Abstract

A sensitive one-dimensional vector bending fiber-optic sensor based on self-referenced antiresonant reflecting guidance mechanism has been proposed and experimentally demonstrated. Two symmetric air holes in the hollow-core photonic crystal fiber (HCPCF) were infiltrated with refractive index matching liquids with different refractive indices, which formed a self-referenced anti-resonant reflecting optical waveguide. The bending of the HCPCF induces a wavelength shift of lossy dip in the transmission spectrum. Specially, the one-dimensional bending orientation can be detected through the wavelength interval between two lossy dips due to the asymmetric refractive index change of the silica cladding for two resonators. The bending sensitivities are 4.86 and −4.84 nm/m−1 for the curvatures of the 0° and 180° bending orientations in a bending range from 0 to 0.88 m−1, respectively. Moreover, the temperature and strain crosstalk of the proposed sensor can be eliminated through the compensated self-referenced anti-resonant reflecting optical waveguide. The proposed fiber sensor can be used for the monitoring of the structural health of infrastructures.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of refractive index and flow rate using graphene-coated optofluidic anti-resonant reflecting guidance

Ran Gao, Danfeng Lu, Jin Cheng, and Zhi-mei Qi
Opt. Express 25(23) 28731-28742 (2017)

Liquid modified photonic crystal fiber for simultaneous temperature and strain measurement

Chupao Lin, Ying Wang, Yijian Huang, Changrui Liao, Zhiyong Bai, Maoxiang Hou, Zhengyong Li, and Yiping Wang
Photon. Res. 5(2) 129-133 (2017)

Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure

Ke Tian, Gerald Farrell, Xianfan Wang, Wenlei Yang, Yifan Xin, Haidong Liang, Elfed Lewis, and Pengfei Wang
Opt. Express 25(16) 18885-18896 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Zheng, B. H. Shan, M. Ghandehari, and J. P. Ou, “Sensitivity characterization of cladding modes in long-period gratings photonic crystal fiber for structural health monitoring,” Measurement 72, 43–51 (2015).
    [Crossref]
  2. S. J. Zheng, Y. N. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuat B 176, 264–274 (2013).
    [Crossref]
  3. S. J. Zheng, “Long-period fiber grating moisture sensor with nano-structured coatings for structural health monitoring,” Struct. Health Monitor. Int. J. 14(2), 148–157 (2015).
    [Crossref]
  4. D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett. 41(6), 1201–1204 (2016).
    [Crossref] [PubMed]
  5. W. Cui, J. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Opt. Express 23(9), 11031–11036 (2015).
    [Crossref] [PubMed]
  6. T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
    [Crossref] [PubMed]
  7. P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
    [Crossref] [PubMed]
  8. G. Mao, T. Yuan, C. Guan, J. Yang, L. Chen, Z. Zhu, J. Shi, and L. Yuan, “Fiber Bragg grating sensors in hollow single- and two-core eccentric fibers,” Opt. Express 25(1), 144–150 (2017).
    [Crossref] [PubMed]
  9. Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
    [Crossref] [PubMed]
  10. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
    [Crossref] [PubMed]
  11. C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
    [Crossref] [PubMed]
  12. H. Qu, G. F. Yan, and M. Skorobogatiy, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Opt. Lett. 39(16), 4835–4838 (2014).
    [Crossref] [PubMed]
  13. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
    [Crossref] [PubMed]
  14. W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
    [Crossref]
  15. G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
    [Crossref] [PubMed]
  16. W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on inline fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
    [Crossref]
  17. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  18. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]
  19. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  20. B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
    [Crossref] [PubMed]
  21. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17(13), 2080–2085 (1978).
    [Crossref] [PubMed]
  22. Q. D. Huang, Y. Q. Yu, X. J. Li, X. Chen, Y. F. Zhang, W. Zhou, and C. L. Du, “Micro-bending vector sensor based on six-airhole grapefruit microstructure fiber using lateral offset splicing,” Opt. Express 23(3), 3010–3019 (2015).
    [Crossref] [PubMed]
  23. P. Saffari, T. Allsop, A. Adebayo, D. Webb, R. Haynes, and M. M. Roth, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508–3511 (2014).
    [Crossref] [PubMed]
  24. S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett. 37(10), 1610–1612 (2012).
    [Crossref] [PubMed]
  25. R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

2015 (5)

2014 (3)

2013 (2)

S. J. Zheng, Y. N. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuat B 176, 264–274 (2013).
[Crossref]

Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
[Crossref] [PubMed]

2012 (4)

2010 (3)

B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
[Crossref] [PubMed]

W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on inline fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

2009 (1)

2003 (1)

2002 (2)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

1978 (1)

Abeeluck, A. K.

Adebayo, A.

Ahn, T. J.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on inline fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Albert, J.

Allsop, T.

Amezcua Correa, R.

