Abstract

The integration of periodic nanodisk arrays into the channel of a light-emitting field-effect transistor leads to enhanced and directional electroluminescence from thin films of purified semiconducting single-walled carbon nanotubes. The maximum enhancement wavelength is tunable across the near-infrared and is directly linked to the periodicity of the arrays. Numerical calculations confirm the role of increased local electric fields in the observed emission modification. Large current densities are easily achieved due to the high charge carrier mobilities of carbon nanotubes and will facilitate new electrically driven plasmonic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices

Martin H.P. Pfeiffer, Ninette Stürzl, Christoph W. Marquardt, Michael Engel, Simone Dehm, Frank Hennrich, Manfred M. Kappes, Uli Lemmer, and Ralph Krupke
Opt. Express 19(S6) A1184-A1189 (2011)

Carbon nanotube arrays based high-performance infrared photodetector [Invited]

Qingsheng Zeng, Sheng Wang, Leijing Yang, Zhenxing Wang, Tian Pei, Zhiyong Zhang, Lian-Mao Peng, Weiwei Zhou, Jie Liu, Weiya Zhou, and Sishen Xie
Opt. Mater. Express 2(6) 839-848 (2012)

The polarized carbon nanotube thin film LED

Megumi Kinoshita, Mathias Steiner, Michael Engel, Joshua P. Small, Alexander A. Green, Mark C. Hersam, Ralph Krupke, Emilio E. Mendez, and Phaedon Avouris
Opt. Express 18(25) 25738-25745 (2010)

References

  • View by:
  • |
  • |
  • |

  1. P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
    [Crossref] [PubMed]
  2. R. B. Weisman and S. M. Bachilo, “Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot,” Nano Lett. 3(9), 1235–1238 (2003).
    [Crossref]
  3. S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
    [Crossref] [PubMed]
  4. F. Jakubka, S. B. Grimm, Y. Zakharko, F. Gannott, and J. Zaumseil, “Trion Electroluminescence from Semiconducting Carbon Nanotubes,” ACS Nano 8(8), 8477–8486 (2014).
    [Crossref] [PubMed]
  5. J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
    [Crossref] [PubMed]
  6. H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
    [Crossref] [PubMed]
  7. M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nat. Nanotechnol. 3(7), 387–394 (2008).
    [Crossref] [PubMed]
  8. Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
    [Crossref]
  9. X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10(8), 671–675 (2015).
    [Crossref] [PubMed]
  10. F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
    [Crossref]
  11. R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
    [Crossref] [PubMed]
  12. A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
    [Crossref] [PubMed]
  13. X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
    [Crossref] [PubMed]
  14. Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
    [Crossref] [PubMed]
  15. H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
    [Crossref]
  16. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid Photonic-Plasmonic Crystal Nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
    [Crossref] [PubMed]
  17. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [Crossref] [PubMed]
  18. L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
    [Crossref] [PubMed]
  19. J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
    [Crossref] [PubMed]
  20. H. Schokker and A. F. Koenderink, “Statistics of Randomized Plasmonic Lattice Lasers,” ACS Photonics 2(9), 1289–1297 (2015).
    [Crossref]
  21. Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
    [Crossref] [PubMed]
  22. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
    [Crossref] [PubMed]
  23. Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
    [Crossref] [PubMed]
  24. T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
    [Crossref] [PubMed]
  25. A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
    [Crossref]
  26. A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
    [Crossref]
  27. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
    [Crossref] [PubMed]
  28. G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  29. S. Choi, J. Deslippe, R. B. Capaz, and S. G. Louie, “An Explicit Formula for Optical Oscillator Strength of Excitons in Semiconducting Single-Walled Carbon Nanotubes: Family Behavior,” Nano Lett. 13(1), 54–58 (2013).
    [Crossref] [PubMed]
  30. A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
    [Crossref]
  31. S. R.-K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B Condens. Matter 407, 4081–4085 (2012).
  32. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
    [Crossref]
  33. M. S. Kang and C. D. Frisbie, “A pedagogical perspective on ambipolar FETs,” ChemPhysChem 14(8), 1547–1552 (2013).
    [Crossref] [PubMed]
  34. M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
    [Crossref]
  35. Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
    [Crossref] [PubMed]
  36. M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, “Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes,” ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016).
    [Crossref] [PubMed]
  37. B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
    [Crossref] [PubMed]
  38. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
    [Crossref] [PubMed]
  39. S. R.-K. Rodriguez, O. T. A. Janssen, G. Lozano, A. Omari, Z. Hens, and J. G. Rivas, “Near-field resonance at far-field-induced transparency in diffractive arrays of plasmonic nanorods,” Opt. Lett. 38(8), 1238–1240 (2013).
    [Crossref] [PubMed]
  40. R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
    [Crossref] [PubMed]
  41. M. Ramezani, G. Lozano, M. A. Verschuuren, and J. Gómez-Rivas, “Modified emission of extended light emitting layers by selective coupling to collective lattice resonances,” Phys. Rev. B 94(12), 125406 (2016).
    [Crossref]
  42. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
    [Crossref] [PubMed]
  43. V. Perebeinos and P. Avouris, “Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes,” Phys. Rev. Lett. 101(5), 057401 (2008).
    [Crossref] [PubMed]
  44. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2016 (11)

