Abstract

An optically-pumped, integrated distributed feedback laser is demonstrated using a CMOS compatible process, where a record-low-temperature deposited gain medium enables integration with active devices such as modulators and detectors. A pump threshold of 24.9 mW and a slope efficiency of 1.3 % is demonstrated at the lasing wavelength of 1552.98 nm. The rare-earth-doped aluminum oxide, used as the gain medium in this laser, is deposited by a substrate-bias-assisted reactive sputtering process. This process yields optical quality films with 0.1 dB/cm background loss at the deposition temperature of 250 °C, and therefore is fully compatible as a back-end-of-line CMOS process. The aforementioned laser’s performance is comparable to previous lasers having gain media fabricated at much higher temperatures (> 550 °C). This work marks a crucial step towards monolithic integration of amplifiers and lasers in silicon microphotonic systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform

Nanxi Li, Diedrik Vermeulen, Zhan Su, Emir Salih Magden, Ming Xin, Neetesh Singh, Alfonso Ruocco, Jelena Notaros, Christopher V. Poulton, Erman Timurdogan, Christopher Baiocco, and Michael R. Watts
Opt. Express 26(13) 16200-16211 (2018)

Optically pumped rare-earth-doped Al2O3 distributed-feedback lasers on silicon [Invited]

Markus Pollnau and Jonathan D. B. Bradley
Opt. Express 26(18) 24164-24189 (2018)

Broadband 2-µm emission on silicon chips: monolithically integrated Holmium lasers

Nanxi Li, Emir Salih Magden, Zhan Su, Neetesh Singh, Alfonso Ruocco, Ming Xin, Matthew Byrd, Patrick T. Callahan, Jonathan D. B. Bradley, Christopher Baiocco, Diedrik Vermeulen, and Michael R. Watts
Opt. Express 26(3) 2220-2230 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
    [Crossref]
  2. A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000).
    [Crossref]
  3. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic, 1998).
  4. Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 µm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
    [Crossref]
  5. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [Crossref]
  6. Y. Kurokawa, T. Ishizaka, T. Ikoma, and S. Tero-Kubota, “Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method,” Chemical physics letters 287, 737–741 (1998).
    [Crossref]
  7. J. D. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
    [Crossref]
  8. R. Soulard, A. Zinoviev, J. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
    [Crossref] [PubMed]
  9. S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
    [Crossref] [PubMed]
  10. M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium-doped DBR laser on an ultra-low-Loss Si3N4 platform,” in “OFC Technical Digest”, (Optical Society of America, 2015), Tu2C.7.
  11. N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
    [Crossref] [PubMed]
  12. E. Bernhardi, H. Van Wolferen, L. Agazzi, M. Khan, C. Roeloffzen, K. Wörhoff, M. Pollnau, and R. De Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35, 2394–2396 (2010).
    [Crossref] [PubMed]
  13. K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser,” Opt. Express 16, 14173–14179 (2008).
    [Crossref] [PubMed]
  14. Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
    [Crossref]
  15. M Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38, 4825–4828 (2013).
    [Crossref] [PubMed]
  16. J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
    [Crossref]
  17. N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016).
    [Crossref] [PubMed]
  18. Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
    [Crossref]
  19. N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
    [Crossref] [PubMed]
  20. J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27, 187–196 (2010).
    [Crossref]
  21. E. S. Hosseini, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
    [Crossref] [PubMed]
  22. C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.
  23. Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42, 1772–1775 (2017).
    [Crossref] [PubMed]
  24. K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss waveguides with 5.4-db optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009).
    [Crossref]
  25. A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.
  26. H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005).
    [Crossref]
  27. S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron. Dev. 48, 377–385 (2001).
    [Crossref]
  28. H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21–28 (2003).
    [Crossref]
  29. E. S. Magden, “Rare-earth doped aluminum oxide lasers for silicon photonics,” Thesis, Massachusetts Institute of Technology (2014).
  30. E. Bachari, G. Baud, S. B. Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films 348, 165–172 (1999).
    [Crossref]
  31. G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005).
    [Crossref]
  32. S. Gullapalli, R. Vemuri, F. Manciu, J. Enriquez, and C. Ramana, “Tungsten oxide (WO3) thin films for application in advanced energy systems,” J. Vac. Sci. Technol. 28, 824–828 (2010).
    [Crossref]
  33. E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006).
    [Crossref]
  34. G. Singh, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed bragg reflector cavities,” Opt. Lett. 41, 1189–1192 (2016).
    [Crossref] [PubMed]
  35. M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
    [Crossref] [PubMed]