Amezcua-Correa, R.

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bai, Z.

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Chen, H. Z.

Chen, L.

Chen, T.

Chen, X.

Chu, J.

Cui, W.

de Sterke, C. M.

Dong, X.

Du, C.

Du, C. L.

Dunn, S. C.

Eggleton, B. J.

Feng, D.

Gao, R.

Gao, S.

Geng, P.

Ghandehari, M.

S. J. Zheng, B. H. Shan, M. Ghandehari, and J. P. Ou, “Sensitivity characterization of cladding modes in long-period gratings photonic crystal fiber for structural health monitoring,” Measurement 72, 43–51 (2015).
[Crossref]

Gong, H.

Guan, C.

Guo, T.

Han, T.

Haynes, R.

Headley, C.

Hou, X.

Huang, Q.

Huang, Q. D.

Jiang, L.

Jiang, Y.

Jin, Y.

Kawakami, S.

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Krishnaswamy, S.

S. J. Zheng, Y. N. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuat B 176, 264–274 (2013).
[Crossref]

Krug, P. A.

Lee, Y. L.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on inline fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Li, J.

Li, S.

Li, X. J.

Liou, J. H.

Litchinitser, N. M.

Liu, T. A.

Liu, Y.

Lu, J. Y.

Mao, G.

Martinez-Rios, A.

McPhedran, R. C.

Nagano, K.

Nishida, S.

Noh, Y. C.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on inline fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Noh, Y.-C.

W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Ou, J. P.

S. J. Zheng, B. H. Shan, M. Ghandehari, and J. P. Ou, “Sensitivity characterization of cladding modes in long-period gratings photonic crystal fiber for structural health monitoring,” Measurement 72, 43–51 (2015).
[Crossref]

Ou, Z.

Peng, J. L.

Qiao, X.

Qu, H.

Roth, M. M.

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Saffari, P.

Salceda-Delgado, G.

Schülzgen, A.

Shan, B. H.

S. J. Zheng, B. H. Shan, M. Ghandehari, and J. P. Ou, “Sensitivity characterization of cladding modes in long-period gratings photonic crystal fiber for structural health monitoring,” Measurement 72, 43–51 (2015).
[Crossref]

Shao, L.

Shen, C.

Shi, J.

Shin, W.

W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on inline fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Si, J.

Skorobogatiy, M.

Tam, H. Y.

Tong, W.

Usner, B.

Van Newkirk, A.

Villatoro, J.

Wang, J.

Wang, L.

Wang, Z.

Webb, D.

Wei, C.

Wei, H.

White, T. P.

Wu, Z.

Xue, X.

Yan, G. F.

Yan, P.

Yang, J.

You, B.

You, Y.

Yu, B. A.

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on inline fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Yu, B.-A.

W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Yu, C. P.

Yu, Y.

Yu, Y. Q.

Yuan, L.

Yuan, T.

Zhang, H.

Zhang, S.

Zhang, W.

Zhang, Y. F.

Zheng, S. J.

S. J. Zheng, B. H. Shan, M. Ghandehari, and J. P. Ou, “Sensitivity characterization of cladding modes in long-period gratings photonic crystal fiber for structural health monitoring,” Measurement 72, 43–51 (2015).
[Crossref]

S. J. Zheng, “Long-period fiber grating moisture sensor with nano-structured coatings for structural health monitoring,” Struct. Health Monitor. Int. J. 14(2), 148–157 (2015).
[Crossref]

S. J. Zheng, Y. N. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuat B 176, 264–274 (2013).
[Crossref]

Zhong, C.

Zhou, W.

Zhu, Y. N.

S. J. Zheng, Y. N. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuat B 176, 264–274 (2013).
[Crossref]

Zhu, Z.

Zou, X.

Zubia, J.

Appl. Opt. (1)

Measurement (1)

S. J. Zheng, B. H. Shan, M. Ghandehari, and J. P. Ou, “Sensitivity characterization of cladding modes in long-period gratings photonic crystal fiber for structural health monitoring,” Measurement 72, 43–51 (2015).
[Crossref]

Opt. Commun. (2)

W. Shin, Y. L. Lee, B.-A. Yu, Y.-C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on inline fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283(10), 2097–2101 (2010).
[Crossref]

Opt. Express (10)

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[Crossref] [PubMed]

B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
[Crossref] [PubMed]

C. Shen, C. Zhong, Y. You, J. Chu, X. Zou, X. Dong, Y. Jin, J. Wang, and H. Gong, “Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method,” Opt. Express 20(14), 15406–15417 (2012).
[Crossref] [PubMed]

W. Cui, J. Si, T. Chen, and X. Hou, “Compact bending sensor based on a fiber Bragg grating in an abrupt biconical taper,” Opt. Express 23(9), 11031–11036 (2015).
[Crossref] [PubMed]