S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
[Crossref] [PubMed]

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, “Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes,” ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016).
[Crossref] [PubMed]

M. Ramezani, G. Lozano, M. A. Verschuuren, and J. Gómez-Rivas, “Modified emission of extended light emitting layers by selective coupling to collective lattice resonances,” Phys. Rev. B 94(12), 125406 (2016).
[Crossref]

2015 (4)

H. Schokker and A. F. Koenderink, “Statistics of Randomized Plasmonic Lattice Lasers,” ACS Photonics 2(9), 1289–1297 (2015).
[Crossref]

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10(8), 671–675 (2015).
[Crossref] [PubMed]

2014 (5)

F. Jakubka, S. B. Grimm, Y. Zakharko, F. Gannott, and J. Zaumseil, “Trion Electroluminescence from Semiconducting Carbon Nanotubes,” ACS Nano 8(8), 8477–8486 (2014).
[Crossref] [PubMed]

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

2013 (6)

M. S. Kang and C. D. Frisbie, “A pedagogical perspective on ambipolar FETs,” ChemPhysChem 14(8), 1547–1552 (2013).
[Crossref] [PubMed]

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Choi, J. Deslippe, R. B. Capaz, and S. G. Louie, “An Explicit Formula for Optical Oscillator Strength of Excitons in Semiconducting Single-Walled Carbon Nanotubes: Family Behavior,” Nano Lett. 13(1), 54–58 (2013).
[Crossref] [PubMed]

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
[Crossref]

S. R.-K. Rodriguez, O. T. A. Janssen, G. Lozano, A. Omari, Z. Hens, and J. G. Rivas, “Near-field resonance at far-field-induced transparency in diffractive arrays of plasmonic nanorods,” Opt. Lett. 38(8), 1238–1240 (2013).
[Crossref] [PubMed]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

2012 (2)

S. R.-K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B Condens. Matter 407, 4081–4085 (2012).

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

2011 (4)

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid Photonic-Plasmonic Crystal Nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

2010 (1)

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

2009 (1)

M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
[Crossref]

2008 (3)

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nat. Nanotechnol. 3(7), 387–394 (2008).
[Crossref] [PubMed]

V. Perebeinos and P. Avouris, “Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes,” Phys. Rev. Lett. 101(5), 057401 (2008).
[Crossref] [PubMed]

2007 (1)

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[Crossref] [PubMed]

2005 (1)

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

2004 (3)

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
[Crossref] [PubMed]

2003 (1)

R. B. Weisman and S. M. Bachilo, “Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot,” Nano Lett. 3(9), 1235–1238 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Aksu, S.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Alivisatos, A. P.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Altug, H.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Amsharov, K.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Arakawa, Y.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Asatryan, A. A.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
[Crossref] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Avouris, P.

