Abstract

In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system

Jiale He, Borui Li, Lei Deng, Ming Tang, Lin Gan, Songnian Fu, Perry Ping Shum, and Deming Liu
Opt. Express 24(12) 13418-13428 (2016)

BOMA and OFDM/OQAM modulation for a radio-over-fiber system with enhanced spectral efficiency

Xiaoman Chen, Chang Liu, Laixia Nian, Mengfan Cheng, Songnian Fu, Ming Tang, Deming Liu, and Lei Deng
Opt. Lett. 43(20) 4859-4862 (2018)

2 × 2 MIMO OFDM/OQAM radio signals over an elliptical core few-mode fiber

Qi Mo, Jiale He, Dawei Yu, Lei Deng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Lett. 41(19) 4546-4549 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten, H. Tullberg, M. A. Uusitalo, and M. Schellmann, “The foundation of the mobile and wireless communications system for 2020 and beyond: challenges, enablers and technology solutions,” in Proceedings of Vehicular Technology Conference (IEEE, 2013), paper 1–5.
    [Crossref]
  2. J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
    [Crossref]
  3. Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
    [Crossref] [PubMed]
  4. C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).
  5. S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, and Y. Chen, “Sparse code multiple access: an energy efficient uplink approach for 5G wireless systems,” in Proceedings of Global Communications Conference (IEEE, 2014), paper 4782–4787.
    [Crossref]
  6. M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “SCMA codebook design,” in Proceedings of Vehicular Technology Conference (IEEE, 2014), 1–5 (2014).
  7. K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
    [Crossref]
  8. B. Liu, L. Zhang, and X. Xin, “Non-orthogonal optical multicarrier access based on filter bank and SCMA,” Opt. Express 23(21), 27335–27342 (2015).
    [Crossref] [PubMed]
  9. F. Li, Z. Cao, X. Li, Z. Dong, and L. Chen, “Fiber-wireless transmission system of PDM-MIMO-OFDM at 100 GHz frequency,” J. Lightwave Technol. 31(14), 2394–2399 (2013).
    [Crossref]
  10. T. M. Tashiro, K. Miyamoto, T. Iwakuni, K. Hara, Y. Fukada, J. Kani, N. Yoshimoto, K. Iwatsuki, T. Higashino, K. Tsukamoto, and S. Komaki, “40 km fiber transmission of time domain multiplexed MIMO RF signals for RoF-DAS over WDM-PON,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (OSA, 2012), paper OTu2H.4.
  11. G. S. Gordon, M. J. Crisp, R. V. Penty, T. D. Wilkinson, and I. H. White, “Feasibility demonstration of a mode- division multiplexed MIMO-enabled radio-over-fiber distributed antenna system,” J. Lightwave Technol. 32(20), 3521–3528 (2014).
    [Crossref]
  12. J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P. P. Shum, and D. Liu, “Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system,” Opt. Express 24(12), 13418–13428 (2016).
    [Crossref] [PubMed]
  13. C. Liu, L. Deng, J. He, D. Li, S. Fu, M. Tang, M. Cheng, and D. Liu, “Non-orthogonal multiple access based on SCMA and OFDM/OQAM techniques in bidirectional RoF system,” in Proceedings of Optical Fiber Communication Conference (OSA, 2017), paper W2A–41.
    [Crossref]
  14. P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).
  15. M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals,” IEEE T. Signal Process. 54(3), 884–893 (2006).
  16. T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory 47(2), 599–618 (2002).
    [Crossref]
  17. J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point implementation of Log-MPA for SCMA signals,” IEEE Wirel. Commun. Lett. 5(3), 324–327 (2016).
    [Crossref]
  18. A. Macho, M. Morant, and R. Llorente, “Impact of inter-core crosstalk in radio-over-fiber transmission on multi-core optical media,” in Proceedings of SPIE OPTO (International Society for Optics and Photonics, 2016), paper 97720O.
  19. J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” J. Quantum. Electron. 52(1), 1–7 (2016).
    [Crossref]
  20. J. He, L. Deng, C. Zhou, L. Shi, M. Chen, M. Tang, S. Fu, M. Zhang, D. Liu, and P. P. Shum, “2×2 PolMux-MIMO RoF system employing interference cancellation based OFDM/OQAM technique,” in Proceedings of CLEO: Science and Innovations (OSA, 2016), paper STh1F. 3.
  21. J. Zhao, “Channel estimation in DFT-based offset-QAM OFDM systems,” Opt. Express 22(21), 25651–25662 (2014).
    [Crossref] [PubMed]
  22. E. Kofidis, D. Katselis, A. Rontogiannis, and S. Theodoridis, “Preamble-based channel estimation in OFDM/OQAM systems: a review,” IEEE T. Signal Process. 93(7), 2038–2054 (2013).
    [Crossref]
  23. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [Crossref] [PubMed]
  24. Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
    [Crossref]

