Abstract

Computational imaging systems leverage generalized measurements to produce high-fidelity images, enabling novel and often lower cost hardware platforms at the expense of increased processing. However, obtaining full resolution images across a large field-of-view (FOV) can lead to slow reconstruction times, limiting system performance where faster frame rates are desired. In many imaging scenarios, the highest resolution is needed only in smaller subdomains of interest within a scene, suggesting an aperture supporting multiple modalities of image capture with different resolutions can provide a path to system optimization. We explore this concept in the context of millimeter-wave imaging, presenting the design and simulation of a single frequency (75 GHz), multistatic, holographic spotlight aperture integrated into a K-band (17.5–26.5 GHz), frequency-diverse imager. The spotlight aperture – synthesized using an array of dynamically tuned, holographic, metasurface antennas – illuminates a constrained region-of-interest (ROI) identified from a low-resolution image, extracting a high-fidelity image of the constrained-ROI with a minimum number of measurement modes. The designs of both the static, frequency-diverse sub-aperture and the integrated dynamic spotlight aperture are evaluated using simulation techniques developed for large-scale synthetic apertures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures

Okan Yurduseven, Jonah N. Gollub, Daniel L. Marks, and David R. Smith
Opt. Express 24(8) 8907-8925 (2016)

X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna

Claire M. Watts, Andreas Pedross-Engel, David R. Smith, and Matthew S. Reynolds
J. Opt. Soc. Am. B 34(2) 300-306 (2017)

Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements

Aaron V. Diebold, Laura Pulido-Mancera, Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, and David R. Smith
J. Opt. Soc. Am. B 34(12) 2610-2623 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Remote Sens. 50(5), 1986–2000 (2012).
    [Crossref]
  2. T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 551–558.
    [Crossref]
  3. S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
    [Crossref]
  4. M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
    [Crossref]
  5. S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
    [Crossref]
  6. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
    [Crossref]
  7. S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
    [Crossref]
  8. J. A. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
    [Crossref]
  9. X. Zhuge and A. G. Yarovoy, “A Sparse Aperture MIMO-SAR-Based UWB Imaging System for Concealed Weapon Detection,” IEEE Trans. Geosci. Remote Sens. 49(1), 509–518 (2011).
    [Crossref]
  10. O. Yurduseven, “Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems,” Prog. Electromagnetics Res. 146, 7–13 (2014).
    [Crossref]
  11. M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
    [Crossref]
  12. N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
    [Crossref]
  13. R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
    [Crossref]
  14. D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
    [Crossref]
  15. M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
    [Crossref]
  16. J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
    [Crossref]
  17. F. Qi, I. Ocket, D. Schreurs, and B. Nauwelaers, “A system-level simulator for indoor mmW SAR imaging and its applications,” Opt. Express 20(21), 23811–23820 (2012).
    [Crossref] [PubMed]
  18. B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
    [Crossref]
  19. S. Withington, G. Saklatvala, and M. P. Hobson, “Partially coherent analysis of imaging and interferometric phased arrays: noise, correlations, and fluctuations,” J. Opt. Soc. Am. A 23(6), 1340–1348 (2006).
    [Crossref] [PubMed]
  20. G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 543–550.
    [Crossref]
  21. A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).
  22. D. Shrekenhamer, C. M. Watts, and W. J. Padilla, “Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator,” Opt. Express 21(10), 12507–12518 (2013).
    [Crossref] [PubMed]
  23. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
    [Crossref] [PubMed]
  24. D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
    [Crossref]
  25. O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28(12), 2540–2553 (2011).
    [Crossref] [PubMed]
  26. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  27. D. J. Brady, Optical Imaging and Spectroscopy, Wiley, 2009.
  28. D. H. Shin, C. W. Tan, B. G. Lee, J. J. Lee, and E. S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
    [Crossref] [PubMed]
  29. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21(20), 23068–23074 (2013).
    [Crossref] [PubMed]
  30. J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2016).
    [Crossref]
  31. D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
    [Crossref] [PubMed]
  32. O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
    [Crossref] [PubMed]
  33. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
    [Crossref] [PubMed]
  34. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
    [Crossref] [PubMed]
  35. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
    [Crossref] [PubMed]
  36. J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
    [Crossref] [PubMed]
  37. O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
    [Crossref]
  38. T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
    [Crossref]
  39. O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
    [Crossref]
  40. O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Multistatic microwave imaging with arrays of planar cavities,” IET Microw. Antennas Propag. 10(11), 1174–1181 (2016).
    [Crossref]
  41. O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
    [Crossref]
  42. D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for multiple-input-multiple-output (MIMO) radar imaging,” IEEE Access 4, 1796–1809 (2017).
    [Crossref]
  43. D. L. Marks, O. Yurduseven, and D. R. Smith, “Hollow Cavity Metasurface Aperture Antennas and Their Application to Frequency Diverse Imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
    [Crossref]
  44. O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets,” IEEE Access 4, 5436–5451 (2016).
    [Crossref]
  45. J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
    [Crossref] [PubMed]
  46. D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
    [Crossref]
  47. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 1st Edition, 12–31, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1987.
  48. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
    [Crossref] [PubMed]
  49. S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Logos Verlag Berlin GmbH, 2013).
  50. Kymeta mTenna, https://www.kymetacorp.com/mtenna
  51. M. E. S. A. Echodyne, http://echodyne.com/technology
  52. R. Guerci and et al.., “Next generation affordable smart antennas,” Microw. J. (Int. Ed.) 57, 24 (2014).
  53. E. Brookner, “Metamaterial advances for radar and communications,” Microw. J. (Int. Ed.) 59, 22 (2016).
  54. N. Kundtz, “Next generation communications for next generation satellites,” Microw. J. (Int. Ed.) 57(8), 56 (2014).
  55. O. Yurduseven, D. Marks, J. Gollub and D. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access, PP(99), 1–1 10.1109/ACCESS.2017.2712659