V. Perebeinos and P. Avouris, “Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes,” Phys. Rev. Lett. 101(5), 057401 (2008).
[Crossref] [PubMed]

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[Crossref] [PubMed]

Baca, A. J.

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

Bachilo, S. M.

R. B. Weisman and S. M. Bachilo, “Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot,” Nano Lett. 3(9), 1235–1238 (2003).
[Crossref]

Backes, C.

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

Baldwin, J. K. S.

X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10(8), 671–675 (2015).
[Crossref] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Baumberg, J. J.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Berrier, A.

S. R.-K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B Condens. Matter 407, 4081–4085 (2012).

Besga, B.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Botten, L. C.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
[Crossref] [PubMed]

Busson, M. P.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Cambrea, L. R.

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

Capaz, R. B.

S. Choi, J. Deslippe, R. B. Capaz, and S. G. Louie, “An Explicit Formula for Optical Oscillator Strength of Excitons in Semiconducting Single-Walled Carbon Nanotubes: Family Behavior,” Nano Lett. 13(1), 54–58 (2013).
[Crossref] [PubMed]

Cetin, A. E.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Chang, T.-Y.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Chassagneux, Y.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Chen, Z.

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[Crossref] [PubMed]

Choi, S.

S. Choi, J. Deslippe, R. B. Capaz, and S. G. Louie, “An Explicit Formula for Optical Oscillator Strength of Excitons in Semiconducting Single-Walled Carbon Nanotubes: Family Behavior,” Nano Lett. 13(1), 54–58 (2013).
[Crossref] [PubMed]

Christ, A.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Co, D. T.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

De Sterke, C. M.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
[Crossref] [PubMed]

Deeb, C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Deslippe, J.

S. Choi, J. Deslippe, R. B. Capaz, and S. G. Louie, “An Explicit Formula for Optical Oscillator Strength of Excitons in Semiconducting Single-Walled Carbon Nanotubes: Family Behavior,” Nano Lett. 13(1), 54–58 (2013).
[Crossref] [PubMed]

Dienel, T.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Doeleman, H. M.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

Doorn, S. K.

X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10(8), 671–675 (2015).
[Crossref] [PubMed]

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

Dridi, M.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Duque, J. G.

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

Eckstein, R.

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

Eksioglu, Y.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Estève, J.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Etezadi, D.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Fasel, R.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Flavel, B. S.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

Frisbie, C. D.

M. S. Kang and C. D. Frisbie, “A pedagogical perspective on ambipolar FETs,” ChemPhysChem 14(8), 1547–1552 (2013).
[Crossref] [PubMed]

Fütterling, V.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Galarreta, B. C.

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Gannott, F.

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, “Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes,” ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016).
[Crossref] [PubMed]

F. Jakubka, S. B. Grimm, Y. Zakharko, F. Gannott, and J. Zaumseil, “Trion Electroluminescence from Semiconducting Carbon Nanotubes,” ACS Nano 8(8), 8477–8486 (2014).
[Crossref] [PubMed]

Gather, M. C.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Giessen, H.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
[Crossref]

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Gippius, N. A.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Gómez Rivas, J.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. R.-K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B Condens. Matter 407, 4081–4085 (2012).

Gómez-Rivas, J.

M. Ramezani, G. Lozano, M. A. Verschuuren, and J. Gómez-Rivas, “Modified emission of extended light emitting layers by selective coupling to collective lattice resonances,” Phys. Rev. B 94(12), 125406 (2016).
[Crossref]

Graf, A.

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

Grimm, S. B.

F. Jakubka, S. B. Grimm, Y. Zakharko, F. Gannott, and J. Zaumseil, “Trion Electroluminescence from Semiconducting Carbon Nanotubes,” ACS Nano 8(8), 8477–8486 (2014).
[Crossref] [PubMed]

Gröning, O.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Gwinner, M. C.

M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
[Crossref]

Hähnlein, B.

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Hakala, T. K.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Hartmann, N. F.

X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10(8), 671–675 (2015).
[Crossref] [PubMed]

Held, M.

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

Hennrich, F.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Hens, Z.