2016 (3)

J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P. P. Shum, and D. Liu, “Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system,” Opt. Express 24(12), 13418–13428 (2016).
[Crossref] [PubMed]

J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point implementation of Log-MPA for SCMA signals,” IEEE Wirel. Commun. Lett. 5(3), 324–327 (2016).
[Crossref]

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” J. Quantum. Electron. 52(1), 1–7 (2016).
[Crossref]

2015 (3)

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Liu, L. Zhang, and X. Xin, “Non-orthogonal optical multicarrier access based on filter bank and SCMA,” Opt. Express 23(21), 27335–27342 (2015).
[Crossref] [PubMed]

2014 (4)

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

G. S. Gordon, M. J. Crisp, R. V. Penty, T. D. Wilkinson, and I. H. White, “Feasibility demonstration of a mode- division multiplexed MIMO-enabled radio-over-fiber distributed antenna system,” J. Lightwave Technol. 32(20), 3521–3528 (2014).
[Crossref]

J. Zhao, “Channel estimation in DFT-based offset-QAM OFDM systems,” Opt. Express 22(21), 25651–25662 (2014).
[Crossref] [PubMed]

2013 (3)

2006 (1)

M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals,” IEEE T. Signal Process. 54(3), 884–893 (2006).

2002 (2)

T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory 47(2), 599–618 (2002).
[Crossref]

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

Andrews, J. G.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Au, K.

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

Bayesteh, A.

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

Biguesh, M.

M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals,” IEEE T. Signal Process. 54(3), 884–893 (2006).

Buzzi, S.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Cao, Z.

Capmany, J.

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” J. Quantum. Electron. 52(1), 1–7 (2016).
[Crossref]

Chen, L.

Choi, W.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Crisp, M. J.

Deng, L.

Dong, Z.

Feng, Z.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Fu, S.

Galve, J. M.

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” J. Quantum. Electron. 52(1), 1–7 (2016).
[Crossref]

Gan, L.

J. He, B. Li, L. Deng, M. Tang, L. Gan, S. Fu, P. P. Shum, and D. Liu, “Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system,” Opt. Express 24(12), 13418–13428 (2016).
[Crossref] [PubMed]

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Gasulla, I.

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” J. Quantum. Electron. 52(1), 1–7 (2016).
[Crossref]

Gershman, A. B.

M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals,” IEEE T. Signal Process. 54(3), 884–893 (2006).

Gordon, G. S.

Hanly, S.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

He, J.

Hu, R.

Jiang, T.

Katselis, D.

E. Kofidis, D. Katselis, A. Rontogiannis, and S. Theodoridis, “Preamble-based channel estimation in OFDM/OQAM systems: a review,” IEEE T. Signal Process. 93(7), 2038–2054 (2013).
[Crossref]

Kofidis, E.

E. Kofidis, D. Katselis, A. Rontogiannis, and S. Theodoridis, “Preamble-based channel estimation in OFDM/OQAM systems: a review,” IEEE T. Signal Process. 93(7), 2038–2054 (2013).
[Crossref]

Lacaille, N.

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

Li, B.

Li, C.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Li, F.

Li, H.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Li, S.

J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point implementation of Log-MPA for SCMA signals,” IEEE Wirel. Commun. Lett. 5(3), 324–327 (2016).
[Crossref]

Li, X.

Li, Z.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Lin, R.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Liu, B.

Liu, D.

Liu, J.

J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point implementation of Log-MPA for SCMA signals,” IEEE Wirel. Commun. Lett. 5(3), 324–327 (2016).
[Crossref]

Liu, S.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Llorente, R.

A. Macho, M. Morant, and R. Llorente, “Impact of inter-core crosstalk in radio-over-fiber transmission on multi-core optical media,” in Proceedings of SPIE OPTO (International Society for Optics and Photonics, 2016), paper 97720O.

Long, S.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Lou, M.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Lozano, A.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Luo, M.

Ma, J.

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

Macho, A.

A. Macho, M. Morant, and R. Llorente, “Impact of inter-core crosstalk in radio-over-fiber transmission on multi-core optical media,” in Proceedings of SPIE OPTO (International Society for Optics and Photonics, 2016), paper 97720O.

Morant, M.

A. Macho, M. Morant, and R. Llorente, “Impact of inter-core crosstalk in radio-over-fiber transmission on multi-core optical media,” in Proceedings of SPIE OPTO (International Society for Optics and Photonics, 2016), paper 97720O.

