Abstract

We show, for the first time to our knowledge, the role the heat accumulation plays on the evolution of ultra-short pulse laser-induced surface structures morphology when varying fluence, the number of scans and the repetition rate from 100 kHz up to 2 MHz. We demonstrate how to tailor the size of micro-spikes from nearly ten microns to several tens of microns by a systematic variation of both fluence and overlap. We believe our results will contribute to an in deep understanding of the mechanisms underlying laser surface structuration at high repetition rates.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Formation of laser induced periodic structures on stainless steel using multi-burst picosecond pulses

Xingsheng Wang, Chengyu Li, Chenbin Ma, Jun Feng, Wei Hong, and Zhengwei Zhang
Opt. Express 26(5) 6325-6330 (2018)

High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system

A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann
Opt. Express 16(12) 8958-8968 (2008)

Heat accumulation during pulsed laser materials processing

Rudolf Weber, Thomas Graf, Peter Berger, Volkher Onuseit, Margit Wiedenmann, Christian Freitag, and Anne Feuer
Opt. Express 22(9) 11312-11324 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Kam, S. Bhattacharya, and J. Mazumder, “Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification,” J. Micromech. Microeng. 22(10), 105019 (2012).
    [Crossref]
  2. M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
    [Crossref]
  3. L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).
  4. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 1–4 (2008).
    [Crossref]
  5. J.-M. Guay, A. C. Lesina, J. Baxter, M. Charron, G. Côté, L. Ramunno, P. Berini, and A. Weck, “Enhanced plasmonic coloring of silver and formation of large laser-induced periodic surface structures using multi-burst picosecond pulses,” arXiv Prepr. 1609.04847, 1–8 (2016).
  6. J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
    [Crossref]
  7. E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7, 45114 (2017).
    [Crossref] [PubMed]
  8. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
    [Crossref]
  9. M. Faucon, A. Laffitte, J. Lopez, and R. Kling, “Surface blackening by laser texturing with high repetition rate femtosecond laser up to 1MHz,” Proc. SPIE 8972, 89721M (2014).
    [Crossref]
  10. S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).
  11. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [Crossref] [PubMed]
  12. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
    [Crossref]
  13. J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
    [Crossref]
  14. G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 1–14 (2012).
    [Crossref]
  15. G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
    [Crossref]
  16. G. Mincuzzi, L. Gemini, M. Faucon, and R. Kling, “Extending ultra-short pulse laser texturing over large area,” Appl. Surf. Sci. 386, 65–71 (2016).
    [Crossref]
  17. E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
    [Crossref]
  18. D. H. Kam, J. Mazumder, and J. Kim, “Conical microspike morphology formation and control on various metal surfaces using femtosecond laser pulse,” J. Laser Appl. 28(4), 042001 (2016).
    [Crossref]
  19. F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
    [Crossref] [PubMed]
  20. C. Hönninger and J. Akhil, “Femtosecond Lasers over 100 Watts industrial applications,” Laser Tech. J. 13(2), 56–59 (2016).
    [Crossref]
  21. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  22. N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).
  23. C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
    [Crossref]
  24. R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2016).
    [Crossref]
  25. F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).
  26. P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on Si O 2 Comparison of the agglomeration behavior of thin metallic films on SiO 2,” J. Vac. Sci. Technol. A 23, 1152 (2014).
  27. B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
    [Crossref] [PubMed]
  28. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
    [Crossref]
  29. F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, “Ultrashort pulse laser-induced texturing of stainless steel at 1 MHz and high average power : impact of process parameters,” Proc. SPIE 10092, 1–7 (2017).

2017 (4)

L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7, 45114 (2017).
[Crossref] [PubMed]

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, “Ultrashort pulse laser-induced texturing of stainless steel at 1 MHz and high average power : impact of process parameters,” Proc. SPIE 10092, 1–7 (2017).