Hentschel, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Hernandez-Sosa, G.

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

Hersam, M. C.

M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nat. Nanotechnol. 3(7), 387–394 (2008).
[Crossref] [PubMed]

Hoang, T. B.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Htoon, H.

X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10(8), 671–675 (2015).
[Crossref] [PubMed]

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

Huang, M.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Huntington, M. D.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Imamura, S.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Ishii, A.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Ishikawa, A.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid Photonic-Plasmonic Crystal Nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Iwamoto, S.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Iwamura, M.

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
[Crossref]

Jakubka, F.

F. Jakubka, S. B. Grimm, Y. Zakharko, F. Gannott, and J. Zaumseil, “Trion Electroluminescence from Semiconducting Carbon Nanotubes,” ACS Nano 8(8), 8477–8486 (2014).
[Crossref] [PubMed]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Jansen, M.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Jansen, O. T.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Janssen, O. T. A.

Jeantet, A.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Johnson, L.

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kang, M. S.

M. S. Kang and C. D. Frisbie, “A pedagogical perspective on ambipolar FETs,” ChemPhysChem 14(8), 1547–1552 (2013).
[Crossref] [PubMed]

Kappes, M. M.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Kataura, H.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Kato, Y. K.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Kawazoe, T.

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
[Crossref]

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Khasminskaya, S.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Khodabakhsh, S.

M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
[Crossref]

Kim, C. H.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Koenderink, A. F.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

H. Schokker and A. F. Koenderink, “Statistics of Randomized Plasmonic Lattice Lasers,” ACS Photonics 2(9), 1289–1297 (2015).
[Crossref]

Krupke, R.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Kuhl, J.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Lauret, J. S.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Liang, S.

S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
[Crossref] [PubMed]

Liu, H.

S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
[Crossref] [PubMed]

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Liu, N.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Liu, X.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Louie, S. G.

S. Choi, J. Deslippe, R. B. Capaz, and S. G. Louie, “An Explicit Formula for Optical Oscillator Strength of Excitons in Semiconducting Single-Walled Carbon Nanotubes: Family Behavior,” Nano Lett. 13(1), 54–58 (2013).
[Crossref] [PubMed]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

M. Ramezani, G. Lozano, M. A. Verschuuren, and J. Gómez-Rivas, “Modified emission of extended light emitting layers by selective coupling to collective lattice resonances,” Phys. Rev. B 94(12), 125406 (2016).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

S. R.-K. Rodriguez, O. T. A. Janssen, G. Lozano, A. Omari, Z. Hens, and J. G. Rivas, “Near-field resonance at far-field-induced transparency in diffractive arrays of plasmonic nanorods,” Opt. Lett. 38(8), 1238–1240 (2013).
[Crossref] [PubMed]

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Ma, X.

X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10(8), 671–675 (2015).
[Crossref] [PubMed]

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

Ma, Z.

S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
[Crossref] [PubMed]

Mahdavi, A.

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

Martikainen, J.-P.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Matsuda, K.

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
[Crossref]

McOrist, J.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
[Crossref] [PubMed]

McPhedran, R. C.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
[Crossref] [PubMed]

Mikkelsen, M. H.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Miura, R.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Miyauchi, Y.

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
[Crossref]

Moerland, R. J.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Montgomery, J. M.

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

Moran, M.

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

Mouri, S.

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
[Crossref]

Mueller, A.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Murai, S.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

Nicorovici, N. A.

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
[Crossref] [PubMed]

Nishide, D.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Odom, T. W.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Ohta, R.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Ohtsu, M.

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
[Crossref]

Omari, A.

Peng, L.-M.

S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
[Crossref] [PubMed]

Perebeinos, V.

V. Perebeinos and P. Avouris, “Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes,” Phys. Rev. Lett. 101(5), 057401 (2008).
[Crossref] [PubMed]

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[Crossref] [PubMed]

Pernice, W. H. P.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Peschel, U.

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

Pezoldt, J.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

Pfohl, M.

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

Pirruccio, G.

Piryatinski, A.

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

Pyatkov, F.

