Abstract

We propose a double-stage guided-mode converter for pillar photonic-crystal (PhC) waveguide devices. The converter consists of a pillar-to-wire waveguide coupler and a transverse-magnetic-mode-selective spot-size converter. The former secures high-efficiency wide-band optical coupling of a pillar-PhC waveguide to a wire waveguide. The latter improves the coupling efficiency of the wire waveguide and an outside waveguide such as an optical fiber and also the signal-to-noise ratio of light guided in the pillar-PhC waveguide. The transmission band of a fabricated pillar-PhC waveguide having the converters on both ends was 88 nm in wavelength. The cutoff at the band edge was steep and deep with an extinction ration of 40 dB in a 4-nm wavelength range.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a compact mode and polarization converter in three-dimensional photonic crystals

Jian Wang and Minghao Qi
Opt. Express 20(18) 20356-20367 (2012)

Highly efficient mode converter for coupling light into wide slot photonic crystal waveguide

Xingyu Zhang, Harish Subbaraman, Amir Hosseini, and Ray T. Chen
Opt. Express 22(17) 20678-20690 (2014)

Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides

Sharee J. McNab, Nikolaj Moll, and Yurii A. Vlasov
Opt. Express 11(22) 2927-2939 (2003)

References

  • View by:
  • |
  • |
  • |

  1. P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, A. Narasimha, D. Guckenberger, and M. Harrison, “Si photonics based high-speed optical transceivers,” in European Conference and Exhibition on Optical Communication 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.E.5.
    [Crossref]
  2. K. Yashiki, Y. Suzuki, Y. Hagihara, M. Kurihara, M. Tokushima, J. Fujikata, A. Ukita, K. Takemura, T. Shimizu, D. Okamoto, J. Ushida, S. Takahashi, T. Uemura, M. Okano, J. Tsuchida, T. Nedachi, M. Fushimi, I. Ogura, J. Inasaka, and K. Kurata, “5 mW/Gbps hybrid-integrated Si-photonics-based optical I/O cores and their 25-Gbps/ch error-free operation with over 300-m MMF,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th1G.1.
    [Crossref]
  3. G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
    [Crossref]
  4. J. D. Joannopoulos, R. D. Mead, and J. N. Winn, Photonic crystals (Princeton University, 1995).
  5. M. Tokushima, H. Yamada, and Y. Arakawa, “1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
    [Crossref]
  6. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Second Edition) (Princeton University, 2011).
  7. H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, “Photonic crystal & metamaterial filters based on 2D arrays of silicon nanopillars,” Prog. Electromagnetics Res. 113, 179–194 (2011).
    [Crossref]
  8. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [Crossref]
  9. X. Wang and R. T. Chen, “Ultra compact photonic crystal modulator based on silicon nano-pillar array filled with functional polymer,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (2008), paper ThP30.
  10. R. Zafar, “Increased buffering capacity over ultra large bandwidth in slow light based photonic crystal waveguides with elliptical nano-pillars,” Glob. J. Nano. 1(4), 555568 (2017).
  11. P. Dardano, M. Borrelli, M. Musto, G. Rotondo, and M. Iodice, “Computational analysis of cooling dynamics in photonic-crystal-based thermal switches,” J. Eur. Opt. Soc. 12(1), 1–7 (2016).
    [Crossref]
  12. B. Wu, B. Wu, J. Xu, J. Xiao, and Y. Chen, “Coupled mode theory in non-Hermitian optical cavities,” Opt. Express 24(15), 16566–16573 (2016).
    [Crossref] [PubMed]
  13. Z. Hui and Y. Y. Lu, “Sensitivity analysis for photonic crystal microcavities,” J. Opt. Soc. Am. B 33(9), 1897–1905 (2016).
    [Crossref]
  14. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76(8), 952–954 (2000).
    [Crossref]
  15. H. S. Dutta, A. K. Goyal, V. Srivastava, and S. Pal, “Coupling light in photonic crystal waveguides: a review,” Photonics Nanostruct. Fundam. Appl. 20, 41–58 (2016).
