Abstract

We report a fabrication process of a polymer, and mirror-based out-of-plane optical coupler. In the process, a pre-formed mirror blank made of a buffer coat material is re-exposed by a laser direct writing tool with low numerical aperture of 0.1. The fabrication process is inherently fast because of the low numerical aperture (NA) process. The surface figure of the mirror is controlled under 0.04 waves in root-mean-square (RMS) at 1.55 μm wavelength, with mirror angle of 45 ± 1 degrees. Nominal insertion loss of 8.5dB of the mirror-based coupler was confirmed with polymer waveguides fabricated simultaneously.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Vertical adiabatic transition between a silica planar waveguide and an electro-optic polymer fabricated with gray-scale lithography

Daniel H. Chang, Talal Azfar, Seong-Ku Kim, Harold R. Fetterman, Cheng Zhang, and William H. Steier
Opt. Lett. 28(11) 869-871 (2003)

Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler

Xiaohui Lin, Amir Hosseini, Xinyuan Dou, Harish Subbaraman, and Ray T. Chen
Opt. Express 21(1) 60-69 (2013)

Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm

Kazuki Yasuhara, Feng Yu, and Takaaki Ishigure
Opt. Express 25(8) 8524-8533 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
    [Crossref]
  2. E. Timurdogan, Z. Su, K. Settaluri, S. Lin, S. Moazeni, C. Sun, G. Leake, D. D. Coolbaugh, B. R. Moss, M. Moresco, V. Stojanovic, and M. R. Watts, “An ultra low power 3D integrated intra-chip silicon electronic-photonic link,” 2015 Opt. Fiber Commun. Conf. Exhib. OFC Proc. 3 pp. (2015).
    [Crossref]
  3. K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23(22), 28264–28270 (2015).
    [Crossref] [PubMed]
  4. H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24(15), 16258–16266 (2016).
    [Crossref] [PubMed]
  5. Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
    [Crossref]
  6. M. Dai, L. Ma, Y. Xu, M. Lu, X. Liu, and Y. Chen, “Highly efficient and perfectly vertical chip-to-fiber dual-layer grating coupler,” Opt. Express 23(2), 1691–1698 (2015).
    [Crossref] [PubMed]
  7. H. Yamada, M. Nozawa, M. Kinoshita, and K. Ohashi, “Vertical-coupling optical interface for on-chip optical interconnection,” Opt. Express 19(2), 698–703 (2011).
    [Crossref] [PubMed]
  8. A. Flores, S. Song, J. J. Yang, Z. Liu, and M. R. Wang, “High-Speed Optical Interconnect Coupler Based on Soft Lithography Ribbons,” J. Lightwave Technol. 26(13), 1956–1963 (2008).
    [Crossref]
  9. F. Wang, F. Liu, and A. Adibi, “45 Degree Polymer Micromirror Integration for Board-Level Three-Dimensional Optical Interconnects,” Opt. Express 17(13), 10514–10521 (2009).
    [Crossref] [PubMed]
  10. M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
    [Crossref]
  11. N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
    [Crossref]
  12. N. M. J. E. N. Glytsis, N. M. Jokerst, R. A. Villalaz, Sang-Yeon Cho, Shun-Der Wu, M. A. Zhaoran Huang, Brooke, and T. K. Gaylord, “Substrate-Embedded and Flip-Chip-Bonded Photodetector Polymer-Based Optical Interconnects: Analysis, Design, and Performance,” J. Lightwave Technol. 21(10), 2382–2394 (2003).
    [Crossref]
  13. J. Schrauwen, S. Scheerlinck, D. Van Thourhout, and R. Baets, “Polymer wedge for perfectly vertical light coupling to silicon,” in (2009), Vol. 7218, p. 72180B–72180B–8.
  14. G. Jiang, S. Baig, and M. R. Wang, “Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection,” J. Lightwave Technol. 31, 1835–1841 (2013).
    [Crossref]
  15. X. Lin, X. Dou, A. X. Wang, and R. T. Chen, “Polymeric Waveguide Array with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” Proc. SPIE 7944, 794411 (2011).
    [Crossref]
  16. C. Strandman, L. Rosengren, H. G. A. Elderstig, and Y. Backlund, “Fabrication of 45 deg; mirrors together with well-defined v-grooves using wet anisotropic etching of silicon,” J. Microelectromech. Syst. 4(4), 213–219 (1995).
    [Crossref]
  17. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, and D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11(26), 3555–3561 (2003).
    [Crossref] [PubMed]
  18. M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Opt. Photonik 6(4), 40–43 (2011).
    [Crossref]