2016 (4)

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2016).
[Crossref]

D. H. Kam, J. Mazumder, and J. Kim, “Conical microspike morphology formation and control on various metal surfaces using femtosecond laser pulse,” J. Laser Appl. 28(4), 042001 (2016).
[Crossref]

C. Hönninger and J. Akhil, “Femtosecond Lasers over 100 Watts industrial applications,” Laser Tech. J. 13(2), 56–59 (2016).
[Crossref]

G. Mincuzzi, L. Gemini, M. Faucon, and R. Kling, “Extending ultra-short pulse laser texturing over large area,” Appl. Surf. Sci. 386, 65–71 (2016).
[Crossref]

2015 (3)

E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
[Crossref]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
[Crossref] [PubMed]

2014 (5)

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).

P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on Si O 2 Comparison of the agglomeration behavior of thin metallic films on SiO 2,” J. Vac. Sci. Technol. A 23, 1152 (2014).

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

M. Faucon, A. Laffitte, J. Lopez, and R. Kling, “Surface blackening by laser texturing with high repetition rate femtosecond laser up to 1MHz,” Proc. SPIE 8972, 89721M (2014).
[Crossref]

2013 (1)

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).

2012 (3)

D. H. Kam, S. Bhattacharya, and J. Mazumder, “Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification,” J. Micromech. Microeng. 22(10), 105019 (2012).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 1–14 (2012).
[Crossref]

2010 (1)

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
[Crossref]

2009 (2)

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

2008 (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 1–4 (2008).
[Crossref]

2007 (1)

N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Akhil, J.

C. Hönninger and J. Akhil, “Femtosecond Lasers over 100 Watts industrial applications,” Laser Tech. J. 13(2), 56–59 (2016).
[Crossref]

Anastasiadis, S. H.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Ancona, A.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).

Barberoglou, M.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 1–14 (2012).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bauer, F.

Baumberg, J. J.

N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).

Bhattacharya, S.

D. H. Kam, S. Bhattacharya, and J. Mazumder, “Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification,” J. Micromech. Microeng. 22(10), 105019 (2012).
[Crossref]

Bock, M.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).

Bonse, J.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Braun, J. L.

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

Brodusch, N.

E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
[Crossref]

Charlton, M. D. B.

N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).

Coffey, K. R.

P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on Si O 2 Comparison of the agglomeration behavior of thin metallic films on SiO 2,” J. Vac. Sci. Technol. A 23, 1152 (2014).

Das, S. K.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Di Niso, F.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).

Donovan, B. F.

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

Dufft, D.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fang, R.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2016).
[Crossref]

Faucon, M.

L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).

G. Mincuzzi, L. Gemini, M. Faucon, and R. Kling, “Extending ultra-short pulse laser texturing over large area,” Appl. Surf. Sci. 386, 65–71 (2016).
[Crossref]

M. Faucon, A. Laffitte, J. Lopez, and R. Kling, “Surface blackening by laser texturing with high repetition rate femtosecond laser up to 1MHz,” Proc. SPIE 8972, 89721M (2014).
[Crossref]

Fotakis, C.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7, 45114 (2017).
[Crossref] [PubMed]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 1–14 (2012).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Fraggelakis, F.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, “Ultrashort pulse laser-induced texturing of stainless steel at 1 MHz and high average power : impact of process parameters,” Proc. SPIE 10092, 1–7 (2017).

Gadkari, P. R.

P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on Si O 2 Comparison of the agglomeration behavior of thin metallic films on SiO 2,” J. Vac. Sci. Technol. A 23, 1152 (2014).

Gaskins, J. T.

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

Gaudiuso, C.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).

Gauvin, R.

E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
[Crossref]

Gemini, L.

L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).

G. Mincuzzi, L. Gemini, M. Faucon, and R. Kling, “Extending ultra-short pulse laser texturing over large area,” Appl. Surf. Sci. 386, 65–71 (2016).
[Crossref]

Giri, A.