    [Crossref]
  16. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [Crossref] [PubMed]
  17. J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6(1), 26038 (2016).
    [Crossref] [PubMed]
  18. M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
    [Crossref]
  19. A. Simbula, M. Schatzl, L. Zagaglia, F. Alpeggiani, L. C. Andreani, F. Schäffler, T. Fromherz, M. Galli, and D. Gerace1, “Realization of high-Q/V photonic crystal cavities defined by an effective Aubry-André-Harper bichromatic potential,” APL Photonics 2, 056102 (2017).
  20. T. K. Fryettl, K. L. Seyler, J. Zhengl, C.-H. Liu, X. Xu, and A. Majumdarl, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2,” 2D Mater. 4, 015031 (2017).
  21. Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–425 (2015).
    [Crossref]
  22. A. Hosseini, X. Xu, H. Subbaraman, C.-Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express 20(11), 12318–12325 (2012).
    [Crossref] [PubMed]
  23. Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3(2), 17 (2016).
    [Crossref]
  24. H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
    [Crossref]
  25. S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
    [Crossref] [PubMed]
  26. S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Opt. Commun. 384, 93–100 (2017).
    [Crossref]
  27. A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D Appl. Phys. 50(20), 203001 (2017).
    [Crossref]
  28. P. Borel, A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12(9), 1996–2001 (2004).
    [Crossref] [PubMed]
  29. S. Assefa, S. J. McNab, and Y. A. Vlasov, “Transmission of slow light through photonic crystal waveguide bends,” Opt. Lett. 31(6), 745–747 (2006).
    [Crossref] [PubMed]
  30. Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
    [Crossref]
  31. A. Petrov, M. Krause, and M. Eich, “Backscattering and disorder limits in slow light photonic crystal waveguides,” Opt. Express 17(10), 8676–8684 (2009).
    [Crossref] [PubMed]
  32. M. Tokushima, J. Ushida, A. Gomyo, M. Shirane, and H. Yamada, “Efficient transmission mechanisms for waveguides with 90° bends in pillar photonic crystals,” J. Opt. Soc. Am. B 22(11), 2472–2479 (2005).
    [Crossref]
  33. J. J. Vegas Olmos, M. Tokushima, and K. Kitayama, “Photonic add–drop filter based on integrated photonic crystal structures,” IEEE J. Sel. Top. Quantum Electron. 16(1), 332–337 (2010).
    [Crossref]
  34. A. Polman, “Erbium-doped planar optical amplifiers,” in Proceedings of 10th European Conference on Integrated Optics (2001), pp. 75–78.
  35. V. Jandieri and R. Khomeriki, “Linear amplification of optical signal in coupled photonic crystal waveguides,” IEEE Photonics Technol. Lett. 27(6), 639–641 (2015).
    [Crossref]
  36. A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19(6), 861–865 (2001).
    [Crossref]
  37. Y.-F. Chau, T.-J. Yang, and W.-D. Lee, “Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits,” Appl. Opt. 43(36), 6656–6663 (2004).
    [Crossref] [PubMed]
  38. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
    [Crossref] [PubMed]
  39. A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
    [Crossref] [PubMed]
  40. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
    [Crossref]
  41. M. Tokushima, J. J. V. Olmos, and K. Kitayama, “Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches,” J. Nanosci. Nanotechnol. 10(3), 1626–1634 (2010).
    [Crossref] [PubMed]
  42. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
    [Crossref] [PubMed]
  43. M. Tokushima is preparing a manuscript to be called “Integration-compatible fabrication process of Si vertical tapers for spot size converters.”

2017 (5)

R. Zafar, “Increased buffering capacity over ultra large bandwidth in slow light based photonic crystal waveguides with elliptical nano-pillars,” Glob. J. Nano. 1(4), 555568 (2017).