2017 (4)

2016 (2)

2014 (3)

2013 (1)

2012 (1)

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

2011 (1)

J. D. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[Crossref]

2010 (4)

2009 (1)

K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss waveguides with 5.4-db optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009).
[Crossref]

2008 (1)

2006 (1)

E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006).
[Crossref]

2005 (2)

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005).
[Crossref]

G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005).
[Crossref]

2003 (1)

H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21–28 (2003).
[Crossref]

2001 (2)

S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron. Dev. 48, 377–385 (2001).
[Crossref]

Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
[Crossref]

2000 (1)

A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000).
[Crossref]

1999 (1)

E. Bachari, G. Baud, S. B. Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films 348, 165–172 (1999).
[Crossref]

1998 (1)

Y. Kurokawa, T. Ishizaka, T. Ikoma, and S. Tero-Kubota, “Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method,” Chemical physics letters 287, 737–741 (1998).
[Crossref]

1997 (2)

Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 µm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

1991 (1)

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Adam, T. N.

Aditya, S.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Agazzi, L.

Alonso, J.

A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000).
[Crossref]

Amor, S. B.

E. Bachari, G. Baud, S. B. Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films 348, 165–172 (1999).
[Crossref]

Andrade, E.

A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000).
[Crossref]

Antipov, O.

Ay, F.

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
[Crossref] [PubMed]

J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27, 187–196 (2010).
[Crossref]

K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss waveguides with 5.4-db optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009).
[Crossref]

H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21–28 (2003).
[Crossref]

Aydinli, A.

H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21–28 (2003).
[Crossref]

Bachari, E.

E. Bachari, G. Baud, S. B. Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films 348, 165–172 (1999).
[Crossref]

Baert, K.

S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron. Dev. 48, 377–385 (2001).
[Crossref]

Baiocco, C.

Baldycheva, A.

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Barton, J. S.

Baud, G.

E. Bachari, G. Baud, S. B. Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films 348, 165–172 (1999).
[Crossref]

Belt, M

Belt, M.

M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
[Crossref] [PubMed]

M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium-doped DBR laser on an ultra-low-Loss Si3N4 platform,” in “OFC Technical Digest”, (Optical Society of America, 2015), Tu2C.7.

Bender, H.

S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron. Dev. 48, 377–385 (2001).
[Crossref]

Bernhardi, E.

Bernhardi, E. H.

Bilic, D.

A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.

Blauwendraat, T. P.

K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss waveguides with 5.4-db optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009).
[Crossref]

Blumenthal, D. J.

Bradley, J.

J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27, 187–196 (2010).
[Crossref]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Bradley, J. D.

E. S. Hosseini, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref] [PubMed]

J. D. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[Crossref]

K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss waveguides with 5.4-db optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009).
[Crossref]

Bradley, J. D. B.

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42, 1772–1775 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

G. Singh, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed bragg reflector cavities,” Opt. Lett. 41, 1189–1192 (2016).
[Crossref] [PubMed]

Byrd, M.

Byrd, M. J.

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

Callahan, P. T.

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Chang, D.

A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.

Coolbaugh, D.

Coolbaugh, D. D.

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016).
[Crossref] [PubMed]

E. S. Hosseini, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref] [PubMed]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Davenport, M. L.

de Waal, H.

Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 µm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

Dijkstra, M.

Doualan, J.

Durusoy, H. Z.

H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21–28 (2003).
[Crossref]

Duyar, Ö.

H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21–28 (2003).
[Crossref]

Enriquez, J.