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

Grunwald, R.

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).

Guo, C.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2016).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 1–4 (2008).
[Crossref]

Gupta, M. C.

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
[Crossref]

Hartelt, M.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

Hohm, S.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

Höhm, S.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

Hönninger, C.

C. Hönninger and J. Akhil, “Femtosecond Lasers over 100 Watts industrial applications,” Laser Tech. J. 13(2), 56–59 (2016).
[Crossref]

Hopkins, P. E.

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

Industriale, I.

L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).

Kam, D. H.

D. H. Kam, J. Mazumder, and J. Kim, “Conical microspike morphology formation and control on various metal surfaces using femtosecond laser pulse,” J. Laser Appl. 28(4), 042001 (2016).
[Crossref]

D. H. Kam, S. Bhattacharya, and J. Mazumder, “Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification,” J. Micromech. Microeng. 22(10), 105019 (2012).
[Crossref]

Kiedrowski, T.

Kietzig, A. M.

E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
[Crossref]

Kim, J.

D. H. Kam, J. Mazumder, and J. Kim, “Conical microspike morphology formation and control on various metal surfaces using femtosecond laser pulse,” J. Laser Appl. 28(4), 042001 (2016).
[Crossref]

Kling, R.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, “Ultrashort pulse laser-induced texturing of stainless steel at 1 MHz and high average power : impact of process parameters,” Proc. SPIE 10092, 1–7 (2017).

L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).

G. Mincuzzi, L. Gemini, M. Faucon, and R. Kling, “Extending ultra-short pulse laser texturing over large area,” Appl. Surf. Sci. 386, 65–71 (2016).
[Crossref]

M. Faucon, A. Laffitte, J. Lopez, and R. Kling, “Surface blackening by laser texturing with high repetition rate femtosecond laser up to 1MHz,” Proc. SPIE 8972, 89721M (2014).
[Crossref]

Koter, R.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

Kruger, J.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Krüger, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

Laffitte, A.

M. Faucon, A. Laffitte, J. Lopez, and R. Kling, “Surface blackening by laser texturing with high repetition rate femtosecond laser up to 1MHz,” Proc. SPIE 8972, 89721M (2014).
[Crossref]

Ling, E. J. Y.

E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
[Crossref]

Lopez, J.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, “Ultrashort pulse laser-induced texturing of stainless steel at 1 MHz and high average power : impact of process parameters,” Proc. SPIE 10092, 1–7 (2017).

M. Faucon, A. Laffitte, J. Lopez, and R. Kling, “Surface blackening by laser texturing with high repetition rate femtosecond laser up to 1MHz,” Proc. SPIE 8972, 89721M (2014).
[Crossref]

Loukakos, P. A.

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 1–14 (2012).
[Crossref]

Lugarà, P. M.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).

Manek-hönninger, I.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, “Ultrashort pulse laser-induced texturing of stainless steel at 1 MHz and high average power : impact of process parameters,” Proc. SPIE 10092, 1–7 (2017).

Manousaki, A.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7, 45114 (2017).
[Crossref] [PubMed]

Mazumder, J.

D. H. Kam, J. Mazumder, and J. Kim, “Conical microspike morphology formation and control on various metal surfaces using femtosecond laser pulse,” J. Laser Appl. 28(4), 042001 (2016).
[Crossref]

D. H. Kam, S. Bhattacharya, and J. Mazumder, “Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification,” J. Micromech. Microeng. 22(10), 105019 (2012).
[Crossref]

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Michalowski, A.

Mincuzzi, G.

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, “Ultrashort pulse laser-induced texturing of stainless steel at 1 MHz and high average power : impact of process parameters,” Proc. SPIE 10092, 1–7 (2017).

G. Mincuzzi, L. Gemini, M. Faucon, and R. Kling, “Extending ultra-short pulse laser texturing over large area,” Appl. Surf. Sci. 386, 65–71 (2016).
[Crossref]

Mitterrand, R. F.