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Opt. Commun. 384, 93–100 (2017).
[Crossref]

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D Appl. Phys. 50(20), 203001 (2017).
[Crossref]

2016 (7)

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3(2), 17 (2016).
[Crossref]

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

H. S. Dutta, A. K. Goyal, V. Srivastava, and S. Pal, “Coupling light in photonic crystal waveguides: a review,” Photonics Nanostruct. Fundam. Appl. 20, 41–58 (2016).
[Crossref]

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6(1), 26038 (2016).
[Crossref] [PubMed]

P. Dardano, M. Borrelli, M. Musto, G. Rotondo, and M. Iodice, “Computational analysis of cooling dynamics in photonic-crystal-based thermal switches,” J. Eur. Opt. Soc. 12(1), 1–7 (2016).
[Crossref]

B. Wu, B. Wu, J. Xu, J. Xiao, and Y. Chen, “Coupled mode theory in non-Hermitian optical cavities,” Opt. Express 24(15), 16566–16573 (2016).
[Crossref] [PubMed]

Z. Hui and Y. Y. Lu, “Sensitivity analysis for photonic crystal microcavities,” J. Opt. Soc. Am. B 33(9), 1897–1905 (2016).
[Crossref]

2015 (3)

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–425 (2015).
[Crossref]

V. Jandieri and R. Khomeriki, “Linear amplification of optical signal in coupled photonic crystal waveguides,” IEEE Photonics Technol. Lett. 27(6), 639–641 (2015).
[Crossref]

Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
[Crossref]

2012 (2)

2011 (1)

H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, “Photonic crystal & metamaterial filters based on 2D arrays of silicon nanopillars,” Prog. Electromagnetics Res. 113, 179–194 (2011).
[Crossref]

2010 (2)

J. J. Vegas Olmos, M. Tokushima, and K. Kitayama, “Photonic add–drop filter based on integrated photonic crystal structures,” IEEE J. Sel. Top. Quantum Electron. 16(1), 332–337 (2010).
[Crossref]

M. Tokushima, J. J. V. Olmos, and K. Kitayama, “Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches,” J. Nanosci. Nanotechnol. 10(3), 1626–1634 (2010).
[Crossref] [PubMed]

2009 (1)

2006 (1)

2005 (3)

2004 (4)

P. Borel, A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12(9), 1996–2001 (2004).
[Crossref] [PubMed]

Y.-F. Chau, T.-J. Yang, and W.-D. Lee, “Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits,” Appl. Opt. 43(36), 6656–6663 (2004).
[Crossref] [PubMed]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[Crossref]

2002 (2)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

2001 (1)

2000 (1)

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76(8), 952–954 (2000).
[Crossref]

Akahane, Y.

Amaratunga, G. A. J.

H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, “Photonic crystal & metamaterial filters based on 2D arrays of silicon nanopillars,” Prog. Electromagnetics Res. 113, 179–194 (2011).
[Crossref]

Arafa, S.

S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Opt. Commun. 384, 93–100 (2017).
[Crossref]

Arakawa, Y.

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[Crossref]

Asano, T.

Assefa, S.

S. Assefa, S. J. McNab, and Y. A. Vlasov, “Transmission of slow light through photonic crystal waveguide bends,” Opt. Lett. 31(6), 745–747 (2006).
[Crossref] [PubMed]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

Baba, T.

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3(2), 17 (2016).
[Crossref]

Benmerkhi, A.

S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Opt. Commun. 384, 93–100 (2017).
[Crossref]

Bienstman, P.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Birowosuto, M. D.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Borel, P.

Borrelli, M.

P. Dardano, M. Borrelli, M. Musto, G. Rotondo, and M. Iodice, “Computational analysis of cooling dynamics in photonic-crystal-based thermal switches,” J. Eur. Opt. Soc. 12(1), 1–7 (2016).
[Crossref]

Bouchemat, M.

S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Opt. Commun. 384, 93–100 (2017).
[Crossref]

Bouchemat, T.

S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Opt. Commun. 384, 93–100 (2017).
[Crossref]

Boyd, S. P.

Butt, H.

H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, “Photonic crystal & metamaterial filters based on 2D arrays of silicon nanopillars,” Prog. Electromagnetics Res. 113, 179–194 (2011).
[Crossref]

Chau, Y.-F.

Chen, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
[Crossref]

Chen, R. T.

