Abstract

The floating-base germanium-tin (Ge1-xSnx) heterojunction phototransistor (HPT) is designed and investigated as an efficient optical receiver in the short-wave infrared range. Simulations indicate that as the Sn content increases, the responsivity significantly increases due to a higher absorption coefficient and a larger valence band offset between Ge and Ge1-xSnx. Ge0.935Sn0.065 HPTs that incorporated high-quality Ge0.935Sn0.065 film grown by molecular beam epitaxy were fabricated, demonstrating optical response beyond wavelength of 2003 nm. At a low bias voltage of 1.0 V, optical response enhancement of ~10 times was achieved over the conventional Ge0.935Sn0.065 p-i-n photodiode. High responsivities of ~1.8 A/W at 1550 nm and ~0.043 A/W at 2003 nm were demonstrated with low dark current density of 0.147 A/cm2.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique

Yuan Dong, Wei Wang, Dian Lei, Xiao Gong, Qian Zhou, Shuh Ying Lee, Wan Khai Loke, Soon-Fatt Yoon, Eng Soon Tok, Gengchiau Liang, and Yee-Chia Yeo
Opt. Express 23(14) 18611-18619 (2015)

Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth

Yuan Dong, Wei Wang, Shengqiang Xu, Dian Lei, Xiao Gong, Xin Guo, Hong Wang, Shuh-Ying Lee, Wan-Khai Loke, Soon-Fatt Yoon, and Yee-Chia Yeo
Opt. Express 25(14) 15818-15827 (2017)

Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection

Thach Pham, Wei Du, Huong Tran, Joe Margetis, John Tolle, Greg Sun, Richard A. Soref, Hameed A. Naseem, Baohua Li, and Shui-Qing Yu
Opt. Express 24(5) 4519-4531 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
    [Crossref]
  2. H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
    [Crossref] [PubMed]
  3. G. E. Chang, R. Basu, B. Mukhopadhyay, and P. K. Basu, “Design and modeling of GeSn-based heterojunction phototransistors for communication applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 425–433 (2016).
    [Crossref]
  4. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [Crossref]
  5. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  6. D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
    [Crossref]
  7. M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
    [Crossref] [PubMed]
  8. H. Li, C. Chang, H. H. Cheng, G. Sun, and R. A. Soref, “Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy,” Appl. Phys. Lett. 108(19), 191111 (2016).
    [Crossref]
  9. W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
    [Crossref]
  10. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 26 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
    [Crossref]
  11. C. Chang, H. Li, C. T. Ku, S. G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
    [Crossref] [PubMed]
  12. M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
    [Crossref]
  13. H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
    [Crossref]
  14. Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
    [Crossref]
  15. Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).
  16. K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
    [Crossref]
  17. V. Sorianello, G. De Angelis, A. De Iacovo, L. Colace, S. Faralli, and M. Romagnoli, “High responsivity SiGe heterojunction phototransistor on silicon photonics platform,” Opt. Express 23(22), 28163–28169 (2015).
    [Crossref] [PubMed]
  18. J. C. Campbell, “Phototransistors for lightwave communications,” Semicond. Semimet. 22, 389–447 (1985).
    [Crossref]
  19. W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y.-C. Yeo, “Critical thickness for strain relaxation of Ge1-xSnx (x≤ 0.17) grown by molecular beam epitaxy on Ge (001),” Appl. Phys. Lett. 106(23), 232106 (2015).
    [Crossref]
  20. C. G. V. de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
    [Crossref] [PubMed]
  21. G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 46(12), 1813–1820 (2010).
    [Crossref]
  22. M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
  23. Y. L. Chao and J. C. S. Woo, “Germanium n+/p diodes: a dilemma between shallow junction formation and reverse leakage current control,” IEEE Trans. Electron Dev. 57(3), 665–670 (2010).
    [Crossref]

2017 (1)

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

2016 (8)

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

G. E. Chang, R. Basu, B. Mukhopadhyay, and P. K. Basu, “Design and modeling of GeSn-based heterojunction phototransistors for communication applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 425–433 (2016).
[Crossref]

H. Li, C. Chang, H. H. Cheng, G. Sun, and R. A. Soref, “Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy,” Appl. Phys. Lett. 108(19), 191111 (2016).
[Crossref]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 26 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref]

