Abstract

We demonstrate an all-optical tunable microfiber knot resonator (MFKR) by direct light-graphene interaction using external vertical incidence pump laser. The 1530 nm CW pump source is employed to irradiate the sample, which can achieve the performance modulation of MFKR including transmission loss, extinction ratio, and resonant wavelength by the saturable absorption, photo-thermal, and optical Kerr effects, respectively. Compared with the MFKR with only the bottom graphene film, the tunable ranges of transmission loss and extinction ratio are increased by 69 and 125 times, respectively, which can induce a remarkable amplitude tuning. The resonant wavelength of MFKR occurs a red-shift under the irradiation of the pump light, and the red-shift range can exceed one free spectral range (FSR), which means the resonant wavelength could be tuned in the full wavelength range of the transparent window of optical fiber. It is promising for the device to be applied as an all-optical modulator, tunable optical filter, etc.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optically tunable microfiber-knot resonator

Zhe Chen, Vincent K. S. Hsiao, Xiaoqing Li, Zhen Li, Jianhui Yu, and Jun Zhang
Opt. Express 19(15) 14217-14222 (2011)

Theoretical investigation of a broadband all-optical graphene-microfiber modulator

Xiaoying He, Min Xu, and Xiangchao Zhang
J. Opt. Soc. Am. B 33(12) 2588-2595 (2016)

Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal

Xiao Hu, Mengqi Zeng, Andong Wang, Long Zhu, Lei Fu, and Jian Wang
Opt. Express 23(20) 26158-26167 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  2. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  3. L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
    [Crossref] [PubMed]
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [Crossref]
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref] [PubMed]
  6. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [Crossref] [PubMed]
  7. Y. Wang, S. Serrano, and J. J. Santiago-Aviles, “Raman characterization of carbon nanofibers prepared using electrospinning,” Synth. Met. 138(3), 423–427 (2003).
    [Crossref]
  8. X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468 (2015).
    [Crossref]
  9. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
    [Crossref]
  10. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref] [PubMed]
  11. G. P. Agrawal, Nonlinear fiber optics (Academic, 2007).
  12. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, “Bismuth glass holey fibers with high nonlinearity,” Opt. Express 12(21), 5082–5087 (2004).
    [Crossref] [PubMed]
  13. S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
    [Crossref] [PubMed]
  14. G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
    [Crossref]
  15. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
    [Crossref] [PubMed]
  16. R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
    [Crossref] [PubMed]
  17. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
    [Crossref]
  18. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  19. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  20. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  21. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
    [Crossref] [PubMed]
  22. X. Wu and L. Tong, “Optical microfibers and nanofibers,” J. Nanophotonics2(5–6), (2013).
  23. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
    [Crossref] [PubMed]
  24. S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
    [Crossref] [PubMed]
  25. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
    [Crossref]
  26. X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [Crossref]
  27. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7(6), 288–290 (1982).
    [Crossref] [PubMed]
  28. M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
    [Crossref]
  29. Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
    [Crossref]
  30. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  31. I. Turek, N. Tarjányi, I. Martinček, and D. Káčik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
    [Crossref]
  32. X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
    [Crossref]

2016 (2)

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

2015 (4)

2014 (2)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

I. Turek, N. Tarjányi, I. Martinček, and D. Káčik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

2012 (1)

2011 (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[Crossref]

2010 (1)

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

2009 (3)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

2008 (3)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

2005 (3)

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Y. Wang, S. Serrano, and J. J. Santiago-Aviles, “Raman characterization of carbon nanofibers prepared using electrospinning,” Synth. Met. 138(3), 423–427 (2003).
[Crossref]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

1997 (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

1982 (1)

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Asimakis, S.

Bao, Q.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Blau, W. J.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Brambilla, G.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[Crossref]

Chen, B.

Chen, H.

Cheng, Y.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Chodorow, M.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Coleman, J. N.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Ding, J.

Ding, M.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

Ebendorff-Heidepriem, H.

Fan, D. Y.

Fang, L.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468 (2015).
[Crossref]

Finazzi, V.

