  3. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
    [Crossref] [PubMed]
  4. M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
    [Crossref] [PubMed]
  5. J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [Crossref] [PubMed]
  6. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
    [Crossref]
  7. G. E. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
    [Crossref]
  8. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  9. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref] [PubMed]
  10. X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  11. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  12. Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
    [Crossref]
  13. Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
    [Crossref]
  14. J. H. Lee, J. Park, D. Nam, S. Y. Choi, D. S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
    [Crossref] [PubMed]
  15. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
    [Crossref]
  16. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
    [Crossref] [PubMed]
  17. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  18. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
    [Crossref]
  19. W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).
  20. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
    [Crossref]
  21. Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
    [Crossref]
  22. S. K. Kim, D. W. Kim, Y. M. Kwon, and J. Y. Son, “Evaluation of the monocular depth cue in 3D displays,” Opt. Express 16(26), 21415–21422 (2008).
    [Crossref] [PubMed]
  23. A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: Matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102(10), 1571–1587 (2014).
    [Crossref]
  24. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).
  25. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).
  26. https://optics.synopsys.com/
  27. J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
    [Crossref] [PubMed]
  28. D. G. Green and F. W. Campbell, “Effect of focus on the visual response to a sinusoidally modulated spatial stimulus,” J. Opt. Soc. Am. A 55(9), 1154–1157 (1965).
    [Crossref]
  29. J. S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42(11), 1996–2002 (2003).
    [Crossref] [PubMed]
  30. C. Jang, K. Hong, J. Yeom, and B. Lee, “See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element,” Opt. Express 22(23), 27958–27967 (2014).
    [Crossref] [PubMed]

2014 (6)

X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: Matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102(10), 1571–1587 (2014).
[Crossref]

C. Jang, K. Hong, J. Yeom, and B. Lee, “See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element,” Opt. Express 22(23), 27958–27967 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).

2010 (2)

2008 (2)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

S. K. Kim, D. W. Kim, Y. M. Kwon, and J. Y. Son, “Evaluation of the monocular depth cue in 3D displays,” Opt. Express 16(26), 21415–21422 (2008).
[Crossref] [PubMed]

2007 (1)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

2006 (1)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

2005 (2)

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

2004 (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2003 (1)

2002 (1)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

2001 (1)

1997 (1)

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

1995 (2)

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref] [PubMed]

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

1994 (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

1993 (1)

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref] [PubMed]

1965 (1)

D. G. Green and F. W. Campbell, “Effect of focus on the visual response to a sinusoidally modulated spatial stimulus,” J. Opt. Soc. Am. A 55(9), 1154–1157 (1965).
[Crossref]

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Akeley, K.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Arimoto, H.

Banks, M. S.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Campbell, F. W.

D. G. Green and F. W. Campbell, “Effect of focus on the visual response to a sinusoidally modulated spatial stimulus,” J. Opt. Soc. Am. A 55(9), 1154–1157 (1965).
[Crossref]

Cheng, D.

Choi, H.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Choi, S. Y.

Chun, W. S.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Dorval, R. K.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Ernst, M. O.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Favalora, G. E.

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Fuchs, H.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Giovinco, M. G.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Girshick, A. R.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Gordon, W.

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).

Green, D. G.

D. G. Green and F. W. Campbell, “Effect of focus on the visual response to a sinusoidally modulated spatial stimulus,” J. Opt. Soc. Am. A 55(9), 1154–1157 (1965).
[Crossref]

Greivenkamp, J. E.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Hall, D. M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

Hirsch, M.

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).

Hoffman, D. M.

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Honda, T.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Hong, K.

C. Jang, K. Hong, J. Yeom, and B. Lee, “See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element,” Opt. Express 22(23), 27958–27967 (2014).
[Crossref] [PubMed]

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Hu, X.

X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Hua, H.

Hwang, J.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Jang, C.

Jang, J. S.

Javidi, B.