C. Chang, H. Li, C. T. Ku, S. G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
[Crossref] [PubMed]

2015 (2)

V. Sorianello, G. De Angelis, A. De Iacovo, L. Colace, S. Faralli, and M. Romagnoli, “High responsivity SiGe heterojunction phototransistor on silicon photonics platform,” Opt. Express 23(22), 28163–28169 (2015).
[Crossref] [PubMed]

W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y.-C. Yeo, “Critical thickness for strain relaxation of Ge1-xSnx (x≤ 0.17) grown by molecular beam epitaxy on Ge (001),” Appl. Phys. Lett. 106(23), 232106 (2015).
[Crossref]

2014 (1)

2013 (1)

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

2012 (1)

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
[Crossref] [PubMed]

2011 (2)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

2010 (2)

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

Y. L. Chao and J. C. S. Woo, “Germanium n+/p diodes: a dilemma between shallow junction formation and reverse leakage current control,” IEEE Trans. Electron Dev. 57(3), 665–670 (2010).
[Crossref]

2008 (2)

K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[Crossref]

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).

2003 (1)

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

1989 (1)

C. G. V. de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

1985 (1)

J. C. Campbell, “Phototransistors for lightwave communications,” Semicond. Semimet. 22, 389–447 (1985).
[Crossref]

Ang, K. W.

K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[Crossref]

Basu, P. K.

G. E. Chang, R. Basu, B. Mukhopadhyay, and P. K. Basu, “Design and modeling of GeSn-based heterojunction phototransistors for communication applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 425–433 (2016).
[Crossref]

Basu, R.

G. E. Chang, R. Basu, B. Mukhopadhyay, and P. K. Basu, “Design and modeling of GeSn-based heterojunction phototransistors for communication applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 425–433 (2016).
[Crossref]

Bechler, S.

Brendel, C. E.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Campbell, J. C.

J. C. Campbell, “Phototransistors for lightwave communications,” Semicond. Semimet. 22, 389–447 (1985).
[Crossref]

Cao, Q.

Chang, C.

H. Li, C. Chang, H. H. Cheng, G. Sun, and R. A. Soref, “Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy,” Appl. Phys. Lett. 108(19), 191111 (2016).
[Crossref]

C. Chang, H. Li, C. T. Ku, S. G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
[Crossref] [PubMed]

Chang, G. E.

G. E. Chang, R. Basu, B. Mukhopadhyay, and P. K. Basu, “Design and modeling of GeSn-based heterojunction phototransistors for communication applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 425–433 (2016).
[Crossref]

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

Chang, S. W.

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

Chao, Y. L.

Y. L. Chao and J. C. S. Woo, “Germanium n+/p diodes: a dilemma between shallow junction formation and reverse leakage current control,” IEEE Trans. Electron Dev. 57(3), 665–670 (2010).
[Crossref]

Chen, P. S.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Chen, R.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
[Crossref] [PubMed]

Cheng, B.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Cheng, H. H.

H. Li, C. Chang, H. H. Cheng, G. Sun, and R. A. Soref, “Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy,” Appl. Phys. Lett. 108(19), 191111 (2016).
[Crossref]

C. Chang, H. Li, C. T. Ku, S. G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
[Crossref] [PubMed]

Chuang, S. L.

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

Chung, H.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Colace, L.

Cong, H.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

D’Costa, V. R.

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

De Angelis, G.

De Iacovo, A.

de Walle, C. G. V.

C. G. V. de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

Dong, Y.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y.-C. Yeo, “Critical thickness for strain relaxation of Ge1-xSnx (x≤ 0.17) grown by molecular beam epitaxy on Ge (001),” Appl. Phys. Lett. 106(23), 232106 (2015).
[Crossref]

Du, W.

Faralli, S.

Fenrich, C. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Gollhofer, M.

Gong, X.

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

Hansen, M. P.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).

Harris, J. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
[Crossref] [PubMed]

Hendrickson, J.

Hsu, Y. M.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Hu, W.

Huang, Y.-C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Huo, Y.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
[Crossref] [PubMed]

Kamins, T. I.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
[Crossref] [PubMed]

Kaschel, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kasper, E.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kittler, M.