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Fox, D.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Frampton, K.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gan, X.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468 (2015).
[Crossref]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Geim, A. K.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Guinea, F.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Guo, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Guo, Z. N.

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Han, L.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Hillenbrand, R.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Hone, J.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Ji, R.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kácik, D.

I. Turek, N. Tarjányi, I. Martinček, and D. Káčik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Koizumi, F.

Kysar, J. W.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Lee, C.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Lee, T.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[Crossref]

Li, W.

X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

Lipson, M.

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W.

Liu, X.

X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

Liu, Y.

Loh, K.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Lu, S. B.

Lu, Y.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Mao, D.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468 (2015).
[Crossref]

Martincek, I.

I. Turek, N. Tarjányi, I. Martinček, and D. Káčik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Meng, C.

Miao, L. L.

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Min, R.

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Monro, T.

Moore, R.

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Neto, A. C.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Novoselov, K. S.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

Peres, N. M.

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Petropoulos, P.

Qi, X.

Ren, L.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

Richardson, D.

Santiago-Aviles, J. J.

Y. Wang, S. Serrano, and J. J. Santiago-Aviles, “Raman characterization of carbon nanofibers prepared using electrospinning,” Synth. Met. 138(3), 423–427 (2003).
[Crossref]

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Serrano, S.

Y. Wang, S. Serrano, and J. J. Santiago-Aviles, “Raman characterization of carbon nanofibers prepared using electrospinning,” Synth. Met. 138(3), 423–427 (2003).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Shaw, H. J.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Stokes, L. F.

Su, Y.

Sumetsky, M.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

Tang, D.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Tang, D. Y.

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Tarjányi, N.

I. Turek, N. Tarjányi, I. Martinček, and D. Káčik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

Tian, Y.

Tong, L.

X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

X. Wu and L. Tong, “Optical microfibers and nanofibers,” J. Nanophotonics2(5–6), (2013).

Tsao, A.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Turek, I.

I. Turek, N. Tarjányi, I. Martinček, and D. Káčik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vienne, G.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, G.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Wang, H.

Wang, J.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Wang, P.

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[Crossref]

Wang, Y.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468 (2015).
[Crossref]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Y. Wang, S. Serrano, and J. J. Santiago-Aviles, “Raman characterization of carbon nanofibers prepared using electrospinning,” Synth. Met. 138(3), 423–427 (2003).
[Crossref]

Wei, X.

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Wen, S. C.

Wu, X.

X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

X. Wu and L. Tong, “Optical microfibers and nanofibers,” J. Nanophotonics2(5–6), (2013).

Xi, T.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

Xu, Q.

Xu, Y.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Yang, D.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Yang, H.

X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

Yang, L.

Yang, Q.

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, S.

X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, F.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

Zhang, H.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

S. B. Lu, L. L. Miao, Z. N. Guo, X. Qi, C. J. Zhao, H. Zhang, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material,” Opt. Express 23(9), 11183–11194 (2015).
[Crossref] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhang, L.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

L. Zhang, J. Ding, Y. Tian, R. Ji, L. Yang, H. Chen, P. Zhou, Y. Lu, W. Zhu, and R. Min, “Electro-optic directed logic circuit based on microring resonators for XOR/XNOR operations,” Opt. Express 20(11), 11605–11614 (2012).
[Crossref] [PubMed]

Zhang, S.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

S. Yu, C. Meng, B. Chen, H. Wang, X. Wu, W. Liu, S. Zhang, Y. Liu, Y. Su, and L. Tong, “Graphene decorated microfiber for ultrafast optical modulation,” Opt. Express 23(8), 10764–10770 (2015).
[Crossref] [PubMed]

Zhang, X.

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhao, C.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468 (2015).
[Crossref]

Zhao, C. J.

Zhao, J.

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

X. Gan, C. Zhao, Y. Wang, D. Mao, L. Fang, L. Han, and J. Zhao, “Graphene-assisted all-fiber phase shifter and switching,” Optica 2(5), 468 (2015).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, L.

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

Zhou, P.

Zhu, W.