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Jung, J.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Kajiki, Y.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Kim, C. Y.

Kim, D. W.

Kim, J.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Kim, S. K.

Kim, Y.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Kwon, Y. M.

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).

Lee, B.

C. Jang, K. Hong, J. Yeom, and B. Lee, “See-through integral imaging display using a resolution and fill factor-enhanced lens-array holographic optical element,” Opt. Express 22(23), 27958–27967 (2014).
[Crossref] [PubMed]

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Lee, J. H.

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

Liu, S.

Liu, Y.

Luebke, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Maimone, A.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Mellinger, M. D.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Miller, J. M.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Min, S.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Mon-Williams, M.

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref] [PubMed]

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref] [PubMed]

Nago, N.

Nam, D.

Napoli, J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Park, D. S.

Park, J.

Raskar, R.

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Richmond, M. J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Rushton, S.

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref] [PubMed]

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref] [PubMed]

Schwiegerling, J.

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Seo, J.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Son, J. Y.

Song, W.

Stern, A.

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: Matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102(10), 1571–1587 (2014).
[Crossref]

Takaki, Y.

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

Wang, Y.

Wann, J. P.

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref] [PubMed]

Warm, J. P.

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref] [PubMed]

Watt, S. J.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

Yang, H. K.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Yeom, J.

Yitzhaky, Y.

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: Matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102(10), 1571–1587 (2014).
[Crossref]

Yoshikawa, H.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

ACM Trans. Graph. (4)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “Rendering for an interactive 360° light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[Crossref]

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31, 80 (2012).

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Am. J. Ophthalmol. (1)

J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, and M. D. Mellinger, “Visual acuity modeling using optical raytracing of schematic eyes,” Am. J. Ophthalmol. 120(2), 227–240 (1995).
[Crossref] [PubMed]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Computer (1)

G. E. Favalora, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

J. Disp. Technol. (2)

X. Hu and H. Hua, “Design and Assessment of a Depth-Fused Multi-Focal-Plane Display Prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Y. Kim, J. Kim, K. Hong, H. K. Yang, J. Jung, H. Choi, S. Min, J. Seo, J. Hwang, and B. Lee, “Accommodative Response of Integral Imaging in Near Distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

D. G. Green and F. W. Campbell, “Effect of focus on the visual response to a sinusoidally modulated spatial stimulus,” J. Opt. Soc. Am. A 55(9), 1154–1157 (1965).
[Crossref]

J. Phys. (Paris) (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. (Paris) 7, 821–825 (1908).

J. Vis. (2)

D. M. Hoffman, A. R. Girshick, K. Akeley, and M. S. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Ophthalmic Physiol. Opt. (1)

M. Mon-Williams, J. P. Warm, and S. Rushton, “Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display,” Ophthalmic Physiol. Opt. 13(4), 387–391 (1993).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Proc. IEEE (2)

Y. Takaki, “High-density directional display for generating natural three-dimensional images,” Proc. IEEE 94(3), 654–663 (2006).
[Crossref]

A. Stern, Y. Yitzhaky, and B. Javidi, “Perceivable light fields: Matching the requirements between the human visual system and autostereoscopic 3D displays,” Proc. IEEE 102(10), 1571–1587 (2014).
[Crossref]

Proc. SPIE (2)

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[Crossref] [PubMed]

Vision Res. (1)

J. P. Wann, S. Rushton, and M. Mon-Williams, “Natural problems for stereoscopic depth perception in virtual environments,” Vision Res. 35(19), 2731–2736 (1995).
[Crossref] [PubMed]

Other (2)

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).

https://optics.synopsys.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of a light field display which reproduces the directional light rays apparently emitted by the object of a given position.

Fig. 2
Fig. 2

The generalized schematic model of a light field 3D display, along with the illustration of the retinal response of a reconstructed point when the accommodative distance, A, of the eye is (a) the same as, (b) larger than, or (c) smaller than the depth of the reconstructed point. (d) The schematic drawing of the eye model entrance pupil and footprints of elemental views on the viewing window.