  19. “EpoCore & EpoClad Serien | micro resist technology GmbH,” http://www.microresist.de/en/products/negative-photoresists/uv-lithography-broadband-and-i-line-exposure/epocore-epoclad-serien .
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).
  21. “Lumerical Solutions, Inc. | Innovative Photonic Design Tools,” https://www.lumerical.com/ .
  22. J. M. Tamkin, B. Bagwell, B. T. Kimbrough, G. Jabbour, and M. R. Descour, “High-speed gray-scale laser direct-write technology for micro-optic fabrication,” in Micromachining Technology for Micro-Optics and Nano-Optics (2003), Vol. 4984, pp. 210–218.
  23. M. A. Zaverton, J. Sierchio, Y.-S. Kim, D. Hansen, W. Bletcher, J. Tamkin, and T. Milster, “Maskless Lithography Tool for Fabrication and Inspection of Diffractive Optical Elements and Computer Generated Holograms,” in International Optical Design Conference and Optical Fabrication and Testing(2010), Paper OTuC5 (Optical Society of America, 2010), p. OTuC5.
    [Crossref]
  24. C. Summitt, S. Wang, L. Johnson, M. Zaverton, T. Milster, and Y. Takashima, “Flexible micro-optics fabrication by direct laser writing toward CMOS compatible 3D optical circuit,” in G. von Freymann, W. V. Schoenfeld, and R. C. Rumpf, eds. (2013), p. 86130K.
  25. C. Summitt, S. Wang, L. Johnson, M. Zaverton, T. Ge, T. Milster, and Y. Takashima, “Micro-optics fabrication by mask-based and mask-less mixed lithography process towards 3D optical circuits,” in G. von Freymann, W. V. Schoenfeld, and R. C. Rumpf, eds. (2014), p. 89740C.
  26. W. Eidelloth and R. L. Sandstrom, “Wet etching of gold films compatible with high Tc superconducting thin films,” Appl. Phys. Lett. 59(13), 1632–1634 (1991).
    [Crossref]
  27. R. J. Jackman, J. L. Wilbur, and G. M. Whitesides, “Fabrication of submicrometer features on curved substrates by microcontact printing,” Science 269(5224), 664–666 (1995).
    [Crossref] [PubMed]
  28. D. Derickson, ed., Fiber Optic Test and Measurement, 1st ed. (Prentice Hall, 1997).
  29. “SM-13,” https://www.newport.com/p/SM-13 .
  30. “JSR Micro / Materials Innovation,” http://jsr-nv.savvybyte.com/index.php/ElectronicMaterials/PackagingMaterials/WPR/ .
  31. V. Prajzler, P. Nekvindova, P. Hybs, and V. Jerabek, “Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards,” Radioengineering 24(2), 442–448 (2015).
    [Crossref]
  32. Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Mode Converter with Polymer Long-Period Waveguide Grating,” in Asia Communications and Photonics Conference 2014 (2014), Paper AW4C.4 (Optical Society of America, 2014), p. AW4C.4.
    [Crossref]
  33. S. K. Mishra, B. Zou, and K. S. Chiang, “Surface Plasmon Resonance Sensor Based on a Polymer Waveguide with a Copper Thin-Film Overlay,” in Asia Communications and Photonics Conference 2015 (2015), Paper AM3H.6 (Optical Society of America, 2015), p. AM3H.6.
    [Crossref]
  34. G. Jiang, S. Baig, and M. R. Wang, “Flexible Polymer Waveguides With Integrated Mirrors Fabricated by Soft Lithography for Optical Interconnection,” J. Lightwave Technol. 31(11), 1835–1841 (2013).
    [Crossref]
  35. T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical Z-connections,” J. Lightwave Technol. 24(11), 4345–4352 (2006).
    [Crossref]
  36. J. Inoue, T. Ogura, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Fabrication of Embedded 45-Degree Micromirror Using Liquid-Immersion Exposure for Single-Mode Optical Waveguides,” J. Lightwave Technol. 30(11), 1563–1568 (2012).
    [Crossref]
  37. Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
    [Crossref]
  38. S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
    [Crossref] [PubMed]
  39. Y. Aoki, J. R. Mizuno, Y. Shimada, and K. Iga, “Parallel and bi-directional optical interconnect module using vertical cavity surface emitting lasers (VCSELs) and 3-D micro optical bench (MOB),” in 1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455) (1999), pp. III9–II10.
  40. K. Iga, M. Oikawa, S. Misawa, J. Banno, and Y. Kokubun, “Stacked planar optics: an application of the planar microlens,” Appl. Opt. 21(19), 3456–3460 (1982).
    [Crossref] [PubMed]
  41. “3D printing on the micrometer scale - Nanoscribe GmbH,” https://www.nanoscribe.de/files/4514/8179/1302/DataSheet_PPGT_V04_2016_web.pdf .