A. Hosseini, X. Xu, H. Subbaraman, C.-Y. Lin, S. Rahimi, and R. T. Chen, “Large optical spectral range dispersion engineered silicon-based photonic crystal waveguide modulator,” Opt. Express 20(11), 12318–12325 (2012).
[Crossref] [PubMed]

X. Wang and R. T. Chen, “Ultra compact photonic crystal modulator based on silicon nano-pillar array filled with functional polymer,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (2008), paper ThP30.

Chen, Y.

Cui, K.

Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
[Crossref]

Dai, Q.

H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, “Photonic crystal & metamaterial filters based on 2D arrays of silicon nanopillars,” Prog. Electromagnetics Res. 113, 179–194 (2011).
[Crossref]

Dardano, P.

P. Dardano, M. Borrelli, M. Musto, G. Rotondo, and M. Iodice, “Computational analysis of cooling dynamics in photonic-crystal-based thermal switches,” J. Eur. Opt. Soc. 12(1), 1–7 (2016).
[Crossref]

Denoyer, G.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
[Crossref]

Ding, Y.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

Dong, J.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

Dutta, H. S.

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D Appl. Phys. 50(20), 203001 (2017).
[Crossref]

H. S. Dutta, A. K. Goyal, V. Srivastava, and S. Pal, “Coupling light in photonic crystal waveguides: a review,” Photonics Nanostruct. Fundam. Appl. 20, 41–58 (2016).
[Crossref]

Eich, M.

Fan, S.

Feng, G.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Feng, X.

Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
[Crossref]

Frandsen, L.

Frandsen, L. H.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

Gomyo, A.

Goyal, A. K.

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D Appl. Phys. 50(20), 203001 (2017).
[Crossref]

H. S. Dutta, A. K. Goyal, V. Srivastava, and S. Pal, “Coupling light in photonic crystal waveguides: a review,” Photonics Nanostruct. Fundam. Appl. 20, 41–58 (2016).
[Crossref]

Gu, T.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Harpøth, A.

He, S.

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6(1), 26038 (2016).
[Crossref] [PubMed]

Hinakura, Y.

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3(2), 17 (2016).
[Crossref]

Hocini, A.

S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Opt. Commun. 384, 93–100 (2017).
[Crossref]

Hosseini, A.

Hu, H.

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–425 (2015).
[Crossref]

Huang, Y.

Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
[Crossref]

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Hui, Z.

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

Iodice, M.

P. Dardano, M. Borrelli, M. Musto, G. Rotondo, and M. Iodice, “Computational analysis of cooling dynamics in photonic-crystal-based thermal switches,” J. Eur. Opt. Soc. 12(1), 1–7 (2016).
[Crossref]

Ippen, E.

Ippen, E. P.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

Jandieri, V.

V. Jandieri and R. Khomeriki, “Linear amplification of optical signal in coupled photonic crystal waveguides,” IEEE Photonics Technol. Lett. 27(6), 639–641 (2015).
[Crossref]

Jensen, J.

Joannopoulos, J. D.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19(6), 861–865 (2001).
[Crossref]

Johnson, S. G.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20(19), 21558–21575 (2012).
[Crossref] [PubMed]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[Crossref]

Khomeriki, R.

V. Jandieri and R. Khomeriki, “Linear amplification of optical signal in coupled photonic crystal waveguides,” IEEE Photonics Technol. Lett. 27(6), 639–641 (2015).
[Crossref]

Kitayama, K.

J. J. Vegas Olmos, M. Tokushima, and K. Kitayama, “Photonic add–drop filter based on integrated photonic crystal structures,” IEEE J. Sel. Top. Quantum Electron. 16(1), 332–337 (2010).
[Crossref]

M. Tokushima, J. J. V. Olmos, and K. Kitayama, “Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches,” J. Nanosci. Nanotechnol. 10(3), 1626–1634 (2010).
[Crossref] [PubMed]

Kolodziejski, L. A.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

Kosaka, H.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76(8), 952–954 (2000).
[Crossref]

Krause, M.

Kristensen, M.

Kuramochi, E.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Kwong, D.-L.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Lee, W.-D.

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Lin, C.-Y.

Liu, F.

Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
[Crossref]

Liu, W.

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6(1), 26038 (2016).
[Crossref] [PubMed]

Lo, G.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Lu, Y. Y.

McMillan, J. F.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

McNab, S. J.

Mekis, A.

Mortensen, N. A.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

Musto, M.

P. Dardano, M. Borrelli, M. Musto, G. Rotondo, and M. Iodice, “Computational analysis of cooling dynamics in photonic-crystal-based thermal switches,” J. Eur. Opt. Soc. 12(1), 1–7 (2016).
[Crossref]

Mutapcic, A.

Noda, S.

Notomi, M.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Nozaki, K.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Olmos, J. J. V.

M. Tokushima, J. J. V. Olmos, and K. Kitayama, “Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches,” J. Nanosci. Nanotechnol. 10(3), 1626–1634 (2010).
[Crossref] [PubMed]

Oskooi, A.

Pal, S.

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D Appl. Phys. 50(20), 203001 (2017).
[Crossref]

H. S. Dutta, A. K. Goyal, V. Srivastava, and S. Pal, “Coupling light in photonic crystal waveguides: a review,” Photonics Nanostruct. Fundam. Appl. 20, 41–58 (2016).
[Crossref]

Park, B.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
[Crossref]

Petrich, G. S.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

Petrov, A.

Polman, A.

A. Polman, “Erbium-doped planar optical amplifiers,” in Proceedings of 10th European Conference on Integrated Optics (2001), pp. 75–78.

Rahimi, S.

Rakich, P. T.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Rotondo, G.

P. Dardano, M. Borrelli, M. Musto, G. Rotondo, and M. Iodice, “Computational analysis of cooling dynamics in photonic-crystal-based thermal switches,” J. Eur. Opt. Soc. 12(1), 1–7 (2016).
[Crossref]

Russo, R.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
[Crossref]

Santipo, A.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
[Crossref]

Shi, P.

Shi, Y.

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6(1), 26038 (2016).
[Crossref] [PubMed]

Shinya, A.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Shirane, M.

Sigmund, O.

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Smith, H. I.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

Soljacic, M.

Song, B.-S.

Srivastava, V.

H. S. Dutta, A. K. Goyal, V. Srivastava, and S. Pal, “Coupling light in photonic crystal waveguides: a review,” Photonics Nanostruct. Fundam. Appl. 20, 41–58 (2016).
[Crossref]

Subbaraman, H.

Takiguchi, M.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Tamura, T.

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3(2), 17 (2016).
[Crossref]

Tateno, K.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Terada, Y.

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3(2), 17 (2016).
[Crossref]

Tokushima, M.

M. Tokushima, J. J. V. Olmos, and K. Kitayama, “Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches,” J. Nanosci. Nanotechnol. 10(3), 1626–1634 (2010).
[Crossref] [PubMed]

J. J. Vegas Olmos, M. Tokushima, and K. Kitayama, “Photonic add–drop filter based on integrated photonic crystal structures,” IEEE J. Sel. Top. Quantum Electron. 16(1), 332–337 (2010).
[Crossref]

M. Tokushima, J. Ushida, A. Gomyo, M. Shirane, and H. Yamada, “Efficient transmission mechanisms for waveguides with 90° bends in pillar photonic crystals,” J. Opt. Soc. Am. B 22(11), 2472–2479 (2005).
[Crossref]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[Crossref]

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76(8), 952–954 (2000).
[Crossref]

Tomita, A.

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76(8), 952–954 (2000).
[Crossref]

Ushida, J.

Vegas Olmos, J. J.

J. J. Vegas Olmos, M. Tokushima, and K. Kitayama, “Photonic add–drop filter based on integrated photonic crystal structures,” IEEE J. Sel. Top. Quantum Electron. 16(1), 332–337 (2010).
[Crossref]

Vlasov, Y. A.

Wang, Q.

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–425 (2015).
[Crossref]

Wang, X.

X. Wang and R. T. Chen, “Ultra compact photonic crystal modulator based on silicon nano-pillar array filled with functional polymer,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (2008), paper ThP30.

Wilkinson, T. D.

