Abstract

We report on laser direct generation of 3D-microchannels for microfluidic applications inside PMMA bulk material by focused femtosecond pulses. Inner lying channels with cross sectional areas from 100 µm2 to 4400 µm2 are directly created in the volume of a PMMA substrate. Using the presented process, the channel length is fundamentally unlimited. Here we demonstrate a channel length of 6 meters inside a substrate with dimensions of 20 × 20 × 1.1 mm. The formation of the micro channels is based on nonlinear absorption around the focal volume that triggers a material modification. The modified volume can be selectively opened to form the channel by a subsequent annealing process. The cross section of the channel is strongly influenced by the energy distribution and illumination around the focal volume determined by the optical setup and process design. The 3D channel layout can easily be realized by moving the specimen using 3D motorized stage, allowing freely chosen complex shaped channel architectures. Within a comprehensive parameter study, varying laser power, number of multi-passes, writing speed and writing depths, we identify an optimized process in terms of attainable channel height, width and aspect ratio, as well as process stability and reproducibility. The proof of concept for an application in three dimensional microfluidic systems is provided by florescence microscopy using a dye rhodamine B solution in isopropanol.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional microfluidic channel with arbitrary length and configuration fabricated inside glass by femtosecond laser direct writing

Yang Liao, Yongfeng Ju, Long Zhang, Fei He, Qiang Zhang, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa
Opt. Lett. 35(19) 3225-3227 (2010)

Fabrication of three-dimensional microfluidic channels inside glass using nanosecond laser direct writing

Changning Liu, Yang Liao, Fei He, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa
Opt. Express 20(4) 4291-4296 (2012)

Welding of PMMA by a femtosecond fiber laser

Annalisa Volpe, Francesca Di Niso, Caterina Gaudiuso, Andrea De Rosa, Rebeca Martínez Vázquez, Antonio Ancona, Pietro Mario Lugarà, and Roberto Osellame
Opt. Express 23(4) 4114-4124 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507, 181–189 (2014).
    [Crossref] [PubMed]
  2. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
    [Crossref] [PubMed]
  3. E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
    [Crossref]
  4. P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review,” J. Micromech. Microeng. 17, R15 (2007).
    [Crossref]
  5. J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).
  6. S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
    [Crossref]
  7. R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
    [Crossref]
  8. L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49, 419–427 (2011).
    [Crossref]
  9. F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-COC/Topas® fluidic microsystems,” J. Mech. Eng. Sci. 220, 1625–1632 (2006).
    [Crossref]
  10. S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
    [Crossref]
  11. R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263 (2001).
    [Crossref]
  12. C.W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6, 1–16 (2009).
    [Crossref]
  13. X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
    [Crossref]
  14. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
    [Crossref] [PubMed]
  15. M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro-Nanoeng. 9, 126 (2014).
    [Crossref]
  16. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867 (2005).
    [Crossref] [PubMed]
  17. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
    [Crossref]
  18. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
    [Crossref]
  19. K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, “Three-dimensional micro-channels in polymers: One-step fabrication,” Appl. Phys. A 77, 371–373 (2003).
    [Crossref]
  20. W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765 (2006).
    [Crossref]
  21. L. N. D. Kallepalli, V. R. Soma, and N. R. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
    [Crossref]
  22. D. L. N. Kallepalli, N. R. Desai, and V. R. Soma, “Fabrication and optical characterization of microstructures in poly (methylmethacrylate) and poly (dimethylsiloxane) using femtosecond pulses for photonic and microfluidic applications,” Appl. Opt. 49, 2475–2489 (2010).
    [Crossref]
  23. G. B. Salieb-Beugelaar, D. Gonçalves, M. P. Wolf, and P. Hunziker, “Microfluidic 3D Helix Mixers,” Micromachines 7, 189 (2016).
    [Crossref]
  24. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939 (2005).
    [Crossref] [PubMed]
  25. M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethyl-methacrylate,” Opt. Express 20, 27288–27296 (2012).
    [Crossref] [PubMed]
  26. C. Bonten, Kunststofftechnik (Carl Hanser Verlag GmbH Co KG, 2016).
    [Crossref]
  27. W. M. Paetzold, C. Reinhardt, A. Demircan, and U. Morgner, “Cascaded-focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41, 1269–1272 (2016).
    [Crossref]
  28. C. Kelb, W. M. Pätzold, U. Morgner, M. Rahlves, E. Reithmeier, and B. Roth, “Characterization of femtosecond laser written gratings in PMMA using a phase-retrieval approach,” Opt. Mater. Express 6, 3202 (2016).
    [Crossref]
  29. A. Baum, P. J. Scully, M. Basanta, C. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly (methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32, 190–192 (2007).
    [Crossref]
  30. A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski, “NUV and NIR femtosecond laser modification of PMMA,” Proc. of LPM 2007, University of Vienna (2007).
  31. A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
    [Crossref] [PubMed]
  32. A. Baum, P. J. Scully, W. Perrie, D. Liu, and V. Lucarini, “Mechanisms of femtosecond laser-induced refractive index modification of poly (methyl methacrylate),” J. Opt. Soc. Am. B 27, 107–111 (2010).
    [Crossref]
  33. Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A 7 (11), 655 (2005)
    [Crossref]
  34. S. H. Wiersma, P. Török, T. D. Visser, and P. Varga, “Comparison of different theories for focusing through a plane interface,” J. Opt. Soc. Am. A 14 (7), 1482 (1997).
    [Crossref]