S. Gullapalli, R. Vemuri, F. Manciu, J. Enriquez, and C. Ramana, “Tungsten oxide (WO3) thin films for application in advanced energy systems,” J. Vac. Sci. Technol. 28, 824–828 (2010).
[Crossref]

Faber, A.

Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 µm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

Feinberg, J.

Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
[Crossref]

Fortunato, E.

E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006).
[Crossref]

Franke, A.

A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.

García-Blanco, S. M.

Geskus, D.

J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B 27, 187–196 (2010).
[Crossref]

K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss waveguides with 5.4-db optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009).
[Crossref]

Gonçalves, A.

E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006).
[Crossref]

Gonzalez-Ortega, J.

G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005).
[Crossref]

Gullapalli, S.

S. Gullapalli, R. Vemuri, F. Manciu, J. Enriquez, and C. Ramana, “Tungsten oxide (WO3) thin films for application in advanced energy systems,” J. Vac. Sci. Technol. 28, 824–828 (2010).
[Crossref]

Hattori, K.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Havstad, S.

Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
[Crossref]

Herek, J. L.

Hirao, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Hirata, G.

G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005).
[Crossref]

Hosseini, E. S.

Howe, R.

A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.

Howe, R. T.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005).
[Crossref]

Huanosta, A.

A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000).
[Crossref]

Huffman, T.

Ikoma, T.

Y. Kurokawa, T. Ishizaka, T. Ikoma, and S. Tero-Kubota, “Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method,” Chemical physics letters 287, 737–741 (1998).
[Crossref]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Ippen, E. P.

Ishizaka, T.

Y. Kurokawa, T. Ishizaka, T. Ikoma, and S. Tero-Kubota, “Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method,” Chemical physics letters 287, 737–741 (1998).
[Crossref]

Ivakin, E.

Jacquet, M.

E. Bachari, G. Baud, S. B. Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films 348, 165–172 (1999).
[Crossref]

Johnson, G.

A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.

Jones, P.

A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.

Kang, J. U.

Kärtner, F. X.

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Khan, M.

Kik, P.

Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 µm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

King, T.-J.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005).
[Crossref]

A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.

Kitagawa, T.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Kobayashi, M.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Kurokawa, Y.

Y. Kurokawa, T. Ishizaka, T. Ikoma, and S. Tero-Kubota, “Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method,” Chemical physics letters 287, 737–741 (1998).
[Crossref]

Lam, H. Q.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Leake, G.

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42, 1772–1775 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016).
[Crossref] [PubMed]

G. Singh, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed bragg reflector cavities,” Opt. Lett. 41, 1189–1192 (2016).
[Crossref] [PubMed]

E. S. Hosseini, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref] [PubMed]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Lee, K. E. K.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Li, N.

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42, 1772–1775 (2017).
[Crossref] [PubMed]

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016).
[Crossref] [PubMed]

G. Singh, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed bragg reflector cavities,” Opt. Lett. 41, 1189–1192 (2016).
[Crossref] [PubMed]

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Li, W.

Lim, P. H.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Magden, E. S.

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42, 1772–1775 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016).
[Crossref] [PubMed]

G. Singh, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed bragg reflector cavities,” Opt. Lett. 41, 1189–1192 (2016).
[Crossref] [PubMed]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

E. S. Magden, “Rare-earth doped aluminum oxide lasers for silicon photonics,” Thesis, Massachusetts Institute of Technology (2014).

Manciu, F.

S. Gullapalli, R. Vemuri, F. Manciu, J. Enriquez, and C. Ramana, “Tungsten oxide (WO3) thin films for application in advanced energy systems,” J. Vac. Sci. Technol. 28, 824–828 (2010).
[Crossref]

Marques, A.

E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006).
[Crossref]

Martins, R.

E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006).
[Crossref]

McKittrick, J.

G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005).
[Crossref]

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Moncorgé, R.

Moresco, M.

Ohmori, Y.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Ortiz, A.

A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic, 1998).

Pankov, V.

A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000).
[Crossref]

Peng, M. Y.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Perea, N.

G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005).
[Crossref]

Pimentel, A.

E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006).
[Crossref]

Pollnau, M.

Polman, A.

Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 µm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

Poulton, C. V.