H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, “Photonic crystal & metamaterial filters based on 2D arrays of silicon nanopillars,” Prog. Electromagnetics Res. 113, 179–194 (2011).
[Crossref]

Wong, C. W.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Wu, B.

Xiao, J.

Xiao, S.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

Xu, J.

Xu, X.

Yamada, H.

M. Tokushima, J. Ushida, A. Gomyo, M. Shirane, and H. Yamada, “Efficient transmission mechanisms for waveguides with 90° bends in pillar photonic crystals,” J. Opt. Soc. Am. B 22(11), 2472–2479 (2005).
[Crossref]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[Crossref]

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76(8), 952–954 (2000).
[Crossref]

Yan, S.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

Yang, T.-J.

Yokoo, A.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Yu, M.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Zafar, R.

R. Zafar, “Increased buffering capacity over ultra large bandwidth in slow light based photonic crystal waveguides with elliptical nano-pillars,” Glob. J. Nano. 1(4), 555568 (2017).

Zhang, G.

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Zhang, J.

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6(1), 26038 (2016).
[Crossref] [PubMed]

Zhang, W.

Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
[Crossref]

Zhang, Y.-N.

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–425 (2015).
[Crossref]

Zhao, Q.

Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–425 (2015).
[Crossref]

Zhou, H.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Zhou, S.

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

Zhou, Y.

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
[Crossref]

Zhu, X.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

APL Photonics (1)

M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP subwavelength nanowire laser on silicon photonic crystal,” APL Photonics 2(4), 046106 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

H. Zhou, T. Gu, J. F. McMillan, M. Yu, G. Lo, D.-L. Kwong, G. Feng, S. Zhou, and C. W. Wong, “Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett. 108(11), 111106 (2016).
[Crossref]

M. Tokushima, H. Yamada, and Y. Arakawa, “1.5-µm-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab,” Appl. Phys. Lett. 84(21), 4298–4300 (2004).
[Crossref]

M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76(8), 952–954 (2000).
[Crossref]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 µm light in photonic crystal based on dielectric rods,” Appl. Phys. Lett. 85(25), 6110–6112 (2004).
[Crossref]

Glob. J. Nano. (1)

R. Zafar, “Increased buffering capacity over ultra large bandwidth in slow light based photonic crystal waveguides with elliptical nano-pillars,” Glob. J. Nano. 1(4), 555568 (2017).

IEEE J. Sel. Top. Quantum Electron. (1)

J. J. Vegas Olmos, M. Tokushima, and K. Kitayama, “Photonic add–drop filter based on integrated photonic crystal structures,” IEEE J. Sel. Top. Quantum Electron. 16(1), 332–337 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

V. Jandieri and R. Khomeriki, “Linear amplification of optical signal in coupled photonic crystal waveguides,” IEEE Photonics Technol. Lett. 27(6), 639–641 (2015).
[Crossref]

IEEE Trans. NanoTechnol. (1)

Y. Zhao, Y.-N. Zhang, Q. Wang, and H. Hu, “Review on the optimization methods of slow light in photonic crystal waveguide,” IEEE Trans. NanoTechnol. 14(3), 407–425 (2015).
[Crossref]

J. Eur. Opt. Soc. (1)

P. Dardano, M. Borrelli, M. Musto, G. Rotondo, and M. Iodice, “Computational analysis of cooling dynamics in photonic-crystal-based thermal switches,” J. Eur. Opt. Soc. 12(1), 1–7 (2016).
[Crossref]

J. Lightwave Technol. (1)

J. Nanosci. Nanotechnol. (1)

M. Tokushima, J. J. V. Olmos, and K. Kitayama, “Ultracompact photonic-waveguide circuits in Si-pillar photonic-crystal structures for integrated nanophotonic switches,” J. Nanosci. Nanotechnol. 10(3), 1626–1634 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (3)

J. Phys. D Appl. Phys. (1)

A. K. Goyal, H. S. Dutta, and S. Pal, “Recent advances and progress in photonic crystal-based gas sensors,” J. Phys. D Appl. Phys. 50(20), 203001 (2017).
[Crossref]