2016 (4)

S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
[Crossref]

G. B. Salieb-Beugelaar, D. Gonçalves, M. P. Wolf, and P. Hunziker, “Microfluidic 3D Helix Mixers,” Micromachines 7, 189 (2016).
[Crossref]

W. M. Paetzold, C. Reinhardt, A. Demircan, and U. Morgner, “Cascaded-focus laser writing of low-loss waveguides in polymers,” Opt. Lett. 41, 1269–1272 (2016).
[Crossref]

C. Kelb, W. M. Pätzold, U. Morgner, M. Rahlves, E. Reithmeier, and B. Roth, “Characterization of femtosecond laser written gratings in PMMA using a phase-retrieval approach,” Opt. Mater. Express 6, 3202 (2016).
[Crossref]

2015 (1)

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

2014 (2)

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507, 181–189 (2014).
[Crossref] [PubMed]

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro-Nanoeng. 9, 126 (2014).
[Crossref]

2012 (2)

M. Rosenberger, G. Koller, S. Belle, B. Schmauss, and R. Hellmann, “Planar Bragg grating in bulk polymethyl-methacrylate,” Opt. Express 20, 27288–27296 (2012).
[Crossref] [PubMed]

L. N. D. Kallepalli, V. R. Soma, and N. R. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
[Crossref]

2011 (2)

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49, 419–427 (2011).
[Crossref]

2010 (2)

2009 (1)

C.W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6, 1–16 (2009).
[Crossref]

2008 (3)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[Crossref]

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (4)

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref] [PubMed]

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-COC/Topas® fluidic microsystems,” J. Mech. Eng. Sci. 220, 1625–1632 (2006).
[Crossref]

2005 (3)

2004 (1)

2003 (1)

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, “Three-dimensional micro-channels in polymers: One-step fabrication,” Appl. Phys. A 77, 371–373 (2003).
[Crossref]

2002 (1)

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

2001 (1)

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263 (2001).
[Crossref]

1997 (1)

Abgrall, P.

P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review,” J. Micromech. Microeng. 17, R15 (2007).
[Crossref]

Agambayev, S.

S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
[Crossref]

Bado, P.

Barrows, J.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Basanta, M.

Baum, A.

Beebe, D. J.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507, 181–189 (2014).
[Crossref] [PubMed]

Belle, S.

Bellouard, Y.

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867 (2005).
[Crossref] [PubMed]

Bonten, C.

C. Bonten, Kunststofftechnik (Carl Hanser Verlag GmbH Co KG, 2016).
[Crossref]

Bouchard, A.

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

Boum, L.-L.

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

Bundgaard, F.

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-COC/Topas® fluidic microsystems,” J. Mech. Eng. Sci. 220, 1625–1632 (2006).
[Crossref]

Cattoni, A.

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Cerullo, G.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Chalker, P. R.

Chandrasekar, S.

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

Chevolot, Y.

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

Chichkov, B. N.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867 (2005).
[Crossref] [PubMed]

Cremillieu, P.

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

Day, D.

Delapierre, F. D.