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Ramezani, M.

M. Ramezani, G. Lozano, M. A. Verschuuren, and J. Gómez-Rivas, “Modified emission of extended light emitting layers by selective coupling to collective lattice resonances,” Phys. Rev. B 94(12), 125406 (2016).
[Crossref]

Raynaud, C.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Reichel, J.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Rekola, H. T.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Rivas, J. G.

Rödlmeier, T.

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

Rodriguez, S. R.

Rodriguez, S. R.-K.

S. R.-K. Rodriguez, O. T. A. Janssen, G. Lozano, A. Omari, Z. Hens, and J. G. Rivas, “Near-field resonance at far-field-induced transparency in diffractive arrays of plasmonic nanorods,” Opt. Lett. 38(8), 1238–1240 (2013).
[Crossref] [PubMed]

S. R.-K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B Condens. Matter 407, 4081–4085 (2012).

Rodríguez, S. R.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Roslyak, O.

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

Rother, M.

M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, “Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes,” ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016).
[Crossref] [PubMed]

Roussignol, P.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Ruffieux, P.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Sadafi, F.-Z.

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

Saliba, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Sanchez-Valencia, J. R.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Schaafsma, M. C.

S. R.-K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B Condens. Matter 407, 4081–4085 (2012).

Schatz, G. C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

Schießl, S. P.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, “Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes,” ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016).
[Crossref] [PubMed]

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

Schokker, H.

H. Schokker and A. F. Koenderink, “Statistics of Randomized Plasmonic Lattice Lasers,” ACS Photonics 2(9), 1289–1297 (2015).
[Crossref]

Schweizer, H.

M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
[Crossref]

Shi, L.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Shi, P.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Shimada, T.

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

Shorubalko, I.

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Sirringhaus, H.

M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
[Crossref]

Song, M. H.

M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
[Crossref]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Suh, J. Y.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Tanaka, T.

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

Taylor, R. N. K.

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Törmä, P.

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

Truong, T. T.

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

Tsai, H.-Y.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Verhagen, E.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

Verschuuren, M. A.

M. Ramezani, G. Lozano, M. A. Verschuuren, and J. Gómez-Rivas, “Modified emission of extended light emitting layers by selective coupling to collective lattice resonances,” Phys. Rev. B 94(12), 125406 (2016).
[Crossref]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, S. R. Rodriguez, and J. G. Rivas, “Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides,” Opt. Express 21(4), 4250–4262 (2013).
[Crossref] [PubMed]

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Vogelgesang, R.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Voisin, C.

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Wang, F.

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

Wang, S.

S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
[Crossref] [PubMed]

Wasielewski, M. R.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Wei, N.

S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
[Crossref] [PubMed]

Weisman, R. B.

R. B. Weisman and S. M. Bachilo, “Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot,” Nano Lett. 3(9), 1235–1238 (2003).
[Crossref]

Yacoub, J.

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

Yang, A.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Yang, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid Photonic-Plasmonic Crystal Nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Yanik, A. A.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Yanik, M. F.

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Yin, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid Photonic-Plasmonic Crystal Nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Zakharko, Y.

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, “Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes,” ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016).
[Crossref] [PubMed]

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

F. Jakubka, S. B. Grimm, Y. Zakharko, F. Gannott, and J. Zaumseil, “Trion Electroluminescence from Semiconducting Carbon Nanotubes,” ACS Nano 8(8), 8477–8486 (2014).
[Crossref] [PubMed]

Zaumseil, J.

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, “Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes,” ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016).
[Crossref] [PubMed]

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

F. Jakubka, S. B. Grimm, Y. Zakharko, F. Gannott, and J. Zaumseil, “Trion Electroluminescence from Semiconducting Carbon Nanotubes,” ACS Nano 8(8), 8477–8486 (2014).
[Crossref] [PubMed]

Zentgraf, T.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

Zhang, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid Photonic-Plasmonic Crystal Nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Zhou, W.