Fig. 3
Fig. 3

(a) The MTF plots of the retinal image of light field displays with different view densities ranging from 0.142 to 2.26mm−2 for reconstructed 3D targets located on the CDP. (b) The MTF plots of the retinal image of a light field display with a view density of 0.57mm−2 for reconstructed targets located at four different depths from the CDP: 0, 0.3, 0,6, and 0.9 diopter, respectively. (c) Simulation of the perceived retinal images of a series of Snellen “E” s of three different angular resolutions located at four different depths from the CDP. (d) The cut-off frequencies of light field display with different view densities as function of the depth displacement from the CDP.

Fig. 4
Fig. 4

(a)-(d) The accommodative response curves for different spatial frequencies (cpd stands for cycles per degree) with the reconstruction plane located at (a) Δz = 0 diopter, (b) Δz = 0.5 diopters, (c) Δz = 1 diopter, and (d) with a real target located on the CDP. (e)-(f) Accommodation error for different spatial frequencies as a function of the dioptric displacement of a target depth from the CDP toward the eye for (e) targets reconstructed by a LF-3D display and (f) real targets.

Fig. 5
Fig. 5

The accommodative response curves for different view densities with the reconstruction plane at (a) Δz = 0 diopter and (b) Δz = 1 diopter. The target frequency was set at 15 cycles/degree.

Fig. 6
Fig. 6

The plots of (a) accommodation error, (b) the maximum contrast magnitude and (c) maximum contrast gradient for Δz from 0 to 1 diopter with varying view densities.

Fig. 7
Fig. 7

The accommodative curves for displays with a view density of 0.57mm−2 and different fill factors ranging from 1 to 0.4 with the reconstruction plane at (a) Δz = 0 diopter, (b) Δz = 1diopter. The target frequency was set at 15 cycles/degree.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N v i e w = π D 2 σ v i e w 4 ,
Δ d x = Δ d y = 2 1 π σ v i e w .
R f p = a 1 π σ v i e w ,
P S F L F A c c u ( x ' , y ' ) = 1 m = 1 M n = 1 N k = 1 K L ( m , n ) w ( λ k ) s ( d c x m , d c y m ) · m = 1 M n = 1 N k = 1 K L ( m , n ) w ( λ k ) s ( d c x m , d c y n ) | P S F C m n k ( x ' , y ' ) | 2 ,
d c x m = ( 2 m M 1 ) 2 Δ d x ; d c y n = ( 2 m M 1 ) 2 Δ d y .
P S F C ( x ' , y ' ) = 1 λ 2 z C D P z e y e exp [ j π λ z C D P ( Δ x c ' 2 + Δ y c ' 2 ) ] exp [ j π λ z e y e ( x ' 2 + y ' 2 ) ] P e y e ( x , y ) exp [ j 2 π λ W e y e ( Δ x c ' , Δ y c ' ; x , y ) ] exp [ j π λ ( 1 z C D P 1 A ) ( x 2 + y 2 ) ] exp { j 2 π λ [ ( Δ x c ' z C D P + x ' z e y e ) x + ( Δ y c ' z C D P + y ' z e y e ) y ] } d x d y ,
Δ x c m ' = d c x m Δ z z C D P + Δ z ; Δ y c n ' = d y x m Δ z z C D P + Δ z ,
P e y e ( m , n ) ( x , y ) = c i r c ( ( x d c x m ) 2 + ( y d c y n ) 2 R f p ) ,
M T F L F A c c u ( ξ ' , η ' ) = P S F L F A c c u ( x ' , y ' ) exp [ j ( ξ ' x ' + η ' y ' ) ] d x ' d y ' P S F L F A c c u ( x ' , y ' ) d x ' d y ' ,
N A mod = 2 a Z C D P 1 π σ v i e w = 2 R f p Z C D P .

Metrics