Nikopour, H.

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

Penty, R. V.

Richardson, T. J.

T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory 47(2), 599–618 (2002).
[Crossref]

Rontogiannis, A.

E. Kofidis, D. Katselis, A. Rontogiannis, and S. Theodoridis, “Preamble-based channel estimation in OFDM/OQAM systems: a review,” IEEE T. Signal Process. 93(7), 2038–2054 (2013).
[Crossref]

Sales, S.

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” J. Quantum. Electron. 52(1), 1–7 (2016).
[Crossref]

Shum, P. P.

Siclet, C.

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

Siohan, P.

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

Soong, A. C. K.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Tang, M.

Theodoridis, S.

E. Kofidis, D. Katselis, A. Rontogiannis, and S. Theodoridis, “Preamble-based channel estimation in OFDM/OQAM systems: a review,” IEEE T. Signal Process. 93(7), 2038–2054 (2013).
[Crossref]

Tirkkonen, O.

J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point implementation of Log-MPA for SCMA signals,” IEEE Wirel. Commun. Lett. 5(3), 324–327 (2016).
[Crossref]

Tong, W.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Urbanke, R. L.

T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory 47(2), 599–618 (2002).
[Crossref]

Vilaipornsawai, U.

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

Wang, R.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

White, I. H.

Wilkinson, T. D.

Wu, G.

J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point implementation of Log-MPA for SCMA signals,” IEEE Wirel. Commun. Lett. 5(3), 324–327 (2016).
[Crossref]

Wu, Q.

Xiao, X.

Xin, X.

Xu, J.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Xu, Z.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Yang, Q.

Yi, E.

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

Yu, S.

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Li, T. Jiang, H. Li, X. Zhang, C. Li, C. Li, R. Hu, M. Luo, X. Zhang, X. Xiao, Q. Yang, and S. Yu, “Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system,” Opt. Express 21(19), 21924–21931 (2013).
[Crossref] [PubMed]

Zhang, J. C.

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

Zhang, L.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

B. Liu, L. Zhang, and X. Xin, “Non-orthogonal optical multicarrier access based on filter bank and SCMA,” Opt. Express 23(21), 27335–27342 (2015).
[Crossref] [PubMed]

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

Zhang, R.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Zhang, X.

Zhao, J.

Zhou, H.

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

Zhu, P.

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

IEEE J. Sel. Areas Comm. (1)

J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5G be,” IEEE J. Sel. Areas Comm. 32(6), 1065–1082 (2014).
[Crossref]

IEEE Photonics J. (2)

C. Li, X. Zhang, H. Li, C. Li, M. Lou, Z. Li, J. Xu, and S. Yu, “Experimental demonstration of 429.96Gb/s OFDM/OQAM-64QAM over 400km SSMF transmission within a 50GHz grid,” IEEE Photonics J. 6(4), 1–8 (2014).

Z. Feng, B. Li, M. Tang, L. Gan, R. Wang, R. Lin, Z. Xu, S. Fu, L. Deng, W. Tong, S. Long, L. Zhang, H. Zhou, R. Zhang, S. Liu, and P. P. Shum, “Multicore-fiber-enabled WSDM optical access network with centralized carrier delivery and RSOA-based adaptive modulation,” IEEE Photonics J. 7(4), 1–9 (2015).
[Crossref]

IEEE T. Signal Process. (3)

E. Kofidis, D. Katselis, A. Rontogiannis, and S. Theodoridis, “Preamble-based channel estimation in OFDM/OQAM systems: a review,” IEEE T. Signal Process. 93(7), 2038–2054 (2013).
[Crossref]

P. Siohan, C. Siclet, and N. Lacaille, “Analysis and design of OFDM/OQAM systems based on filter bank theory,” IEEE T. Signal Process. 50(5), 1170–1183 (2002).

M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals,” IEEE T. Signal Process. 54(3), 884–893 (2006).

IEEE Trans. Inf. Theory (1)

T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. Inf. Theory 47(2), 599–618 (2002).
[Crossref]

IEEE Wirel. Commun. Lett. (1)

J. Liu, G. Wu, S. Li, and O. Tirkkonen, “On fixed-point implementation of Log-MPA for SCMA signals,” IEEE Wirel. Commun. Lett. 5(3), 324–327 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Quantum. Electron. (1)

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” J. Quantum. Electron. 52(1), 1–7 (2016).
[Crossref]

Opt. Express (5)

Other (8)

A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten, H. Tullberg, M. A. Uusitalo, and M. Schellmann, “The foundation of the mobile and wireless communications system for 2020 and beyond: challenges, enablers and technology solutions,” in Proceedings of Vehicular Technology Conference (IEEE, 2013), paper 1–5.
[Crossref]

S. Zhang, X. Xu, L. Lu, Y. Wu, G. He, and Y. Chen, “Sparse code multiple access: an energy efficient uplink approach for 5G wireless systems,” in Proceedings of Global Communications Conference (IEEE, 2014), paper 4782–4787.
[Crossref]

M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh, “SCMA codebook design,” in Proceedings of Vehicular Technology Conference (IEEE, 2014), 1–5 (2014).