2017 (4)

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for multiple-input-multiple-output (MIMO) radar imaging,” IEEE Access 4, 1796–1809 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Hollow Cavity Metasurface Aperture Antennas and Their Application to Frequency Diverse Imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
[Crossref]

2016 (8)

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

E. Brookner, “Metamaterial advances for radar and communications,” Microw. J. (Int. Ed.) 59, 22 (2016).

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Multistatic microwave imaging with arrays of planar cavities,” IET Microw. Antennas Propag. 10(11), 1174–1181 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2016).
[Crossref]

2015 (5)

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

2014 (7)

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

O. Yurduseven, “Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems,” Prog. Electromagnetics Res. 146, 7–13 (2014).
[Crossref]

N. Kundtz, “Next generation communications for next generation satellites,” Microw. J. (Int. Ed.) 57(8), 56 (2014).

R. Guerci and et al.., “Next generation affordable smart antennas,” Microw. J. (Int. Ed.) 57, 24 (2014).

2013 (5)

2012 (5)

F. Qi, I. Ocket, D. Schreurs, and B. Nauwelaers, “A system-level simulator for indoor mmW SAR imaging and its applications,” Opt. Express 20(21), 23811–23820 (2012).
[Crossref] [PubMed]

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

J. A. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Remote Sens. 50(5), 1986–2000 (2012).
[Crossref]

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

2011 (3)

X. Zhuge and A. G. Yarovoy, “A Sparse Aperture MIMO-SAR-Based UWB Imaging System for Concealed Weapon Detection,” IEEE Trans. Geosci. Remote Sens. 49(1), 509–518 (2011).
[Crossref]

N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
[Crossref]

O. S. Cossairt, D. Miau, and S. K. Nayar, “Scaling law for computational imaging using spherical optics,” J. Opt. Soc. Am. A 28(12), 2540–2553 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (2)

D. H. Shin, C. W. Tan, B. G. Lee, J. J. Lee, and E. S. Kim, “Resolution-enhanced three-dimensional image reconstruction by use of smart pixel mapping in computational integral imaging,” Appl. Opt. 47(35), 6656–6665 (2008).
[Crossref] [PubMed]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2007 (2)

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[Crossref]

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref] [PubMed]

2006 (2)

S. Withington, G. Saklatvala, and M. P. Hobson, “Partially coherent analysis of imaging and interferometric phased arrays: noise, correlations, and fluctuations,” J. Opt. Soc. Am. A 23(6), 1340–1348 (2006).
[Crossref] [PubMed]

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
[Crossref]

2004 (1)

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[Crossref]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

2000 (1)

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Alvarez-Lopez, Y.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Amineh, R. K.