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Demircan, A.

Desai, N. R.

DeVoe, D. L.

C.W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6, 1–16 (2009).
[Crossref]

Dini, G.

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49, 419–427 (2011).
[Crossref]

Dugan, M.

Eaton, S. M.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Fielden, P. R.

Floyd, T. M.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263 (2001).
[Crossref]

Ford, S.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Fulton, A. L.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507, 181–189 (2014).
[Crossref] [PubMed]

Gamby, J.

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[Crossref]

Geschke, O.

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-COC/Topas® fluidic microsystems,” J. Mech. Eng. Sci. 220, 1625–1632 (2006).
[Crossref]

Ghodssi, R.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263 (2001).
[Crossref]

Goddard, N. J.

Goettert, J.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Gonçalves, D.

G. B. Salieb-Beugelaar, D. Gonçalves, M. P. Wolf, and P. Hunziker, “Microfluidic 3D Helix Mixers,” Micromachines 7, 189 (2016).
[Crossref]

Gong, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A 7 (11), 655 (2005)
[Crossref]

Gottmann, J.

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro-Nanoeng. 9, 126 (2014).
[Crossref]

Gu, M.

Gue, A.

P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review,” J. Micromech. Microeng. 17, R15 (2007).
[Crossref]

Haghiri-Gosnet, A.-M.

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Hannes, B.

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

Hellmann, R.

Hermans, M.

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro-Nanoeng. 9, 126 (2014).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867 (2005).
[Crossref] [PubMed]

Horny, M.-C.

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Hunziker, P.

G. B. Salieb-Beugelaar, D. Gonçalves, M. P. Wolf, and P. Hunziker, “Microfluidic 3D Helix Mixers,” Micromachines 7, 189 (2016).
[Crossref]

Issac, R.

A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
[Crossref] [PubMed]

A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski, “NUV and NIR femtosecond laser modification of PMMA,” Proc. of LPM 2007, University of Vienna (2007).

Itoh, K.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765 (2006).
[Crossref]

Jackman, R. J.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263 (2001).
[Crossref]

Jaroszynski, D. A.

A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
[Crossref] [PubMed]

A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski, “NUV and NIR femtosecond laser modification of PMMA,” Proc. of LPM 2007, University of Vienna (2007).

Jensen, K. F.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263 (2001).
[Crossref]

Jiang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A 7 (11), 655 (2005)
[Crossref]

Jiang, X.

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

Jones, D.

A. Baum, P. J. Scully, W. Perrie, D. Jones, R. Issac, and D. A. Jaroszynski, “Pulse-duration dependency of femtosecond laser refractive index modification in poly (methyl methacrylate),” Opt. Lett. 33, 651–653 (2008).
[Crossref] [PubMed]

A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski, “NUV and NIR femtosecond laser modification of PMMA,” Proc. of LPM 2007, University of Vienna (2007).

Juodkazis, S.

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, “Three-dimensional micro-channels in polymers: One-step fabrication,” Appl. Phys. A 77, 371–373 (2003).
[Crossref]

Kallepalli, D. L. N.

Kallepalli, L. N. D.

L. N. D. Kallepalli, V. R. Soma, and N. R. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
[Crossref]

Kelb, C.

Kelly, K.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Kiyan, R.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Koller, G.

Krawczyk, S.

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

Kuznetsov, A.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Levi, M.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Li, E. Q.

S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
[Crossref]

Lian, K.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Liu, D.

Liu, X.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Liu, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A 7 (11), 655 (2005)
[Crossref]

Lucarini, V.

Mashraei, Y.

S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
[Crossref]

Matsuo, S.

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, “Three-dimensional micro-channels in polymers: One-step fabrication,” Appl. Phys. A 77, 371–373 (2003).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[Crossref]

Mazurczyk, R.

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

McCandless, A.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Misawa, H.

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, “Three-dimensional micro-channels in polymers: One-step fabrication,” Appl. Phys. A 77, 371–373 (2003).
[Crossref]

Morgner, U.

Nishii, J.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765 (2006).
[Crossref]

Osellame, R.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Paetzold, W. M.

Pallandre, A.

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Pätzold, W. M.

Perozziello, G.

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-COC/Topas® fluidic microsystems,” J. Mech. Eng. Sci. 220, 1625–1632 (2006).
[Crossref]

Perrie, W.