Nat. Commun. (1)

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8, 14411 (2017).
[Crossref] [PubMed]

Opt. Commun. (2)

S. Arafa, M. Bouchemat, T. Bouchemat, A. Benmerkhi, and A. Hocini, “Infiltrated photonic crystal cavity as a highly sensitive platform for glucose concentration detection,” Opt. Commun. 384, 93–100 (2017).
[Crossref]

Q. Zhao, K. Cui, X. Feng, F. Liu, W. Zhang, and Y. Huang, “Low loss sharp photonic crystal waveguide bends,” Opt. Commun. 355, 209–212 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Photonics (1)

Y. Hinakura, Y. Terada, T. Tamura, and T. Baba, “Wide spectral characteristics of Si photonic crystal Mach-Zehnder modulator fabricated by complementary metal-oxide-semiconductor process,” Photonics 3(2), 17 (2016).
[Crossref]

Photonics Nanostruct. Fundam. Appl. (1)

H. S. Dutta, A. K. Goyal, V. Srivastava, and S. Pal, “Coupling light in photonic crystal waveguides: a review,” Photonics Nanostruct. Fundam. Appl. 20, 41–58 (2016).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(6), 066608 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

H. Butt, Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, “Photonic crystal & metamaterial filters based on 2D arrays of silicon nanopillars,” Prog. Electromagnetics Res. 113, 179–194 (2011).
[Crossref]

Sci. Rep. (1)

J. Zhang, W. Liu, Y. Shi, and S. He, “High-Q side-coupled semi-2D-photonic crystal cavity,” Sci. Rep. 6(1), 26038 (2016).
[Crossref] [PubMed]

Other (10)

X. Wang and R. T. Chen, “Ultra compact photonic crystal modulator based on silicon nano-pillar array filled with functional polymer,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (2008), paper ThP30.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Second Edition) (Princeton University, 2011).

P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, A. Narasimha, D. Guckenberger, and M. Harrison, “Si photonics based high-speed optical transceivers,” in European Conference and Exhibition on Optical Communication 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper We.1.E.5.
[Crossref]

K. Yashiki, Y. Suzuki, Y. Hagihara, M. Kurihara, M. Tokushima, J. Fujikata, A. Ukita, K. Takemura, T. Shimizu, D. Okamoto, J. Ushida, S. Takahashi, T. Uemura, M. Okano, J. Tsuchida, T. Nedachi, M. Fushimi, I. Ogura, J. Inasaka, and K. Kurata, “5 mW/Gbps hybrid-integrated Si-photonics-based optical I/O cores and their 25-Gbps/ch error-free operation with over 300-m MMF,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th1G.1.
[Crossref]

G. Denoyer, A. Chen, B. Park, Y. Zhou, A. Santipo, and R. Russo, “Hybrid silicon photonic circuits and transceiver for 56Gb/s NRZ 2.2km transmission over single mode fiber,” in Proceedings of IEEE European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
[Crossref]

J. D. Joannopoulos, R. D. Mead, and J. N. Winn, Photonic crystals (Princeton University, 1995).

A. Polman, “Erbium-doped planar optical amplifiers,” in Proceedings of 10th European Conference on Integrated Optics (2001), pp. 75–78.

A. Simbula, M. Schatzl, L. Zagaglia, F. Alpeggiani, L. C. Andreani, F. Schäffler, T. Fromherz, M. Galli, and D. Gerace1, “Realization of high-Q/V photonic crystal cavities defined by an effective Aubry-André-Harper bichromatic potential,” APL Photonics 2, 056102 (2017).

T. K. Fryettl, K. L. Seyler, J. Zhengl, C.-H. Liu, X. Xu, and A. Majumdarl, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2,” 2D Mater. 4, 015031 (2017).