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016).
[Crossref] [PubMed]

Purnawirman,

Purnawirman, P.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Ramana, C.

S. Gullapalli, R. Vemuri, F. Manciu, J. Enriquez, and C. Ramana, “Tungsten oxide (WO3) thin films for application in advanced energy systems,” J. Vac. Sci. Technol. 28, 824–828 (2010).
[Crossref]

Ridder, R. De

Roeloffzen, C.

Ruocco, A.

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

Sander, M. Y.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Sedky, S.

S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron. Dev. 48, 377–385 (2001).
[Crossref]

Shimizu, M.

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

Shtyrkova, K.

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Shum, P. P.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Singh, G.

Singh, N.

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

Song, Y.

Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
[Crossref]

Sorace-Agaskar, C. M.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Soulard, R.

Starodubov, D.

Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
[Crossref]

Su, Z.

Sun, J.

Sun, X.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005).
[Crossref]

Takeuchi, H.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005).
[Crossref]

Tejeda, M.

G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005).
[Crossref]

Tero-Kubota, S.

Y. Kurokawa, T. Ishizaka, T. Ikoma, and S. Tero-Kubota, “Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method,” Chemical physics letters 287, 737–741 (1998).
[Crossref]

Timurdogan, E.

Van Wolferen, H.

Vázquez-Córdova, S. A.

Vemuri, R.

S. Gullapalli, R. Vemuri, F. Manciu, J. Enriquez, and C. Ramana, “Tungsten oxide (WO3) thin films for application in advanced energy systems,” J. Vac. Sci. Technol. 28, 824–828 (2010).
[Crossref]

Vermeulen, D.

Watts, M. R.

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42, 1772–1775 (2017).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016).
[Crossref] [PubMed]

G. Singh, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed bragg reflector cavities,” Opt. Lett. 41, 1189–1192 (2016).
[Crossref] [PubMed]

E. S. Hosseini, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref] [PubMed]

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Willner, A.

Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
[Crossref]

Witvrouw, A.

S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron. Dev. 48, 377–385 (2001).
[Crossref]

Wong, J. H.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Wörhoff, K.

Wu, K.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Wung, A.

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005).
[Crossref]

Xie, Y.

Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
[Crossref]

Xin, M.

Xue, J.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Yan, Y.

Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 µm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

Zhang, K.

Zhou, J.

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

Zinoviev, A.

Appl. Phys. Lett. (3)

Y. Yan, A. Faber, H. de Waal, P. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 db/cm gain at 1.535 µm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

N. Li, Z. Su, Purnawirman, E. S. Magden, C. V. Poulton, A. Ruocco, N. Singh, M. J. Byrd, J. D. B. Bradley, G. Leake, and M. R. Watts, “Athermal synchronization of laser source with WDM filter in a silicon photonics platform,” Appl. Phys. Lett. 110, 211105 (2017).
[Crossref] [PubMed]

Chemical physics letters (1)

Y. Kurokawa, T. Ishizaka, T. Ikoma, and S. Tero-Kubota, “Photo-properties of rare earth ion (Er3+, Eu3+ and Sm3+)-doped alumina films prepared by the sol-gel method,” Chemical physics letters 287, 737–741 (1998).
[Crossref]

Electron. Lett. (1)

T. Kitagawa, K. Hattori, M. Shimizu, Y. Ohmori, and M. Kobayashi, “Guided-wave laser based on erbium-doped silica planar lightwave circuit,” Electron. Lett. 27, 334–335 (1991).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Wörhoff, J. D. Bradley, F. Ay, D. Geskus, T. P. Blauwendraat, and M. Pollnau, “Reliable low-cost fabrication of low-loss waveguides with 5.4-db optical gain,” IEEE J. Quantum Electron. 45, 454–461 (2009).
[Crossref]

IEEE Photon. Tech. Lett. (1)

Y. Song, S. Havstad, D. Starodubov, Y. Xie, A. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Tech. Lett. 13, 1167–1169 (2001).
[Crossref]

IEEE Trans. Electron. Dev. (2)