K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,” in Proceedings of Globecom Workshop (IEEE, 2014), pp. 900–905.
[Crossref]

C. Liu, L. Deng, J. He, D. Li, S. Fu, M. Tang, M. Cheng, and D. Liu, “Non-orthogonal multiple access based on SCMA and OFDM/OQAM techniques in bidirectional RoF system,” in Proceedings of Optical Fiber Communication Conference (OSA, 2017), paper W2A–41.
[Crossref]

T. M. Tashiro, K. Miyamoto, T. Iwakuni, K. Hara, Y. Fukada, J. Kani, N. Yoshimoto, K. Iwatsuki, T. Higashino, K. Tsukamoto, and S. Komaki, “40 km fiber transmission of time domain multiplexed MIMO RF signals for RoF-DAS over WDM-PON,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (OSA, 2012), paper OTu2H.4.

A. Macho, M. Morant, and R. Llorente, “Impact of inter-core crosstalk in radio-over-fiber transmission on multi-core optical media,” in Proceedings of SPIE OPTO (International Society for Optics and Photonics, 2016), paper 97720O.

J. He, L. Deng, C. Zhou, L. Shi, M. Chen, M. Tang, S. Fu, M. Zhang, D. Liu, and P. P. Shum, “2×2 PolMux-MIMO RoF system employing interference cancellation based OFDM/OQAM technique,” in Proceedings of CLEO: Science and Innovations (OSA, 2016), paper STh1F. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The schematic diagram of the proposed N × N MIMO SCMA-OFDM/OQAM RoF system.
Fig. 2
Fig. 2 Experimental setup of the bidirectional SCMA-OFDM/OQAM RoF system.
Fig. 3
Fig. 3 Measured BER performance of SCMA-OFDM/OQAM signal over 24.5 km SSMF and 0.3 m air transmission in downlink (a), and both SCMA-OFDM/OQAM and OFDMA with 24.5 km SSMF and 0.3 m air transmission in uplink (b).
Fig. 4
Fig. 4 Experimental setup of the proposed 4 × 4 MIMO SCMA-OFDM/OQAM RoF system.
Fig. 5
Fig. 5 Measured BER performances of each channel in 4 × 4 MIMO SCMA-OFDM/OQAM signals transmission system.
Fig. 6
Fig. 6 Measured BER performance for 4 × 4 MIMO SCMA-OFDM/OQAM and MIMO-OFDM signals over 20km MCF and 0.4m air transmission in both downlink (a) and uplink (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = m = 0 M 1 n = 0 2 N 1 a m n g ( t n T 2 ) e j 2 π m f t e j π ( m + n 2 ) / 2 ,
[ y 1 y 2 y 3 y 4 ] = [ h 11 h 12 h 13 h 14 h 21 h 22 h 23 h 24 h 31 h 32 h 33 h 34 h 41 h 42 h 43 h 44 ] ( [ H 11 H 12 H 13 H 14 H 21 H 22 H 23 H 24 H 31 H 32 H 33 H 34 H 41 H 42 H 43 H 44 ] [ x 1 x 2 x 3 x 4 ] + [ N 1 N 2 N 3 N 4 ] ) + [ n 1 n 2 n 3 n 4 ] ,
[ H b 11 H b 12 H b 13 H b 14 H b 21 H b 22 H b 23 H b 24 H b 31 H b 32 H b 33 H b 34 H b 41 H b 42 H b 43 H b 44 ] = [ Y 11 Y 12 Y 13 Y 14 Y 21 Y 22 Y 23 Y 24 Y 31 Y 32 Y 33 Y 34 Y 41 Y 42 Y 43 Y 44 ] × [ p 11 + j X 11 p 12 + j X 12 p 13 + j X 13 p 14 + j X 14 p 21 + j X 21 p 22 + j X 22 p 23 + j X 23 p 24 + j X 24 p 31 + j X 31 p 32 + j X 32 p 33 + j X 33 p 34 + j X 34 p 41 + j X 41 p 42 + j X 42 p 43 + j X 43 p 44 + j X 44 ] 1

Metrics