L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).

Nayak, B. K.

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
[Crossref]

Netti, M. C.

N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).

Nolte, S.

Olson, D. H.

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

Paolo, F.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).

Pentzien, S.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

Perney, N. M. B.

N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).

Petrova, R. V.

P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on Si O 2 Comparison of the agglomeration behavior of thin metallic films on SiO 2,” J. Vac. Sci. Technol. A 23, 1152 (2014).

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Romoli, L.

L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).

Rosenfeld, A.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

Saïd, J.

E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
[Crossref]

Servio, P.

E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
[Crossref]

Sibillano, T.

F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Skoulas, E.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7, 45114 (2017).
[Crossref] [PubMed]

Spaltmann, D.

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

Spanakis, E.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Stratakis, E.

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7, 45114 (2017).
[Crossref] [PubMed]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 1–14 (2012).
[Crossref]

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Tang, A.

N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).

Todi, R. M.

P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on Si O 2 Comparison of the agglomeration behavior of thin metallic films on SiO 2,” J. Vac. Sci. Technol. A 23, 1152 (2014).

Tomko, J. A.

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

Tsibidis, G. D.

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 1–14 (2012).
[Crossref]

Tzanetakis, P.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Vorobyev, A.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2016).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 1–4 (2008).
[Crossref]

Warren, A. P.

P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on Si O 2 Comparison of the agglomeration behavior of thin metallic films on SiO 2,” J. Vac. Sci. Technol. A 23, 1152 (2014).

Wu, C.

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

Zhigilei, L. V.

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Zoorob, M. E.

N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).

Zorba, V.

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 1–4 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Hohm, A. Rosenfeld, and J. Kruger, “Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications,” Appl. Phys., A Mater. Sci. Process. 117(1), 103–110 (2014).
[Crossref]

C. Wu and L. V. Zhigilei, “Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations,” Appl. Phys., A Mater. Sci. Process. 114(1), 11–32 (2014).
[Crossref]

Appl. Surf. Sci. (3)

M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S. H. Anastasiadis, and C. Fotakis, “Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon,” Appl. Surf. Sci. 255(10), 5425–5429 (2009).
[Crossref]

G. Mincuzzi, L. Gemini, M. Faucon, and R. Kling, “Extending ultra-short pulse laser texturing over large area,” Appl. Surf. Sci. 386, 65–71 (2016).
[Crossref]

E. J. Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, and A. M. Kietzig, “Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium,” Appl. Surf. Sci. 353, 512–521 (2015).
[Crossref]

J. Appl. Phys. (3)

S. K. Das, D. Dufft, A. Rosenfeld, J. Bonse, M. Bock, and R. Grunwald, “Femtosecond-laser-induced quasiperiodic nanostructures on TiO 2 surfaces,” J. Appl. Phys. 105, 084912 (2013).

J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106(10), 104910 (2009).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Laser Appl. (1)

D. H. Kam, J. Mazumder, and J. Kim, “Conical microspike morphology formation and control on various metal surfaces using femtosecond laser pulse,” J. Laser Appl. 28(4), 042001 (2016).
[Crossref]

J. Micromech. Microeng. (1)

D. H. Kam, S. Bhattacharya, and J. Mazumder, “Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification,” J. Micromech. Microeng. 22(10), 105019 (2012).
[Crossref]

J. Vac. Sci. Technol. A (1)

P. R. Gadkari, A. P. Warren, R. M. Todi, R. V. Petrova, and K. R. Coffey, “Comparison of the agglomeration behavior of thin metallic films on Si O 2 Comparison of the agglomeration behavior of thin metallic films on SiO 2,” J. Vac. Sci. Technol. A 23, 1152 (2014).

