Abstract

We propose and demonstrate an ultra-broadband polarization splitter-rotator (PSR) on the Silicon-On-Insulator (SOI) platform. The proposed PSR consists of a straight multi-mode waveguide, an asymmetrical directional coupler and a bent directional coupler. The multi-mode waveguide enables highly-efficient TM0-TE1 polarization rotation. The excited TE1 mode is then converted to be TE0 mode by the asymmetrical directional coupler. The remained TM0 mode is filtered out by the bent directional coupler. On the other hand, the incident light of TE0 mode goes through the PSR with negligible conversion and coupling. Only one-step etching is required for the proposed PSR. The fabricated PSR shows a high extinction ratio > 30.82 dB and a low loss < 0.57 dB at the central wavelength. The extinction ratio is > 20 dB over an ultra-broad wavelength band > 85 nm.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39(15), 4514–4517 (2014).
  2. H. Xu and Y. Shi, “On-chip Silicon TE-pass Polarizer Based on Asymmetrical Directional Couplers,” IEEE Photonics Technol. Lett. 1, 861–864 (2017).
  3. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38(1), 4–6 (2013).
  4. X. Guan, H. Wu, Y. Shi, and D. Dai, “Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide,” Opt. Lett. 39(2), 259–262 (2014).
  5. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).
  6. H. Xu and Y. Shi, “Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides,” Opt. Lett. 42(4), 771–774 (2017).
  7. Y. Xiong, D.-X. Xu, J. H. Schmid, P. Cheben, S. Janz, and W. N. Ye, “Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler,” Opt. Express 22(14), 17458–17465 (2014).
  8. H. Guan, A. Novack, M. Streshinsky, R. Shi, Q. Fang, A. E. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “CMOS-compatible highly efficient polarization splitter and rotator based on a double-etched directional coupler,” Opt. Express 22(3), 2489–2496 (2014).
  9. Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).
  10. A. Barh, A. B. M. Rahman, R. K. Varshney, and B. P. Pal, “Design and Performance Study of a Compact SOI Polarization Rotator at 1.55 μm,” J. Lightwave Technol. 31(23), 3687–3693 (2013).
  11. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).
  12. D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).
  13. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).

2017 (2)

H. Xu and Y. Shi, “On-chip Silicon TE-pass Polarizer Based on Asymmetrical Directional Couplers,” IEEE Photonics Technol. Lett. 1, 861–864 (2017).

H. Xu and Y. Shi, “Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides,” Opt. Lett. 42(4), 771–774 (2017).

2016 (2)

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

D. Dai and H. Wu, “Realization of a compact polarization splitter-rotator on silicon,” Opt. Lett. 41(10), 2346–2349 (2016).

2014 (4)

2013 (2)

2012 (2)

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express 20(12), 13425–13439 (2012).

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

2004 (1)

Aamer, M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

Baehr-Jones, T.

Baets, R.

Barh, A.

Bienstman, P.

Bowers, J. E.

Brimont, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

Cheben, P.

Chen, P.

Chen, S.

Dai, D.

Fang, Q.

Fedeli, J.-M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

Guan, H.

Guan, X.

Gutierrez, A. M.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

Hakansson, A.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

He, Y.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

Hochberg, M.

Janz, S.

Jiang, X.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

Liang, D.

Lim, A. E.

Liu, B.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

Lo, G.-Q.

Novack, A.

Pal, B. P.

Qiu, C.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

Rahman, A. B. M.

Roelkens, G.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

Sanchis, P.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

Schmid, J. H.

Shi, R.

Shi, Y.

Soref, R. A.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

Streshinsky, M.

Su, Y.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

Taillaert, D.

Tang, Y.

Varshney, R. K.

Vermeulen, D.

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

Wang, J.

Wu, H.

Xiong, Y.

Xu, D.-X.

Xu, H.

H. Xu and Y. Shi, “Ultra-compact and highly efficient polarization rotator utilizing multi-mode waveguides,” Opt. Lett. 42(4), 771–774 (2017).

H. Xu and Y. Shi, “On-chip Silicon TE-pass Polarizer Based on Asymmetrical Directional Couplers,” IEEE Photonics Technol. Lett. 1, 861–864 (2017).

Xu, P.

Ye, W. N.

Zhang, Y.

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

APL Photonics (1)

Y. Zhang, Y. He, X. Jiang, B. Liu, C. Qiu, Y. Su, and R. A. Soref, “Ultra-compact and highly efficient silicon polarization splitter and rotator,” APL Photonics 1(9), 91304 (2016).

IEEE Photonics Technol. Lett. (2)

H. Xu and Y. Shi, “On-chip Silicon TE-pass Polarizer Based on Asymmetrical Directional Couplers,” IEEE Photonics Technol. Lett. 1, 861–864 (2017).

M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J.-M. Fedeli, A. Hakansson, and P. Sanchis, “CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section,” IEEE Photonics Technol. Lett. 24(22), 2031–2034 (2012).

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The configuration of the proposed PSR. (b) The calculated dispersion curves for the TE0, TE1 and TM0 modes.

Fig. 2
Fig. 2

The (a) TM0-TE1 conversion efficiencies and (b) residual TM0 power varied with the multi-mode waveguide length L2. The light propagation profiles for the multi-mode waveguide section when (c) TE0 mode and (d) TM0 mode inputting.

Fig. 3
Fig. 3

(a) The calculated extinction ratio and insertion loss as functions of the arc angle θ in the BDC. The light propagation profiles for the filter when (b) TE0 and (c) TM0 mode inputting. (d) The transmittance spectrum for the filter when TE0 and TM0 mode inputting.

Fig. 4
Fig. 4

The light propagation profiles for the whole device when (a) TE0 and (b) TM0 modes are launched. The transmittance spectra for the proposed PSR when (c) TE0 and (d) TM0 modes are launched.

Fig. 5
Fig. 5

(a) The microscope image of the fabricated PSRs and the straight waveguides for normalization. (b) The scanning electric microscopy (SEM) image for the PSR. The normalized transmittance spectra for the PSRs when light is launched from (c) I2 and (d) I3.

Tables (1)

Tables Icon

Table 1 Comparison of several silicon polarization splitter rotators

Metrics