H. Takeuchi, A. Wung, X. Sun, R. T. Howe, and T.-J. King, “Thermal budget limits of quarter-micrometer foundry CMOS for post-processing MEMS devices,” IEEE Trans. Electron. Dev. 52, 2081–2086 (2005).
[Crossref]

S. Sedky, A. Witvrouw, H. Bender, and K. Baert, “Experimental determination of the maximum post-process annealing temperature for standard CMOS wafers,” IEEE Trans. Electron. Dev. 48, 377–385 (2001).
[Crossref]

J. Lightw. Tech. (1)

J. H. Wong, H. Q. Lam, S. Aditya, J. Zhou, N. Li, J. Xue, P. H. Lim, K. E. K. Lee, K. Wu, and P. P. Shum, “Photonic generation of frequency-tunable microwave signals using an array of uniformly spaced optical combs,” J. Lightw. Tech. 30, 3164–3172 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. (1)

S. Gullapalli, R. Vemuri, F. Manciu, J. Enriquez, and C. Ramana, “Tungsten oxide (WO3) thin films for application in advanced energy systems,” J. Vac. Sci. Technol. 28, 824–828 (2010).
[Crossref]

Laser Photon. Rev. (1)

J. D. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[Crossref]

Opt. Express (6)

R. Soulard, A. Zinoviev, J. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010).
[Crossref] [PubMed]

S. A. Vázquez-Córdova, M. Dijkstra, E. H. Bernhardi, F. Ay, K. Wörhoff, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Erbium-doped spiral amplifiers with 20 dB of net gain on silicon,” Opt. Express 22, 25993–26004 (2014).
[Crossref] [PubMed]

N. Li, E. Timurdogan, C. V. Poulton, M. Byrd, E. S. Magden, Z. Su, G. Leake, D. D. Coolbaugh, D. Vermeulen, and M. R. Watts, “C-band swept wavelength erbium-doped fiber laser with a high-Q tunable interior-ridge silicon microring cavity,” Opt. Express 24, 22741–22748 (2016).
[Crossref] [PubMed]

K. Zhang and J. U. Kang, “C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser,” Opt. Express 16, 14173–14179 (2008).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, N. Singh, A. Baldycheva, E. S. Hosseini, J. Sun, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform,” Opt. Express 25, 13705–13713 (2017).
[Crossref]

M. Belt and D. J. Blumenthal, “Erbium-doped waveguide DBR and DFB laser arrays integrated within an ultra-low-loss Si3N4 platform,” Opt. Express 22, 10655–10660 (2014).
[Crossref] [PubMed]

Opt. Lett. (6)

G. Singh, J. D. B. Bradley, N. Li, E. S. Magden, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, and M. R. Watts, “Resonant pumped erbium-doped waveguide lasers using distributed bragg reflector cavities,” Opt. Lett. 41, 1189–1192 (2016).
[Crossref] [PubMed]

Purnawirman, N. Li, E. S. Magden, G. Singh, M. Moresco, T. N. Adam, G. Leake, D. Coolbaugh, J. D. B. Bradley, and M. R. Watts, “Wavelength division multiplexed light source monolithically integrated on a silicon photonics platform,” Opt. Lett. 42, 1772–1775 (2017).
[Crossref] [PubMed]

M Belt, T. Huffman, M. L. Davenport, W. Li, J. S. Barton, and D. J. Blumenthal, “Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform,” Opt. Lett. 38, 4825–4828 (2013).
[Crossref] [PubMed]

E. S. Hosseini, J. D. Bradley, J. Sun, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “CMOS-compatible 75 mW erbium-doped distributed feedback laser,” Opt. Lett. 39, 3106–3109 (2014).
[Crossref] [PubMed]

N. Li, Z. Su, E. S. Magden, P. T. Callahan, K. Shtyrkova, M. Xin, A. Ruocco, C. Baiocco, E. P. Ippen, F. X. Kärtner, J. D. B. Bradley, D. Vermeulen, and M. R. Watts, “High-power thulium lasers on a silicon photonics platform,” Opt. Lett. 42, 1181–1184 (2017).
[Crossref] [PubMed]

