Abstract

Laser spectral compression by a factor of 102.8 is experimentally achieved through optical soliton propagation in a dispersion-increasing fiber. By varying the input pulse energy, the wavelength tuning range of the compressed spectral peak could exceed 115 nm. Spectrally compressed spectrum with two bright peaks is demonstrated for the first time, to our knowledge. The structure of the dual-peaked compressed spectra is adjustable through the interplay of initial pulse chirp and energy. All of the experimental data are compared to numerical results and are found in good agreement.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber

N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh
Opt. Express 18(11) 11700-11706 (2010)

4× repetition-rate multiplication and Raman compression of pulses in the same optical fiber

D. A. Chestnut, C. J. S. de Matos, and J. R. Taylor
Opt. Lett. 27(14) 1262-1264 (2002)

Optical pulse compression in dispersion decreasing photonic crystal fiber

J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor
Opt. Express 15(20) 13203-13211 (2007)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
    [Crossref]
  2. N. L. Markaryan, L. Kh. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron. 21(7), 783–785 (1991).
    [Crossref]
  3. M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11(1), 53–57 (2016).
    [Crossref]
  4. M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
    [Crossref] [PubMed]
  5. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7(5), 363–366 (2013).
    [Crossref]
  6. M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume Bragg gratings,” Opt. Lett. 41(11), 2394–2397 (2016).
    [Crossref] [PubMed]
  7. Y.-H. Chen, J.-W. Chang, C.-H. Lin, W.-K. Chang, N. Hsu, Y.-Y. Lai, Q.-H. Tseng, R. Geiss, T. Pertsch, and S. S. Yang, “Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters,” Opt. Lett. 36(12), 2345–2347 (2011).
    [Crossref] [PubMed]
  8. J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
    [Crossref]
  9. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, E. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30(7), 714–716 (2005).
    [Crossref] [PubMed]
  10. E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30(15), 2025–2027 (2005).
    [Crossref] [PubMed]
  11. D. A. Sidorov-Biryukov, A. Fernandez, L. Zhu, A. Pugžlys, E. E. Serebryannikov, A. Baltuška, and A. M. Zheltikov, “Spectral narrowing of chirp-free light pulses in anomalously dispersive, highly nonlinear photonic-crystal fibers,” Opt. Express 16(4), 2502–2507 (2008).
    [Crossref] [PubMed]
  12. A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, “Spectral compression of frequency-shifting solitons in a photonic-crystal fiber,” Opt. Lett. 34(5), 662–664 (2009).
    [Crossref] [PubMed]
  13. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
    [Crossref] [PubMed]
  14. N. Nishizawa, K. Takahashi, Y. Ozeki, and K. Itoh, “Wideband spectral compression of wavelength-tunable ultrashort soliton pulse using comb-profile fiber,” Opt. Express 18(11), 11700–11706 (2010).
    [Crossref] [PubMed]
  15. N. Nishizawa, Y. Andou, E. Omoda, H. Kataura, and Y. Sakakibara, “Characteristics and improvement of wideband wavelength-tunable narrow-linewidth source by spectral compression in quasi-dispersion-increasing comb-profile fiber,” Opt. Express 24(20), 23403–23418 (2016).
    [Crossref] [PubMed]
  16. H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. Lett. 36(15), 2848–2850 (2011).
    [Crossref] [PubMed]
  17. W.-T. Chao, Y.-Y. Lin, J.-L. Peng, and C.-B. Huang, “Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation,” Opt. Lett. 39(4), 853–856 (2014).
    [Crossref] [PubMed]
  18. L. Kh. Mouradian, A. Grigoryan, A. Kutuzyuan, G. Yesayan, M. Sukiasyan, H. Toneyan, A. Zeytunyan, R. Zadoyan, and A. Barthelemy, “Spectral analogue of the soliton effect compression: spectral self-compression,” in Proceedings of Frontiers in Optics (FIO) 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW3F.3.
  19. K. R. Tamura and M. Nakazawa, “54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor,” Opt. Lett. 26(11), 762–764 (2001).
    [Crossref] [PubMed]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

2017 (1)

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

2016 (3)

2014 (1)

2013 (1)

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7(5), 363–366 (2013).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

2008 (1)

2005 (2)

2002 (1)

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[Crossref]

2001 (1)

1991 (1)

N. L. Markaryan, L. Kh. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron. 21(7), 783–785 (1991).
[Crossref]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Allgaier, M.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Andou, Y.