Koerner, R.

Kostecki, K.

Ku, C. T.

Kwong, D. L.

K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[Crossref]

Lai, L. S.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Lee, S. Y.

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

Lei, D.

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

Li, B.

Li, C.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Li, H.

C. Chang, H. Li, C. T. Ku, S. G. Yang, H. H. Cheng, J. Hendrickson, R. A. Soref, and G. Sun, “Ge0.975Sn0.025 320 × 256 imager chip for 1.6-1.9 μm infrared vision,” Appl. Opt. 55(36), 10170–10173 (2016).
[Crossref] [PubMed]

H. Li, C. Chang, H. H. Cheng, G. Sun, and R. A. Soref, “Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy,” Appl. Phys. Lett. 108(19), 191111 (2016).
[Crossref]

Liang, C. S.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Liang, G.

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

Lim, S. L.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Lin, H.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
[Crossref] [PubMed]

Liu, C. W.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Liu, Z.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Lo, G. Q.

K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[Crossref]

Loke, W. K.

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

Lu, S. C.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Lu, W.

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
[Crossref] [PubMed]

Malchow, D. S.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).

Margetis, J.

Morea, M.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Mukhopadhyay, B.

G. E. Chang, R. Basu, B. Mukhopadhyay, and P. K. Basu, “Design and modeling of GeSn-based heterojunction phototransistors for communication applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 425–433 (2016).
[Crossref]

Naseem, H. A.

Oehme, M.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Osipowicz, T.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Pei, Z.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Pham, T.

Romagnoli, M.

Saraswat, K. C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schmid, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schulze, J.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schwartz, B.

Soref, R. A.

Sorianello, V.

Su, S.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Suh, J.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Sun, G.

Tok, E. S.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y.-C. Yeo, “Critical thickness for strain relaxation of Ge1-xSnx (x≤ 0.17) grown by molecular beam epitaxy on Ge (001),” Appl. Phys. Lett. 106(23), 232106 (2015).
[Crossref]

Tolle, J.

Tran, H.

Tsai, M. J.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Tseng, Y. T.

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

Vajandar, S.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Wang, Q.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, W.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y.-C. Yeo, “Critical thickness for strain relaxation of Ge1-xSnx (x≤ 0.17) grown by molecular beam epitaxy on Ge (001),” Appl. Phys. Lett. 106(23), 232106 (2015).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Widmann, D.

Woo, J. C. S.

Y. L. Chao and J. C. S. Woo, “Germanium n+/p diodes: a dilemma between shallow junction formation and reverse leakage current control,” IEEE Trans. Electron Dev. 57(3), 665–670 (2010).
[Crossref]

Xue, C.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Xue, H.

Yang, F.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Yang, S. G.

Yeo, Y. C.

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

Yeo, Y.-C.

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y.-C. Yeo, “Critical thickness for strain relaxation of Ge1-xSnx (x≤ 0.17) grown by molecular beam epitaxy on Ge (001),” Appl. Phys. Lett. 106(23), 232106 (2015).
[Crossref]

Yoon, S.-F.

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

Yu, K.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Yu, M. B.

K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[Crossref]

Yu, S.-Q.

Zang, K.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Zaumseil, P.

Zhang, D.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Zhang, G.

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Zhang, X.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

Zheng, J.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

Zhou, Q.

W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y.-C. Yeo, “Critical thickness for strain relaxation of Ge1-xSnx (x≤ 0.17) grown by molecular beam epitaxy on Ge (001),” Appl. Phys. Lett. 106(23), 232106 (2015).
[Crossref]

Zuo, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0.03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

H. Lin, R. Chen, W. Lu, Y. Huo, T. I. Kamins, and J. S. Harris, “Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy,” Appl. Phys. Lett. 100(10), 102109 (2012).
[Crossref] [PubMed]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

D. Zhang, C. Xue, B. Cheng, S. Su, Z. Liu, X. Zhang, G. Zhang, C. Li, and Q. Wang, “High-responsivity GeSn short-wave infrared pin photodetectors,” Appl. Phys. Lett. 102(14), 141111 (2013).
[Crossref]