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19(19), 3077–3083 (2009).
[Crossref]

Appl. Phys. Lett. (5)

H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95(14), 141103 (2009).
[Crossref]

M. Ding, P. Wang, T. Lee, and G. Brambilla, “A microfiber cavity with minimal-volume confinement,” Appl. Phys. Lett. 99(5), 051105 (2011).
[Crossref]

Y. Wang, X. Gan, C. Zhao, L. Fang, D. Mao, Y. Xu, F. Zhang, T. Xi, L. Ren, and J. Zhao, “All-optical control of microfiber resonator by graphene’s photothermal effect,” Appl. Phys. Lett. 108(17), 171905 (2016).
[Crossref]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[Crossref]

X. Jiang, L. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[Crossref]

Carbon (1)

X. Wu, S. Yu, H. Yang, W. Li, X. Liu, and L. Tong, “Effective transfer of micron-size graphene to microfibers for photonic applications,” Carbon 96, 1114–1119 (2016).
[Crossref]

J. Lightwave Technol. (1)

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nature (5)

R. Hillenbrand, T. Taubner, and F. Keilmann, “Phonon-enhanced light matter interaction at the nanometre scale,” Nature 418(6894), 159–162 (2002).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

I. Turek, N. Tarjányi, I. Martinček, and D. Káčik, “Effect of mechanical stress on optical properties of polydimethylsiloxane,” Opt. Mater. 36(5), 965–970 (2014).
[Crossref]

Optica (1)

Photonics Res. (1)

G. Wang, S. Zhang, X. Zhang, L. Zhang, Y. Cheng, D. Fox, H. Zhang, J. N. Coleman, W. J. Blau, and J. Wang, “Tunable nonlinear refractive index of two-dimensional MoS2, WS2, and MoSe2 nanosheet dispersions [Invited],” Photonics Res. 3(2), A51–A55 (2015).
[Crossref]

Phys. Rev. Lett. (2)

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105(9), 097401 (2010).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 321(5887), 385–388 (2008).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors (Basel) 14(4), 5823–5844 (2014).
[Crossref] [PubMed]

Synth. Met. (1)

Y. Wang, S. Serrano, and J. J. Santiago-Aviles, “Raman characterization of carbon nanofibers prepared using electrospinning,” Synth. Met. 138(3), 423–427 (2003).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear fiber optics (Academic, 2007).

X. Wu and L. Tong, “Optical microfibers and nanofibers,” J. Nanophotonics2(5–6), (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Typical SEM image of the microfiber. (b) Microscope image of the microfiber knot resonator.

Fig. 2
Fig. 2

(a)-(c). Fabrication processes of MFKRWG, and (d) lateral construction view of MFKRWG

Fig. 3
Fig. 3

(a) Simulated fundamental mode profile of a graphene-sandwiched microfiber at 1550 nm. (b) Mode amplitude dependence along the white dotted line in Fig. 3(a) on the radial position. (c) Transmission spectrum of the MFKR near 1550 nm. (d) Simulated output intensity of MFKR with different loss coefficient.

Fig. 4
Fig. 4

Schematic diagram of the tunable MFKRWG

Fig. 5
Fig. 5

Schematic of experimental setup: ASE: amplified spontaneous emission. EDFA: erbium-doped fiber amplifier. OSA: optical spectrum analyzer. VOA: variable optical attenuator. OPM: optical power meter.

Fig. 6
Fig. 6

(a)-(g) Transmission spectral of the MFKRWG under the irradiation of pump laser (1530 nm) with different pump powers.

Fig. 7
Fig. 7

(a) Transmission loss variations of graphene-covered with different pump power at 1530 nm. (b) Extinction ratio variation of graphene-covered MFKR with different pump powers at 1530 nm.

Fig. 8
Fig. 8

Resonant wavelength variation of graphene-covered MFKR with different pump powers at 1530 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p= | E | 2 = α 2 + | t | 2 2α| t |cos(θ) 1+ α 2 | t | 2 2α| t |cos(θ) .
p= | E | 2 = (a| t |) 2 (1a| t |) 2 .

Metrics