E. Bernhardi, H. Van Wolferen, L. Agazzi, M. Khan, C. Roeloffzen, K. Wörhoff, M. Pollnau, and R. De Ridder, “Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon,” Opt. Lett. 35, 2394–2396 (2010).
[Crossref] [PubMed]

Opt. Mater. (1)

G. Hirata, N. Perea, M. Tejeda, J. Gonzalez-Ortega, and J. McKittrick, “Luminescence study in eu-doped aluminum oxide phosphors,” Opt. Mater. 27, 1311–1315 (2005).
[Crossref]

Thin Solid Films (3)

E. Fortunato, A. Pimentel, A. Gonçalves, A. Marques, and R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature,” Thin Solid Films 502, 104–107 (2006).
[Crossref]

E. Bachari, G. Baud, S. B. Amor, and M. Jacquet, “Structural and optical properties of sputtered ZnO films,” Thin Solid Films 348, 165–172 (1999).
[Crossref]

A. Ortiz, J. Alonso, V. Pankov, A. Huanosta, and E. Andrade, “Characterization of amorphous aluminum oxide films prepared by the pyrosol process,” Thin Solid Films 368, 74–79 (2000).
[Crossref]

Vacuum (1)

H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of substrate temperature and bias voltage on the optical transmittance of TiN films,” Vacuum 70, 21–28 (2003).
[Crossref]

Other (5)

E. S. Magden, “Rare-earth doped aluminum oxide lasers for silicon photonics,” Thesis, Massachusetts Institute of Technology (2014).

A. Franke, D. Bilic, D. Chang, P. Jones, T.-J. King, R. Howe, and G. Johnson, “Post-CMOS integration of germanium microstructures,” in “Micro Electro Mechanical Systems, 1999. MEMS’99.), Twelfth IEEE International Conference on,” (IEEE, 1999), 630–637.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic, 1998).

M. Belt and D. J. Blumenthal, “High temperature operation of an integrated erbium-doped DBR laser on an ultra-low-Loss Si3N4 platform,” in “OFC Technical Digest”, (Optical Society of America, 2015), Tu2C.7.

C. M. Sorace-Agaskar, P. T. Callahan, K. Shtyrkova, A. Baldycheva, M. Moresco, J. Bradley, M. Y. Peng, N. Li, E. S. Magden, P. Purnawirman, M. Y. Sander, G. Leake, D. D. Coolbaugh, M. R. Watts, and F. X. Kärtner, “Integrated mode-locked lasers in a CMOS-compatible silicon photonic platform,” in “CLEO: 2015 OSA Technical Digest”, (Optical Society of America, 2015), SM2I.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Propagation loss as a function of (a) deposition temperature, and (b) substrate bias for 1 µm thick Al2O3, where the optimum quality is achieved at 250 °C and 90 W. Atomic force micrographs for films deposited with (c) 0 W and (d) 90 W substrate bias with significant difference in surface texture. Inset shows the profile of a smaller area from the smoother film with the 90 W bias, where the vertical scale is enhanced by 15 times.
Fig. 2
Fig. 2 Total absorption measured in deposited films with 75 V and 60 V bias across the Er target with respect to (a) wavelength and (b) absorption cross-section. Background loss and dopant concentrations are calculated by linear fits.
Fig. 3
Fig. 3 Fabrication procedure for quarter-wave phase shifted DFB laser where the grating is defined in the buried SiN, and the Al2O3:Er3+ is blanket-deposited as a back-end-of-line CMOS-compatible process.
Fig. 4
Fig. 4 (a) Cross-section of laser cavity showing the buried SiN waveguide and grating segments (not to scale). Fundamental TE modes of (b) 980 nm pump and (c) 1550 nm signal in the laser cavity.
Fig. 5
Fig. 5 (a) Experimental setup for characterizing the on-chip laser pumped using a polarization controller (PC), a wavelength division multiplexer (WDM), and measured with an optical spectrum analyzer (OSA). (b) Laser emission spectrum as measured by the OSA. (c) Laser performance characterization as a function of pump power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ( λ ) = α 0 + 10 log ( e ) σ abs ( λ ) Γ N 0 ,

Metrics