Andresen, E. R.

Ansari, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Baltuška, A.

Brecht, B.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Chang, J.-W.

Chang, W.-K.

Chao, W.-T.

Chen, Y.-H.

Chuang, H.-P.

Courjaud, A.

Deguil-Robin, N.

Donohue, J. M.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7(5), 363–366 (2013).
[Crossref]

Dudley, J. M.

Eigner, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Fedotov, A. B.

Fedotov, I. V.

Fedrizzi, A.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7(5), 363–366 (2013).
[Crossref]

Fernandez, A.

Finot, C.

Gabler, T.

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[Crossref]

Geiss, R.

Harder, G.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Hönninger, C.

Hsu, N.

Huang, C.-B.

Itoh, K.

Ivanov, A. A.

Jachura, M.

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11(1), 53–57 (2016).
[Crossref]

Kardas, T. M.

Karpinski, M.

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11(1), 53–57 (2016).
[Crossref]

Kataura, H.

Keiding, S. R.

Lai, Y.-Y.

Lavoie, J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7(5), 363–366 (2013).
[Crossref]

Liem, A.

Limpert, J.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Lin, C.-H.

Lin, Y.-Y.

Manek-Hönninger, I.

Markaryan, N. L.

N. L. Markaryan, L. Kh. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron. 21(7), 783–785 (1991).
[Crossref]

Mottay, E.

Muradyan, L. Kh.

N. L. Markaryan, L. Kh. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron. 21(7), 783–785 (1991).
[Crossref]

Nakazawa, M.

Nejbauer, M.

Nishizawa, N.

Omoda, E.

Oron, D.

Ozeki, Y.

Papazyan, T. A.

N. L. Markaryan, L. Kh. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron. 21(7), 783–785 (1991).
[Crossref]

Peng, J.-L.

Pertsch, T.

Pugžlys, A.

Quiring, V.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Radzewicz, C.

Resch, K. J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7(5), 363–366 (2013).
[Crossref]

Ricken, R.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Rigneault, H.

Röser, E.

Sakakibara, Y.

Salin, F.

Sansoni, L.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Schreiber, T.

Serebryannikov, E. E.

Sidorov-Biryukov, D. A.

Silberhorn, C.

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Smith, B. J.

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11(1), 53–57 (2016).
[Crossref]

Stepanenko, Y.

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Takahashi, K.

Tamura, K. R.

Thøgersen, J.

Tseng, Q.-H.

Tünnermann, A.

Voronin, A. A.

Wright, L. G.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7(5), 363–366 (2013).
[Crossref]

Wright, L. J.

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11(1), 53–57 (2016).
[Crossref]

Yang, S. S.

Zellmer, H.

Zheltikov, A. M.

Zhu, L.

Appl. Phys. B (1)

J. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74(2), 191–195 (2002).
[Crossref]

Nat. Commun. (1)

M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R. Ricken, G. Harder, B. Brecht, and C. Silberhorn, “Highly efficient frequency conversion with bandwidth compression of quantum light,” Nat. Commun. 8, 14288 (2017).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photonics 7(5), 363–366 (2013).
[Crossref]

M. Karpiński, M. Jachura, L. J. Wright, and B. J. Smith, “Bandwidth manipulation of quantum light by an electro-optic time lens,” Nat. Photonics 11(1), 53–57 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (9)

A. B. Fedotov, A. A. Voronin, I. V. Fedotov, A. A. Ivanov, and A. M. Zheltikov, “Spectral compression of frequency-shifting solitons in a photonic-crystal fiber,” Opt. Lett. 34(5), 662–664 (2009).
[Crossref] [PubMed]