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

M. Rother, S. P. Schießl, Y. Zakharko, F. Gannott, and J. Zaumseil, “Understanding Charge Transport in Mixed Networks of Semiconducting Carbon Nanotubes,” ACS Appl. Mater. Interfaces 8(8), 5571–5579 (2016).
[Crossref] [PubMed]

ACS Nano (3)

F. Jakubka, S. B. Grimm, Y. Zakharko, F. Gannott, and J. Zaumseil, “Trion Electroluminescence from Semiconducting Carbon Nanotubes,” ACS Nano 8(8), 8477–8486 (2014).
[Crossref] [PubMed]

X. Ma, O. Roslyak, F. Wang, J. G. Duque, A. Piryatinski, S. K. Doorn, and H. Htoon, “Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes,” ACS Nano 8(10), 10613–10620 (2014).
[Crossref] [PubMed]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid Photonic-Plasmonic Crystal Nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

ACS Photonics (5)

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–Cavity Hybrids: Matching Polar Opposites for Purcell Enhancements at Any Linewidth,” ACS Photonics 3(10), 1943–1951 (2016).
[Crossref]

Y. Zakharko, M. Held, F.-Z. Sadafi, F. Gannott, A. Mahdavi, U. Peschel, R. N. K. Taylor, and J. Zaumseil, “On-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position,” ACS Photonics 3(1), 1–7 (2016).
[Crossref] [PubMed]

H. Schokker and A. F. Koenderink, “Statistics of Randomized Plasmonic Lattice Lasers,” ACS Photonics 2(9), 1289–1297 (2015).
[Crossref]

Y. Zakharko, M. Held, A. Graf, T. Rödlmeier, R. Eckstein, G. Hernandez-Sosa, B. Hähnlein, J. Pezoldt, and J. Zaumseil, “Surface Lattice Resonances for Enhanced and Directional Electroluminescence at High Current Densities,” ACS Photonics 3(12), 2225–2230 (2016).
[Crossref] [PubMed]

A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, and H. Altug, “Plasmonic Nanohole Arrays on a Robust Hybrid Substrate for Highly Sensitive Label-Free Biosensing,” ACS Photonics 2(8), 1167–1174 (2015).
[Crossref]

Adv. Funct. Mater. (1)

M. C. Gwinner, S. Khodabakhsh, M. H. Song, H. Schweizer, H. Giessen, and H. Sirringhaus, “Integration of a Rib Waveguide Distributed Feedback Structure into a Light-Emitting Polymer Field-Effect Transistor,” Adv. Funct. Mater. 19(9), 1360–1370 (2009).
[Crossref]

Carbon (1)

A. Graf, Y. Zakharko, S. P. Schießl, C. Backes, M. Pfohl, B. S. Flavel, and J. Zaumseil, “Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing,” Carbon 105, 593–599 (2016).
[Crossref]

ChemPhysChem (1)

M. S. Kang and C. D. Frisbie, “A pedagogical perspective on ambipolar FETs,” ChemPhysChem 14(8), 1547–1552 (2013).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

A. J. Baca, J. M. Montgomery, L. R. Cambrea, M. Moran, L. Johnson, J. Yacoub, and T. T. Truong, “Optimization of nanopost plasmonic crystals for surface enhanced Raman scattering,” J. Phys. Chem. C 115(15), 7171–7178 (2011).
[Crossref]

Lab Chip (1)

T.-Y. Chang, M. Huang, A. A. Yanik, H.-Y. Tsai, P. Shi, S. Aksu, M. F. Yanik, and H. Altug, “Large-scale plasmonic microarrays for label-free high-throughput screening,” Lab Chip 11(21), 3596–3602 (2011).
[Crossref] [PubMed]

Light Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Nano Lett. (7)

S. Choi, J. Deslippe, R. B. Capaz, and S. G. Louie, “An Explicit Formula for Optical Oscillator Strength of Excitons in Semiconducting Single-Walled Carbon Nanotubes: Family Behavior,” Nano Lett. 13(1), 54–58 (2013).
[Crossref] [PubMed]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, and J. Zaumseil, “Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes,” Nano Lett. 16(10), 6504–6510 (2016).
[Crossref] [PubMed]