Qi, S.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Rahlves, M.

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867 (2005).
[Crossref] [PubMed]

Reinhardt, C.

Reithmeier, E.

Riedel, F.

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro-Nanoeng. 9, 126 (2014).
[Crossref]

Romoli, L.

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49, 419–427 (2011).
[Crossref]

Rosenberger, M.

Roth, B.

Roy, E.

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Sackmann, E. K.

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507, 181–189 (2014).
[Crossref] [PubMed]

Said, A.

Salama, K. N.

S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
[Crossref]

Salieb-Beugelaar, G. B.

G. B. Salieb-Beugelaar, D. Gonçalves, M. P. Wolf, and P. Hunziker, “Microfluidic 3D Helix Mixers,” Micromachines 7, 189 (2016).
[Crossref]

Schmauss, B.

Schmidt, M. A.

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263 (2001).
[Crossref]

Scully, P. J.

Sharp, M.

A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski, “NUV and NIR femtosecond laser modification of PMMA,” Proc. of LPM 2007, University of Vienna (2007).

Simova, E.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867 (2005).
[Crossref] [PubMed]

Sivashankar, S.

S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
[Crossref]

Soma, V. R.

Soper, S. A.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Sowa, S.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765 (2006).
[Crossref]

Sun, Q.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A 7 (11), 655 (2005)
[Crossref]

Suriano, R.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Tamaki, T.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765 (2006).
[Crossref]

Tantussi, G.

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49, 419–427 (2011).
[Crossref]

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett. 30, 1867 (2005).
[Crossref] [PubMed]

Thomas, C. P.

Thomas, G.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Thoroddsen, S. T.

S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
[Crossref]

Török, P.

Tsao, C.W.

C.W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6, 1–16 (2009).
[Crossref]

Turri, S.

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Varga, P.

Vieillard, J.

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

Visser, T. D.

Wang, C.

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

Watanabe, W.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765 (2006).
[Crossref]

Watkins, K. G.

A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski, “NUV and NIR femtosecond laser modification of PMMA,” Proc. of LPM 2007, University of Vienna (2007).

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref] [PubMed]

Wiersma, S. H.

Wolf, M. P.

G. B. Salieb-Beugelaar, D. Gonçalves, M. P. Wolf, and P. Hunziker, “Microfluidic 3D Helix Mixers,” Micromachines 7, 189 (2016).
[Crossref]

Yamasaki, K.

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, “Three-dimensional micro-channels in polymers: One-step fabrication,” Appl. Phys. A 77, 371–373 (2003).
[Crossref]

Yang, H.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A 7 (11), 655 (2005)
[Crossref]

Zhou, Y.

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A 7 (11), 655 (2005)
[Crossref]

Zribi, B.

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (2)

C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, “Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching,” Appl. Phys. A 84, 47–61 (2006).
[Crossref]

K. Yamasaki, S. Juodkazis, S. Matsuo, and H. Misawa, “Three-dimensional micro-channels in polymers: One-step fabrication,” Appl. Phys. A 77, 371–373 (2003).
[Crossref]

Appl. Surf. Sci. (2)

J. Vieillard, R. Mazurczyk, L.-L. Boum, A. Bouchard, Y. Chevolot, P. Cremillieu, B. Hannes, and S. Krawczyk, “Integrated microfluidic-microoptical systems fabricated by dry etching of soda-lime glass,” Appl. Surf. Sci. 85, 465–469 (2008).

R. Suriano, A. Kuznetsov, S. M. Eaton, R. Kiyan, G. Cerullo, R. Osellame, B. N. Chichkov, M. Levi, and S. Turri, “Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels,” Appl. Surf. Sci. 257, 6243–6250 (2011).
[Crossref]

Biomicrofluidics (1)

S. Sivashankar, S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama, “A “twisted” microfluidic mixer suitable for a wide range of flow rate applications,” Biomicrofluidics 10, 34120 (2016).
[Crossref]

J. Laser Micro-Nanoeng. (1)

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro-Nanoeng. 9, 126 (2014).
[Crossref]