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

Arboleya-Arboleya, A.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Arnitz, D.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Benedetti, M.

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
[Crossref]

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref] [PubMed]

Blackwell, W.

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2016).
[Crossref]

Bowman, R.

Boyarsky, M.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Brady, D.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Brady, D. J.

Brookner, E.

E. Brookner, “Metamaterial advances for radar and communications,” Microw. J. (Int. Ed.) 59, 22 (2016).

Caorsi, S.

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[Crossref]

Carsenat, D.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

Case, J. T.

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

Cetinkaya, H.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Charvat, G. L.

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 543–550.
[Crossref]

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 551–558.
[Crossref]

Choi, K.

Coleman, C. M.

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 543–550.
[Crossref]

Cossairt, O. S.

Courtney, W. E.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Decroze, C.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

Delaney, W. P.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Demirci, S.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Donelli, M.

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
[Crossref]

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[Crossref]

Driscoll, T.

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Edgar, M. P.

Elsdon, M.

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

F Imani, M.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Fallahpour, M.

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

Fathy, A. E.

Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Remote Sens. 50(5), 1986–2000 (2012).
[Crossref]

Fenn, A. J.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Figueiredo, M. A. T.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref] [PubMed]

Fromenteze, T.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

Garcia-Gonzalez, C.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Ghasr, M. T.

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

Gollub, J.

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
[Crossref] [PubMed]

O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

Gollub, J. N.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Multistatic microwave imaging with arrays of planar cavities,” IET Microw. Antennas Propag. 10(11), 1174–1181 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

Gowda, V. R.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Multistatic microwave imaging with arrays of planar cavities,” IET Microw. Antennas Propag. 10(11), 1174–1181 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

Goyal, V. K.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

Guerci, R.

R. Guerci and et al.., “Next generation affordable smart antennas,” Microw. J. (Int. Ed.) 57, 24 (2014).

Gurbuz, O. D.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Hobson, M. P.

Horisaki, R.

Hunt, J.

Imani, M. F.

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

Inac, O.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Jonathan, P.

Juesas, J. H.

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2016).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Kempel, L. C.

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 543–550.
[Crossref]

Kharkovsky, S.

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[Crossref]

Kim, E. S.

Kirmani, A.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

Ku, B. H.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Kundtz, N.

N. Kundtz, “Next generation communications for next generation satellites,” Microw. J. (Int. Ed.) 57(8), 56 (2014).

Larouche, S.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

Las-Heras, F.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Laviada, J.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Lee, B. G.

Lee, J. J.

Lee, J. S.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Lim, S.

Lipworth, G.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

Livingstone, B.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

Marks, D. L.

D. L. Marks, O. Yurduseven, and D. R. Smith, “Hollow Cavity Metasurface Aperture Antennas and Their Application to Frequency Diverse Imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for multiple-input-multiple-output (MIMO) radar imaging,” IEEE Access 4, 1796–1809 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express 17(15), 13040–13049 (2009).
[Crossref] [PubMed]

Martinez-Lorenzo, J. A.

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2016).
[Crossref]

Martinez-Lorenzo, J. A. A.

J. A. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Martini, A.

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
[Crossref]

Massa, A.

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
[Crossref]

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[Crossref]

McCombe, J.

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Miau, D.

Mrozack, A.

Nauwelaers, B.

Nayar, S. K.

Nikolova, N. K.

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
[Crossref]

Ocket, I.

Odabasi, H.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

Ozdemir, C.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Padgett, M. J.

Padilla, W. J.

Pastorino, M.

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
[Crossref]

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[Crossref]

Peabody, J. E.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 551–558.
[Crossref]

Pedross-Engel, A.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Qi, F.

Quivira, F.

J. A. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Ralston, T. S.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 551–558.
[Crossref]

Rappaport, C. M.

J. A. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Rebeiz, G. M.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Reynolds, M. S.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

Rosani, A.