M. Tokushima is preparing a manuscript to be called “Integration-compatible fabrication process of Si vertical tapers for spot size converters.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic illustration of double-stage guided-mode converter comprised of semi-adiabatic pillar-to-wire waveguide (PWWG) coupler and transverse-magnetic-(TM)-mode-selective spot-size converter (SSC) between pillar photonic-crystal-(PhC) waveguide and outside waveguide such as optical fiber.
Fig. 2
Fig. 2 (a) Schematic and (b) more detailed illustration of semi-adiabatic PWWG coupler for coupling pillar-PhC and wire waveguides. Main parts are in yellow (PhC pillars), green (line-defect pillars), red (branch and bends of line-defect pillars), blue (line-defect pillars in Taper 1), and purple (wire-waveguide core in Taper 1, Taper 2, and outside of coupler). (c) Snapshot of electric-field distribution of light propagating through two-dimensional-(2D) coupler. Field is superimposed on line drawing of coupler, and is normalized between –1 (blue) and 1 (red).
Fig. 3
Fig. 3 Dispersion-relation diagrams of (a) wire waveguide, (b) and (c) Taper 2 at two different positions, (d) Taper 1 at one position, and (e) line-defect waveguide, all of which are contained in 2D semi-adiabatic PWWG coupler shown in Fig. 2(c). Specific waveguide structure of each part is illustrated on right-hand side of its diagram. Excited guided modes are indicated with bold black curves. Gray areas denote continua of extended modes of bulk pillar-PhC. (f) Transmission spectrum calculated for entire PWWG coupler.
Fig. 4
Fig. 4 Top-view schematic of essential part of semi-adiabatic PWWG coupler illustrating optimization method. Tip width of wire-waveguide core (in purple) wtip is most important parameter to establish high continuity of dispersion relations of guided modes throughout coupler. Deviation angle and diameter-increasing rate of defect pillars in Taper (blue circles) are adjusted in search of shortest length of Taper and smallest Q-factor of Joint while optical loss is sufficiently suppressed. Finally, pillars of T-shaped branch in Joint (red circles) are slightly shifted from lattice points of pillar PhC in directions denoted with red arrows.
Fig. 5
Fig. 5 Illustrated relation of decaying TM- and transverse-electric-(TE) light beams propagating along pillar-PhC line-defect waveguide and its bulk-PhC, respectively.
Fig. 6
Fig. 6 (a) Illustrated TM-mode-selective SSC (TM-SSC) having vertical taper, and calculated electric fields of (b) TM-like and (c) TE-like guided modes of TM-SSC at coupling end.
Fig. 7
Fig. 7 Fabrication process steps for forming (a)–(c) vertical Si tapers, (d)–(f) pillar-PhC waveguide devices, and (g) smooth end faces of waveguides.
Fig. 8
Fig. 8 (a) Top-view photograph of Si vertical taper. Oblique scanning-electron-microscopy (SEM) micrographs of (b) TM-SSC tip, (c) halfway waveguide to PWWG coupler, (d) entrance of PWWG coupler, and (e) end of wire-waveguide core inserted in PWWG coupler, all of which compose double-stage guided-mode converter. (f) Top-view SEM micrograph of joint region of optimized PWWG coupler.
Fig. 9
Fig. 9 Schematic illustration of measurement system for measuring transmission spectra of waveguide devices. Devices under test (DUTs) were pillar-PhC waveguide with semi-adiabatic PWWG couplers, wire waveguide with TM-SSCs only, and pillar-PhC waveguide with semi-adiabatic PWWG couplers and TM-SSCs as complete double-stage guided-mode converters.
Fig. 10
Fig. 10 Transmission spectra of pillar-PhC waveguide with semi-adiabatic PWWG couplers only, measured for (a) TM- and (b) TE-polarized light inputs. Lensed optical fibers were coupled to ends of single-mode wire-waveguides extending from couplers.
Fig. 11
Fig. 11 (a) Transmission spectra of wire waveguide with TM-SSCs measured for TM- and TE-light inputs and (b) those of wire waveguide with TM-SSCs again and pillar-PhC waveguide with both PWWG couplers and TM-SSCs as complete double-stage guided-mode converters measured for TM-light input.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η= η x η y = 2 ( w 1x w 2x + w 2x w 1x ) 2 ( w 1y w 2y + w 2y w 1y ) ,
R= ( n 1 n 2 n 1 + n 2 ) 2 .

Metrics