J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, and T. W. Odom, “Plasmonic Bowtie Nanolaser Arrays,” Nano Lett. 12(11), 5769–5774 (2012).
[Crossref] [PubMed]

Y. Zakharko, A. Graf, S. P. Schießl, B. Hähnlein, J. Pezoldt, M. C. Gather, and J. Zaumseil, “Broadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals,” Nano Lett. 16(5), 3278–3284 (2016).
[Crossref] [PubMed]

R. B. Weisman and S. M. Bachilo, “Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: An Empirical Kataura Plot,” Nano Lett. 3(9), 1235–1238 (2003).
[Crossref]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from Isolated to Collective Modes in Plasmonic Oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Nanoscale (1)

S. Liang, Z. Ma, N. Wei, H. Liu, S. Wang, and L.-M. Peng, “Solid state carbon nanotube device for controllable trion electroluminescence emission,” Nanoscale 8(12), 6761–6769 (2016).
[Crossref] [PubMed]

Nat. Commun. (3)

H. Liu, D. Nishide, T. Tanaka, and H. Kataura, “Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography,” Nat. Commun. 2, 309 (2011).
[Crossref] [PubMed]

R. Miura, S. Imamura, R. Ohta, A. Ishii, X. Liu, T. Shimada, S. Iwamoto, Y. Arakawa, and Y. K. Kato, “Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters,” Nat. Commun. 5, 5580 (2014).
[Crossref] [PubMed]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

P. Avouris, Z. Chen, and V. Perebeinos, “Carbon-based electronics,” Nat. Nanotechnol. 2(10), 605–615 (2007).
[Crossref] [PubMed]

M. C. Hersam, “Progress towards monodisperse single-walled carbon nanotubes,” Nat. Nanotechnol. 3(7), 387–394 (2008).
[Crossref] [PubMed]

X. Ma, N. F. Hartmann, J. K. S. Baldwin, S. K. Doorn, and H. Htoon, “Room-temperature single-photon generation from solitary dopants of carbon nanotubes,” Nat. Nanotechnol. 10(8), 671–675 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

F. Pyatkov, V. Fütterling, S. Khasminskaya, B. S. Flavel, F. Hennrich, M. M. Kappes, R. Krupke, and W. H. P. Pernice, “Cavity-enhanced light emission from electrically driven carbon nanotubes,” Nat. Photonics 10(6), 420–427 (2016).
[Crossref]

Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013).
[Crossref]

Nature (1)

J. R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, and R. Fasel, “Controlled synthesis of single-chirality carbon nanotubes,” Nature 512(7512), 61–64 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. B Condens. Matter (1)

S. R.-K. Rodriguez, M. C. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Phys. B Condens. Matter 407, 4081–4085 (2012).

Phys. Rev. B (3)

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70(12), 125113 (2004).
[Crossref]

M. Ramezani, G. Lozano, M. A. Verschuuren, and J. Gómez-Rivas, “Modified emission of extended light emitting layers by selective coupling to collective lattice resonances,” Phys. Rev. B 94(12), 125406 (2016).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

R. C. McPhedran, L. C. Botten, J. McOrist, A. A. Asatryan, C. M. De Sterke, and N. A. Nicorovici, “Density of states functions for photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(1), 016609 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

V. Perebeinos and P. Avouris, “Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes,” Phys. Rev. Lett. 101(5), 057401 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective Resonances in Gold Nanoparticle Arrays,” Phys. Rev. Lett. 101(14), 143902 (2008).
[Crossref] [PubMed]

L. Shi, T. K. Hakala, H. T. Rekola, J.-P. Martikainen, R. J. Moerland, and P. Törmä, “Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes,” Phys. Rev. Lett. 112(15), 153002 (2014).
[Crossref] [PubMed]