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
[Crossref]

Rose, A.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

Rothwell, E. J.

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 543–550.
[Crossref]

Saklatvala, G.

Schejbal, V.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

Schmalenberg, P.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Schreurs, D.

Shapiro, J. H.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Shin, D.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

Shin, D. H.

Shiozaki, K.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Shrekenhamer, D.

Sleasman, T.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Smith, D.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

Smith, D. R.

D. L. Marks, O. Yurduseven, and D. R. Smith, “Hollow Cavity Metasurface Aperture Antennas and Their Application to Frequency Diverse Imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
[Crossref]

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for multiple-input-multiple-output (MIMO) radar imaging,” IEEE Access 4, 1796–1809 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
[Crossref] [PubMed]

O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Multistatic microwave imaging with arrays of planar cavities,” IET Microw. Antennas Propag. 10(11), 1174–1181 (2016).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

J. Hunt, J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, “Metamaterial microwave holographic imaging system,” J. Opt. Soc. Am. A 31(10), 2109–2119 (2014).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” J. Opt. Soc. Am. A 30(8), 1603–1612 (2013).
[Crossref] [PubMed]

Sun, B.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tan, C. W.

Temme, D. H.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Trofatter, K. P.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

Trofatter, P.

Urzhumov, Y.

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

Vertiy, A. A.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Wang, Y.

Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Remote Sens. 50(5), 1986–2000 (2012).
[Crossref]

Watts, C. M.

Welsh, S. S.

Withington, S.

Yarovoy, A. G.

X. Zhuge and A. G. Yarovoy, “A Sparse Aperture MIMO-SAR-Based UWB Imaging System for Concealed Weapon Detection,” IEEE Trans. Geosci. Remote Sens. 49(1), 509–518 (2011).
[Crossref]

Yigit, E.

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

Yurduseven, O.

D. L. Marks, O. Yurduseven, and D. R. Smith, “Hollow Cavity Metasurface Aperture Antennas and Their Application to Frequency Diverse Imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
[Crossref]

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for multiple-input-multiple-output (MIMO) radar imaging,” IEEE Access 4, 1796–1809 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Multistatic microwave imaging with arrays of planar cavities,” IET Microw. Antennas Propag. 10(11), 1174–1181 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

O. Yurduseven, “Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems,” Prog. Electromagnetics Res. 146, 7–13 (2014).
[Crossref]

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

Zhuge, X.

X. Zhuge and A. G. Yarovoy, “A Sparse Aperture MIMO-SAR-Based UWB Imaging System for Concealed Weapon Detection,” IEEE Trans. Geosci. Remote Sens. 49(1), 509–518 (2011).
[Crossref]

Zoughi, R.

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[Crossref]

Zvolensky, T.

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Fromenteze, O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and D. R. Smith, “Computational imaging using a mode-mixing cavity at microwave frequencies,” Appl. Phys. Lett. 106(19), 194104 (2015).
[Crossref]

IEEE Access (3)

O. Yurduseven, J. N. Gollub, K. P. Trofatter, D. L. Marks, A. Rose, and D. R. Smith, “Software calibration of a frequency-diverse, multistatic, computational imaging system,” IEEE Access 4, 2488–2497 (2016).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for multiple-input-multiple-output (MIMO) radar imaging,” IEEE Access 4, 1796–1809 (2017).
[Crossref]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

IEEE Antennas Propag. Mag. (1)

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

R. K. Amineh, J. McCombe, and N. K. Nikolova, “Microwave holographic imaging using the antenna phaseless radiation pattern,” IEEE Antennas Wirel. Propag. Lett. 11, 1529–1532 (2012).
[Crossref]

J. A. Martinez-Lorenzo, J. H. Juesas, and W. Blackwell, “A single-transceiver compressive reflector antenna for high-sensing-capacity imaging,” IEEE Antennas Wirel. Propag. Lett. 15, 968–971 (2016).
[Crossref]

IEEE Instrum. Meas. Mag. (1)

S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation - Overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007).
[Crossref]

IEEE Microw. Mag. (1)

N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microw. Mag. 12(7), 78–94 (2011).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