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
[Crossref] [PubMed]

K. R. Tamura and M. Nakazawa, “54-fs, 10-GHz soliton generation from a polarization-maintaining dispersion-flattened dispersion-decreasing fiber pulse compressor,” Opt. Lett. 26(11), 762–764 (2001).
[Crossref] [PubMed]

H.-P. Chuang and C.-B. Huang, “Wavelength-tunable spectral compression in a dispersion-increasing fiber,” Opt. Lett. 36(15), 2848–2850 (2011).
[Crossref] [PubMed]

W.-T. Chao, Y.-Y. Lin, J.-L. Peng, and C.-B. Huang, “Adiabatic pulse propagation in a dispersion-increasing fiber for spectral compression exceeding the fiber dispersion ratio limitation,” Opt. Lett. 39(4), 853–856 (2014).
[Crossref] [PubMed]

M. Nejbauer, T. M. Kardaś, Y. Stepanenko, and C. Radzewicz, “Spectral compression of femtosecond pulses using chirped volume Bragg gratings,” Opt. Lett. 41(11), 2394–2397 (2016).
[Crossref] [PubMed]

Y.-H. Chen, J.-W. Chang, C.-H. Lin, W.-K. Chang, N. Hsu, Y.-Y. Lai, Q.-H. Tseng, R. Geiss, T. Pertsch, and S. S. Yang, “Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters,” Opt. Lett. 36(12), 2345–2347 (2011).
[Crossref] [PubMed]

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, T. Schreiber, A. Liem, E. Röser, H. Zellmer, A. Tünnermann, A. Courjaud, C. Hönninger, and E. Mottay, “High-power picosecond fiber amplifier based on nonlinear spectral compression,” Opt. Lett. 30(7), 714–716 (2005).
[Crossref] [PubMed]

E. R. Andresen, J. Thøgersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30(15), 2025–2027 (2005).
[Crossref] [PubMed]

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17(4), 1448–1453 (1978).
[Crossref]

Sov. J. Quantum Electron. (1)

N. L. Markaryan, L. Kh. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Sov. J. Quantum Electron. 21(7), 783–785 (1991).
[Crossref]

Other (2)

L. Kh. Mouradian, A. Grigoryan, A. Kutuzyuan, G. Yesayan, M. Sukiasyan, H. Toneyan, A. Zeytunyan, R. Zadoyan, and A. Barthelemy, “Spectral analogue of the soliton effect compression: spectral self-compression,” in Proceedings of Frontiers in Optics (FIO) 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper FW3F.3.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Schematics of the experimental setup. SMF: single-mode fiber; V-ATT: variable optical attenuator; DCF: dispersion-compensating fiber; OC: optical coupler; PM: power meter; DIF: dispersion-increasing fiber; SP: splicing point; OSA: optical spectrum analyzer; IA: intensity auto-correlator. The dispersion ramp for the DIF is also plotted. (b) Fs laser initial spectrum. (c) Intensity auto-correlation traces of the fs fiber laser and the sech fitting of same FWHM duration.
Fig. 2
Fig. 2 Spectral compression results with nearly transform-limited input pulse. (a) Experimental and simulated DIF output spectra under 1.57 mW average power, giving a SCR of 102.8. The compressed peak wavelength is red-shifted to 1578.6 nm. Experimental (b) and simulated (c) results for wavelength tuning of the DIF output compressed peaks.
Fig. 3
Fig. 3 Generation and tuning of dual-peaked spectrally compression using negatively chirped input pulse. Results for input average power of (a) 2.45 mW, (b) 2.61 mW, and (c) 4.20 mW demonstrate the tuning ability of the relative amplitudes and wavelength separation of the two spectrally compressed peaks.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β 3 (z)= ( λ p 2 (z) 2πc ) 2 ( S 4πc λ p 3 (z) β 2 (z) ),

Metrics