Laser Tech. J. (1)

C. Hönninger and J. Akhil, “Femtosecond Lasers over 100 Watts industrial applications,” Laser Tech. J. 13(2), 56–59 (2016).
[Crossref]

Light Sci. Appl. (1)

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light Sci. Appl. 6(3), e16256 (2016).
[Crossref]

Nat. Mater. (1)

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (2)

F. Di Niso, C. Gaudiuso, T. Sibillano, F. Paolo, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. Express 22, 2230–2236 (2014).

F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
[Crossref]

Phys. Rev. B (4)

N. M. B. Perney, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 7, 1–5 (2007).

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. Van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B 27(2), 1141–1154 (1983).
[Crossref]

G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis, and C. Fotakis, “Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions,” Phys. Rev. B 86(11), 1–14 (2012).
[Crossref]

G. D. Tsibidis, C. Fotakis, and E. Stratakis, “From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures,” Phys. Rev. B 92(4), 041405 (2015).
[Crossref]

Proc. SPIE (3)

M. Faucon, A. Laffitte, J. Lopez, and R. Kling, “Surface blackening by laser texturing with high repetition rate femtosecond laser up to 1MHz,” Proc. SPIE 8972, 89721M (2014).
[Crossref]

L. Gemini, M. Faucon, L. Romoli, R. Kling, R. F. Mitterrand, and I. Industriale, “High throughput laser texturing of super-hydrophobic surfaces on steel,” Proc. SPIE 10092, 1–6 (2017).

F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-hönninger, and R. Kling, “Ultrashort pulse laser-induced texturing of stainless steel at 1 MHz and high average power : impact of process parameters,” Proc. SPIE 10092, 1–7 (2017).

Rev. Sci. Instrum. (1)

B. F. Donovan, J. A. Tomko, A. Giri, D. H. Olson, J. L. Braun, J. T. Gaskins, P. E. Hopkins, J. T. Gaskins, and P. E. Hopkins, “Localized thin film damage sourced and monitored via pump-probe modulated thermoreflectance,” Rev. Sci. Instrum. 88(5), 054903 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

E. Skoulas, A. Manousaki, C. Fotakis, and E. Stratakis, “Biomimetic surface structuring using cylindrical vector femtosecond laser beams,” Sci. Rep. 7, 45114 (2017).
[Crossref] [PubMed]

Other (1)

J.-M. Guay, A. C. Lesina, J. Baxter, M. Charron, G. Côté, L. Ramunno, P. Berini, and A. Weck, “Enhanced plasmonic coloring of silver and formation of large laser-induced periodic surface structures using multi-burst picosecond pulses,” arXiv Prepr. 1609.04847, 1–8 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM images of stainless steel surface obtained at different repetition rates as indicated. N indicates the number of scans in each column. The fluence Φ increases from top to bottom and is the same in each row. The overlap was fixed to 70 pps. Different types of nanostructures are indicated with different colour frames.
Fig. 2
Fig. 2 SEM images showing the surface evolution at 100 kHz obtained with Φ = 0.19 J/cm2 and pps = 70. N indicates the number of scans. The red arrow shows the polarization direction, and the white dotted arrow indicates the scanning axis.
Fig. 3
Fig. 3 SEM images showing the surface evolution at 2 MHz obtained with Φ = 0.19 J/cm2 and pps = 70. N indicates the number of scans. The red arrow shows the polarization direction.
Fig. 4
Fig. 4 SEM images (right) and graph (left) illustrating the continuing change of the equivalent diameter δ with increasing fluence. The SEM images correspond to the data shown on the graph and where obtained at a 45° tilt. The fluence values are inserted in the corresponding SEM images.
Fig. 5
Fig. 5 Evolution of average equivalent spike diameter (δ) under successive scan irradiation for different overlaps and repetition rates. On the left side, the results obtained with f = 1 MHz, and on the right side those obtained for f = 2 MHz are shown. Different shapes indicate different overlaps. The fluence was constant in all cases (Φ = 0.19 J/cm2).

Tables (1)

Tables Icon

Table 1 Summary of the experimental values used

Metrics