O. Yurduseven, V. R. Gowda, J. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

M. Fallahpour, J. T. Case, M. T. Ghasr, and R. Zoughi, “Piecewise and Wiener filter-based SAR techniques for monostatic microwave imaging of layered structures,” IEEE Trans. Antenn. Propag. 62(1), 282–294 (2014).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless synthetic aperture radar with efficient sampling for broadband near-field imaging: theory and validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

S. Caorsi, A. Massa, M. Pastorino, and M. Donelli, “Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures,” IEEE Trans. Antenn. Propag. 52(6), 1386–1397 (2004).
[Crossref]

IEEE Trans. Computational Imaging (1)

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

Y. Wang and A. E. Fathy, “Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach,” IEEE Trans. Geosci. Remote Sens. 50(5), 1986–2000 (2012).
[Crossref]

X. Zhuge and A. G. Yarovoy, “A Sparse Aperture MIMO-SAR-Based UWB Imaging System for Concealed Weapon Detection,” IEEE Trans. Geosci. Remote Sens. 49(1), 509–518 (2011).
[Crossref]

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16(12), 2992–3004 (2007).
[Crossref] [PubMed]

IEEE Trans. Instrum. Meas. (1)

M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An Innovative Microwave-Imaging Technique for Nondestructive Evaluation: Applications to Civil Structures Monitoring and Biological Bodies Inspection,” IEEE Trans. Instrum. Meas. 55(6), 1878–1884 (2006).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

IET Microw. Antennas Propag. (1)

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Multistatic microwave imaging with arrays of planar cavities,” IET Microw. Antennas Propag. 10(11), 1174–1181 (2016).
[Crossref]

J. Appl. Phys. (1)

D. R. Smith, V. R. Gowda, O. Yurduseven, S. Larouche, G. Lipworth, Y. Urzhumov, and M. S. Reynolds, “An Analysis of Beamed Wireless Power Transfer in the Fresnel Zone using a Dynamic, Metasurface Aperture,” J. Appl. Phys. 121(1), 014901 (2017).
[Crossref]

J. Opt. Soc. Am. A (6)

Linc. Lab. J. (1)

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Microw. J. (Int. Ed.) (3)

R. Guerci and et al.., “Next generation affordable smart antennas,” Microw. J. (Int. Ed.) 57, 24 (2014).

E. Brookner, “Metamaterial advances for radar and communications,” Microw. J. (Int. Ed.) 59, 22 (2016).

N. Kundtz, “Next generation communications for next generation satellites,” Microw. J. (Int. Ed.) 57(8), 56 (2014).

Opt. Express (5)

Prog. Electromagnetics Res. (5)

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

O. Yurduseven, “Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems,” Prog. Electromagnetics Res. 146, 7–13 (2014).
[Crossref]

M. Elsdon, O. Yurduseven, and D. Smith, “Early stage breast cancer detection using indirect microwave holography,” Prog. Electromagnetics Res. 143, 405–419 (2013).
[Crossref]

S. Demirci, H. Cetinkaya, E. Yigit, C. Ozdemir, and A. A. Vertiy, “A study on millimeter-wave imaging of concealed objects: application using back-projection algorithm,” Prog. Electromagnetics Res. 128, 457–477 (2012).
[Crossref]

J. A. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Sci. Rep. (1)

J. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Science (1)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Other (8)

D. J. Brady, Optical Imaging and Spectroscopy, Wiley, 2009.

O. Yurduseven, D. Marks, J. Gollub and D. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access, PP(99), 1–1 10.1109/ACCESS.2017.2712659

S. S. Ahmed, Electronic Microwave Imaging with Planar Multistatic Arrays (Logos Verlag Berlin GmbH, 2013).

Kymeta mTenna, https://www.kymetacorp.com/mtenna

M. E. S. A. Echodyne, http://echodyne.com/technology

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 551–558.
[Crossref]

G. L. Charvat, L. C. Kempel, E. J. Rothwell, and C. M. Coleman, “An ultrawideband (UWB) switched-antenna-array radar imaging system,” IEEE International Symposium on Phased Array Systems and Technology (2010), 543–550.
[Crossref]

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 1st Edition, 12–31, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1987.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Depiction of a hybrid imaging system consisting of a frequency-diverse aperture integrated with a dynamic holographic spotlight aperture. The frequency-diverse aperture images the entire scene with a point-scatter array target. For the presented example, the spotlight aperture consists of two individually beam-focusing holographic metasurface antennas imaging the highlighted point-scatters, labeled as on-axis and off-axis, respectively.