A. Jeantet, Y. Chassagneux, C. Raynaud, P. Roussignol, J. S. Lauret, B. Besga, J. Estève, J. Reichel, and C. Voisin, “Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime,” Phys. Rev. Lett. 116(24), 247402 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic geometry and operation principle of a top-gated light-emitting field-effect transistor (LEFET). (b, top) Dark-field optical micrograph of a LEFET under white-light illumination showing edges of source and drain electrodes and the channel filled with periodic arrays of gold nanodisks with 700, 850 and 1000 nm pitch (diameter 230, 265 and 300 nm, respectively) and their corresponding scanning electron micrographs. (c) Ambipolar transfer characteristics of LEFETs without (red) and with (blue) gold nanodisks arrays in the channel. (d) Photoluminescence excitation-emission map of the SWCNT layer within the LEFET (inset: representative atomic-force micrograph of the SWCNT layer).
Fig. 2
Fig. 2 Angle-resolved TE-polarized photo- and electroluminescence spectra (a) and enhancement factors (b) for regions with nanodisk arrays with pitch 700, 850 and 1000 nm (from left to right). Analytical dependencies for Rayleigh anomalies at negative angles are indicated with white dotted lines.
Fig. 3
Fig. 3 (a) (top) PL enhancement spectra of the region with 850 nm array pitch at emission angles θ = 0° (black) and θ = 10° (red). (bottom) Corresponding reflectivity spectra with scattered symbols representing experimental values and solid lines are smoothed data for clarity. (b) FDTD calculated area-averaged field intensity enhancement for various plane-substrate separations and angle of incidence θ = 0° (top) and θ = 10° (bottom) according to the simulation schematic in the inset.
Fig. 4
Fig. 4 Comparison of ambipolar output characteristics of LEFETs with (dotted lines) and without (solid lines) nanodisk arrays.
Fig. 5
Fig. 5 Ambipolar transfer characteristics of LEFETs with (dotted lines) and without (solid) gold nanodisks arrays at high (red) and low (blue) source-drain voltage. The latter show almost no hysteresis and high (~105-106) on/off ratios, thus corroborating the absence of any metallic carbon nanotubes.
Fig. 6
Fig. 6 Angle-resolved TM-polarized photo- and electroluminescence spectra (a) and enhancement factors (b) for regions with nanodisk array pitch 700, 850 and 1000 nm (from left to right). Analytical dependencies for Rayleigh anomalies at negative angles are indicated with white dotted lines.
Fig. 7
Fig. 7 Angle-resolved TE (a) and TM-polarized (b) photo- and electroluminescence spectra for channel region without nanodisk array.
Fig. 8
Fig. 8 Angle-resolved TE-polarized photoluminescence spectra and enhancement factors for regions with nanodisk array pitch 700, 850 and 1000 nm (from left to right). Detection plane was rotated by 90° to probe the short side of the arrays. Analytical dependencies for Rayleigh anomalies at negative angles are indicated with white dotted lines.
Fig. 9
Fig. 9 Normalized to E11 transition (top) and normalized differential (bottom) EL spectra of pure SWCNTs (purple) and emission from the regions with array pitch 700 (blue), 850 (green), and 1000 nm (orange) normal to the sample surface.
Fig. 10
Fig. 10 Angle- and polarization-resolved reflectivity spectra for regions with nanodisk array pitch 700, 850 and 1000 nm (from left to right). Analytical dependencies for Rayleigh anomalies at negative angles are indicated with white dotted lines.
Fig. 11
Fig. 11 (a) Angle-integrated TE (black) and TM-polarized (red) photoluminescence intensity of the SWCNTs without (dotted line) and with (solid) 850 nm pitch periodic array of gold nanodisks. (b) Corresponding photoluminescence enhancement values.
Fig. 12
Fig. 12 Calculated electric field intensity enhancement distribution (X−Y, X−Z, and Y−Z planes, from top to bottom, respectively) around a single gold nanodisk in a periodic array with pitch 850 nm at incidence angle of the plane wave θ = 0°, for λ = 1338 nm (a); θ = 10°, for λ = 1190 nm (b) and λ = 1427 nm (c).

Tables (1)

Tables Icon

Table 1 Extracted charge transport parameters (linear mobility µlin and threshold voltages VTh for holes and electrons) for LEFETs with and without nanodisk array in the channel.

Metrics