H. Li, C. Chang, H. H. Cheng, G. Sun, and R. A. Soref, “Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy,” Appl. Phys. Lett. 108(19), 191111 (2016).
[Crossref]

W. Wang, Q. Zhou, Y. Dong, E. S. Tok, and Y.-C. Yeo, “Critical thickness for strain relaxation of Ge1-xSnx (x≤ 0.17) grown by molecular beam epitaxy on Ge (001),” Appl. Phys. Lett. 106(23), 232106 (2015).
[Crossref]

IEEE Electron Device Lett. (2)

Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M. J. Tsai, and C. W. Liu, “A high-performance SiGe-Si multiple-quantum-well heterojunction phototransistor,” IEEE Electron Device Lett. 4(10), 643–645 (2003).

K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low-voltage and high-responsivity germanium bipolar phototransistor for optical detections in the near-infrared regime,” IEEE Electron Device Lett. 29(10), 1124–1127 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

G. E. Chang, R. Basu, B. Mukhopadhyay, and P. K. Basu, “Design and modeling of GeSn-based heterojunction phototransistors for communication applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 425–433 (2016).
[Crossref]

G. E. Chang, S. W. Chang, and S. L. Chuang, “Strain-balanced GezSn1-z-SixGeySn1-x-y multiple-quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 46(12), 1813–1820 (2010).
[Crossref]

IEEE Photonics J. (1)

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon Based GeSn pin Photodetector for SWIR Detection,” IEEE Photonics J. 8(5), 6804706 (2016).
[Crossref]

IEEE Trans. Electron Dev. (1)

Y. L. Chao and J. C. S. Woo, “Germanium n+/p diodes: a dilemma between shallow junction formation and reverse leakage current control,” IEEE Trans. Electron Dev. 57(3), 665–670 (2010).
[Crossref]

J. Appl. Phys. (2)

V. R. D’Costa, W. Wang, and Y. C. Yeo, “Near-bandgap optical properties of pseudomorphic GeSn alloys grown by molecular beam epitaxy,” J. Appl. Phys. 120(6), 063104 (2016).
[Crossref]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

C. G. V. de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[Crossref] [PubMed]

Proc. SPIE (1)

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).

Semicond. Sci. Technol. (1)

Y. Dong, W. Wang, S. Y. Lee, D. Lei, X. Gong, W. K. Loke, S.-F. Yoon, G. Liang, and Y.-C. Yeo, “Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength,” Semicond. Sci. Technol. 31(9), 095001 (2016).
[Crossref]

Semicond. Semimet. (1)

J. C. Campbell, “Phototransistors for lightwave communications,” Semicond. Semimet. 22, 389–447 (1985).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The layer structure of a Ge1-xSnx 2T-HPT design. (b) Simulated band diagram with and without illumination at bias voltage of 1 V for x = 0.065. (c) Simulated responsivity spectra with various Sn content. With increasing Sn content, the responsivity increases with the detection range extended further into the long wavelength regime.
Fig. 2
Fig. 2 (a) 3D Schematic and (b) top-view SEM image of the fabricated Ge0.935Sn0.065 2T-HPT. (c) STEM image showing the sidewall of the mesa region [along line A-A’ in Fig. 2(b)] of the HPT. The surface of the n+-Ge emitter shows good crystallinity after annealing, as indicated in the HRTEM image in the inset.
Fig. 3
Fig. 3 (a) Jdark-Vbias characteristics of the Ge0.065Sn0.935 2T-HPT at various T ranging from 4 to 320 K. The arrow points in the direction of increasing T. (b) Arrhenius plot of Jdark at various Vbias. Activation energy (EA) of the photodiode is extracted.
Fig. 4
Fig. 4 (a) Iphoto-Vbias characteristics of the Ge0.935Sn0.065 2T-HPT and PD under normal incidence illumination with λ = 1550 nm. (b) Response spectra for the Ge0.935Sn0.065 2T-HPT and PD. The optical response of HPT is enhanced by ~10 times over the PD.
Fig. 5
Fig. 5 Benchmarking of Jdark and R of Ge1−xSnx PDs, APD and HPT. The Ge0.935Sn0.065 2T-HPT demonstrated in this work has a high responsivity of 1.8 A/W and low Jdark of 0.147 A/cm2.

Metrics