Fig. 2
Fig. 2

Depiction of a holographic metasurface antenna focusing along the optical axis. The aperture is discretized at λ/5 (unit cell size). The phase pattern is shown on the antenna aperture while the magnitude of fields is shown in focus region. Not drawn to scale.

Fig. 3
Fig. 3

Frequency-diverse aperture imaging a point-scatter array target. The orientation of the target is not shown in perspective; the normal to the plane of the array lies along the x-axis.

Fig. 4
Fig. 4

Images of the point-scatter array reconstructed using the frequency-diverse imager (a) PSF pattern (b) FWHM analysis of the PSF pattern along the principle axes.

Fig. 5
Fig. 5

Phase patterns of the transmit and receive holographic antennas focusing at d = 1 m along the x-axis (a) receive antennas (b) transmit antennas. The point target to be imaged is positioned at the focal point and shown as a blue circle.

Fig. 6
Fig. 6

Images of a point target reconstructed using the holographic spotlight imager (a) PSF pattern (matched-filter reconstruction) (b) PSF pattern (least-squares reconstruction) (c) FWHM analysis of the PSF patterns along the y- and z-axes (d) expanded view of the main lobes of the PSF patterns.

Fig. 7
Fig. 7

Phase patterns of the transmit and receive holographic antennas focusing at x = 1 m, y = 0.3 m, z = 0.3 m (a) receive antennas (b) transmit antennas. The point target to be imaged is positioned at the focal point and shown as a blue circle.

Fig. 8
Fig. 8

Images of a point target reconstructed using the holographic spotlight imager (a) PSF pattern (b) FWHM analysis of the PSF pattern along the y- and z-axes.

Fig. 9
Fig. 9

Reconstructed images of a point target using finite size non-focusing apertures (a) PSF pattern (b) FWHM analysis of the PSF pattern along the y- and z-axes.

Fig. 10
Fig. 10

An aperture synthesized using an array of wide-beamwidth transmit and receive point sources imaging a point target (a) transmit sources (b) receive sources (c) PSF pattern (d) FWHM analysis of the PSF pattern along the y- and z-axes.

Fig. 11
Fig. 11

Sparse Mills-Cross spotlight aperture imaging a point target (a) system layout (b) field distribution on the holographic metasurface antennas to focus at the point target.

Fig. 12
Fig. 12

Reconstructed images of a point target using sparse Mills-Cross holographic spotlight imager (a) PSF pattern (b) FWHM analysis of the PSF pattern along the y- and z-axes.

Fig. 13
Fig. 13

W-band sparse Mills-Cross spotlight imager integrated into the K-band frequency-diverse aperture for personnel-screening. The location and size of the human-size object with respect to the aperture is not drawn to scale.

Fig. 14
Fig. 14

Reconstructed images and analysis of two randomly selected measurement modes (a) low-resolution image of the human-size object reconstructed using the frequency-diverse system – the detected phantom is highlighted (b) image of the gun phantom reconstructed using the spotlight aperture (c) image of the gun phantom using the frequency-diverse aperture (d) selected holographic antennas within the spotlight aperture for mode analysis (e) measurement mode number 1 produced by Tx1 and Rx1 (f) measurement mode number 135 produced by Tx15 and Rx9.

Fig. 15
Fig. 15

Mills-Cross spotlight aperture with the receive holographic antennas replaced by simple point source antennas (vertical row) (a) system layout (b) reconstructed image of the gun phantom; Mills-Cross layout synthesized using only transmit (black) and receive (orange) point source antennas (c) system layout (d) reconstructed image of the gun phantom.

Fig. 16
Fig. 16

W-band extended spotlight imager integrated into the K-band frequency-diverse aperture (a) system layout (b) PSF patterns.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C hol = H spotlight / H ref
A AP = e jk(| r'r |) |r'r|
g=Hf+n

Metrics