J. Mech. Eng. Sci. (1)

F. Bundgaard, G. Perozziello, and O. Geschke, “Rapid prototyping tools and methods for all-COC/Topas® fluidic microsystems,” J. Mech. Eng. Sci. 220, 1625–1632 (2006).
[Crossref]

J. Micromech. Microeng. (2)

P. Abgrall and A. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem-a review,” J. Micromech. Microeng. 17, R15 (2007).
[Crossref]

R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt, and K. F. Jensen, “Microfluidic systems with on-line UV detection fabricated in photodefinable epoxy,” J. Micromech. Microeng. 11, 263 (2001).
[Crossref]

J. Opt. A (1)

Q. Sun, H. Jiang, Y. Liu, Y. Zhou, H. Yang, and Q. Gong, “Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica,” J. Opt. A 7 (11), 655 (2005)
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-dimensional waveguides fabricated in poly (methyl methacrylate) by a femtosecond laser,” Jpn. J. Appl. Phys. 45, L765 (2006).
[Crossref]

Lab Chip (1)

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, and S. A. Soper, “Microfluidic devices fabricated in poly (methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection,” Lab Chip 2, 88–95 (2002).
[Crossref]

Microfluid. Nanofluid. (1)

C.W. Tsao and D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid. 6, 1–16 (2009).
[Crossref]

Micromachines (1)

G. B. Salieb-Beugelaar, D. Gonçalves, M. P. Wolf, and P. Hunziker, “Microfluidic 3D Helix Mixers,” Micromachines 7, 189 (2016).
[Crossref]

Nat. Photon. (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2, 219–225 (2008).
[Crossref]

Nature (2)

E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature 507, 181–189 (2014).
[Crossref] [PubMed]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442, 368–373 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

L. N. D. Kallepalli, V. R. Soma, and N. R. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (2)

X. Jiang, S. Chandrasekar, and C. Wang, “A laser microwelding method for assembly of polymer based microfluidic devices,” Opt. Lasers Eng. 66, 98–104 (2015).
[Crossref]

L. Romoli, G. Tantussi, and G. Dini, “Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices,” Opt. Lasers Eng. 49, 419–427 (2011).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Other (3)

C. Bonten, Kunststofftechnik (Carl Hanser Verlag GmbH Co KG, 2016).
[Crossref]

A. Baum, P. J. Scully, W. Perrie, M. Sharp, K. G. Watkins, D. Jones, R. Issac, and D. A. Jaroszynski, “NUV and NIR femtosecond laser modification of PMMA,” Proc. of LPM 2007, University of Vienna (2007).

E. Roy, A. Pallandre, B. Zribi, M.-C. Horny, F. D. Delapierre, A. Cattoni, J. Gamby, and A.-M. Haghiri-Gosnet, “Overview of Materials for Microfluidic Applications,” in Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences (INTECH, 2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Cross section of the simulated thermal distribution after 30 s (a) and temperature distribution in several depths at a width of 10 mm during the annealing process (b).
Fig. 2
Fig. 2 Tilted view on a single meander shaped channel written in six connected layers.
Fig. 3
Fig. 3 Height and width of microchannels generated at different laser powers and calculated aspect ratios (secondary axis). Error bars include the standard deviation of 5 generated microchannels. Lines are given as a guide to the eye.
Fig. 4
Fig. 4 Elliptical cross section of microfluidic channels (a) produced at two different power levels (P1, P2) with Δ= 6 mW resulting in an expansion in height of 9 µm and in width of 4 µm and (b) in two different depths with Δ = 105 µm.
Fig. 5
Fig. 5 Height and width of microchannels generated with different number of scanning repetitions and calculated aspect ratios (secondary axis). Error bars include the standard deviation of 5 generated microchannels. Lines are given as a guide to the eye.
Fig. 6
Fig. 6 Height and width of microchannels written with different speeds and calculated aspect ratios (secondary axis). Error bars include the standard deviation of 5 generated microchannels. Lines are given as a guide to the eye.
Fig. 7
Fig. 7 Height and width of microchannels generated in different depths and calculated aspect ratios (secondary axis). Error bars include the standard deviation of 5 generated microchannels. Lines are given as a guide to the eye.
Fig. 8
Fig. 8 Top view on an unfilled microfluidic network (middle) and detailed view on corresponding fluid filled channels (left and right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ = f d n ( n 2 NA 2 1 NA 2 n )

Metrics