T. Guo, L. Shao, H. Y. Tam, P. A. Krug, and J. Albert, “Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling,” Opt. Express 17(23), 20651–20660 (2009).
[Crossref] [PubMed]

P. Geng, W. Zhang, S. Gao, H. Zhang, J. Li, S. Zhang, Z. Bai, and L. Wang, “Two-dimensional bending vector sensing based on spatial cascaded orthogonal long period fiber,” Opt. Express 20(27), 28557–28562 (2012).
[Crossref] [PubMed]

G. Mao, T. Yuan, C. Guan, J. Yang, L. Chen, Z. Zhu, J. Shi, and L. Yuan, “Fiber Bragg grating sensors in hollow single- and two-core eccentric fibers,” Opt. Express 25(1), 144–150 (2017).
[Crossref] [PubMed]

Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
[Crossref] [PubMed]

Q. D. Huang, Y. Q. Yu, X. J. Li, X. Chen, Y. F. Zhang, W. Zhou, and C. L. Du, “Micro-bending vector sensor based on six-airhole grapefruit microstructure fiber using lateral offset splicing,” Opt. Express 23(3), 3010–3019 (2015).
[Crossref] [PubMed]

R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
[Crossref] [PubMed]

Opt. Lett. (8)

P. Saffari, T. Allsop, A. Adebayo, D. Webb, R. Haynes, and M. M. Roth, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508–3511 (2014).
[Crossref] [PubMed]

S. Li, Z. Wang, Y. Liu, T. Han, Z. Wu, C. Wei, H. Wei, J. Li, and W. Tong, “Bending sensor based on intermodal interference properties of two-dimensional waveguide array fiber,” Opt. Lett. 37(10), 1610–1612 (2012).
[Crossref] [PubMed]

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
[Crossref] [PubMed]

H. Qu, G. F. Yan, and M. Skorobogatiy, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Opt. Lett. 39(16), 4835–4838 (2014).
[Crossref] [PubMed]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref] [PubMed]

D. Feng, X. Qiao, and J. Albert, “Off-axis ultraviolet-written fiber Bragg gratings for directional bending measurements,” Opt. Lett. 41(6), 1201–1204 (2016).
[Crossref] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref] [PubMed]

Science (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Sens. Actuat B (1)

S. J. Zheng, Y. N. Zhu, and S. Krishnaswamy, “Fiber humidity sensors with high sensitivity and selectivity based on interior nanofilm-coated photonic crystal fiber long-period gratings,” Sens. Actuat B 176, 264–274 (2013).
[Crossref]

Struct. Health Monitor. Int. J. (1)

S. J. Zheng, “Long-period fiber grating moisture sensor with nano-structured coatings for structural health monitoring,” Struct. Health Monitor. Int. J. 14(2), 148–157 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Cross-section of the HCPCF. (b) Schematic illustration of the HCPCF.
Fig. 2
Fig. 2 (a) The air channel1 for the infiltration of the RIML (1.440). (b) The RIML (1.440)-infiltrated HCPCF. (c) The air channel2 for the infiltration of the RIML (1.420). (d) The RIML (1.440) and RIML (1.420) -infiltrated HCPCF.
Fig. 3
Fig. 3 (a) Schematic diagram of the cross-section of the RIMLs-infiltrated HCPCF. (b) Anti- resonant condition. (c) Resonant condition.
Fig. 4
Fig. 4 (a) Schematic of the experimental setup. (b) The transmission spectra of a section of HCPCF with RIML infiltrated in one air hole and two air holes. (c) The definition of the bending orientation.
Fig. 5
Fig. 5 Refractive index distribution of the HCPCF bent with (a) + Y and (b) -Y orientations.
Fig. 6
Fig. 6 (a) Transmission spectra and (b) wavelength shift of the HCPCF bent in the + Y direction. (c) Transmission spectra and (d) wavelength shift of the HCPCF bent in the -Y direction. (e) Wavelength interval with the HCPCF bending. (f) Wavelength shift of the HCPCF bent in the + X and –X directions.
Fig. 7
Fig. 7 Transmission spectra of the proposed sensor with different temperature in (a) ascending order, and (b) descending order. The wavelength shift of lossy dips A and B and wavelength interval between two lossy dips in (c) ascending order, and (d) descending order.
Fig. 8
Fig. 8 Transmission spectra of the proposed sensor with different axial strain in (a) ascending order, and (b) descending order. The wavelength shift of lossy dip A and B and wavelength interval between two lossy dips in (c) ascending order, and (d) descending order.
Fig. 9
Fig. 9 The PDL of the RIML - infiltrated HCPCF at different wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ RA = 2( d ah n R1 2 n a 2 + d o n S 2 n a 2 ) m .
λ RB = 2( d ah n R2 2 n a 2 + d o n S 2 n a 2 ) m .

Metrics