2016 (1)

2015 (3)

2014 (1)

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (4)

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

X. Lin, X. Dou, A. X. Wang, and R. T. Chen, “Polymeric Waveguide Array with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” Proc. SPIE 7944, 794411 (2011).
[Crossref]

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Opt. Photonik 6(4), 40–43 (2011).
[Crossref]

H. Yamada, M. Nozawa, M. Kinoshita, and K. Ohashi, “Vertical-coupling optical interface for on-chip optical interconnection,” Opt. Express 19(2), 698–703 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (2)

A. Flores, S. Song, J. J. Yang, Z. Liu, and M. R. Wang, “High-Speed Optical Interconnect Coupler Based on Soft Lithography Ribbons,” J. Lightwave Technol. 26(13), 1956–1963 (2008).
[Crossref]

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

2006 (1)

2005 (1)

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

2003 (3)

1995 (2)

R. J. Jackman, J. L. Wilbur, and G. M. Whitesides, “Fabrication of submicrometer features on curved substrates by microcontact printing,” Science 269(5224), 664–666 (1995).
[Crossref] [PubMed]

C. Strandman, L. Rosengren, H. G. A. Elderstig, and Y. Backlund, “Fabrication of 45 deg; mirrors together with well-defined v-grooves using wet anisotropic etching of silicon,” J. Microelectromech. Syst. 4(4), 213–219 (1995).
[Crossref]

1991 (1)

W. Eidelloth and R. L. Sandstrom, “Wet etching of gold films compatible with high Tc superconducting thin films,” Appl. Phys. Lett. 59(13), 1632–1634 (1991).
[Crossref]

1984 (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

1982 (1)

Adibi, A.

Aksu, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Altug, H.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Ando, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[Crossref]

Arai, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[Crossref]

Artar, A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Asama, K.

Athale, R. A.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Awatsuji, Y.

Backlund, Y.

C. Strandman, L. Rosengren, H. G. A. Elderstig, and Y. Backlund, “Fabrication of 45 deg; mirrors together with well-defined v-grooves using wet anisotropic etching of silicon,” J. Microelectromech. Syst. 4(4), 213–219 (1995).
[Crossref]

Baets, R.

Baig, S.

Banno, J.

Bauwelinck, J.

Bosman, E.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Brooke,

Cardile, P.

Carroll, L.

Chen, R. T.

X. Lin, X. Dou, A. X. Wang, and R. T. Chen, “Polymeric Waveguide Array with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” Proc. SPIE 7944, 794411 (2011).
[Crossref]

Chen, Y.

Dai, M.

Daly, A.

Debaes, C.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Dillon, T.

Dokmeci, M. R.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Dou, X.

X. Lin, X. Dou, A. X. Wang, and R. T. Chen, “Polymeric Waveguide Array with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” Proc. SPIE 7944, 794411 (2011).
[Crossref]

Eidelloth, W.

W. Eidelloth and R. L. Sandstrom, “Wet etching of gold films compatible with high Tc superconducting thin films,” Appl. Phys. Lett. 59(13), 1632–1634 (1991).
[Crossref]

Elderstig, H. G. A.

C. Strandman, L. Rosengren, H. G. A. Elderstig, and Y. Backlund, “Fabrication of 45 deg; mirrors together with well-defined v-grooves using wet anisotropic etching of silicon,” J. Microelectromech. Syst. 4(4), 213–219 (1995).
[Crossref]

Flores, A.

Gaylord, T. K.

Glytsis, N. M. J. E. N.

Goodman, J. W.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Häfner, M.

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Opt. Photonik 6(4), 40–43 (2011).
[Crossref]

Hendrickx, N.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Hori, A.

Huang, M.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Hybs, P.

V. Prajzler, P. Nekvindova, P. Hybs, and V. Jerabek, “Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Iga, K.

Immonen, M.

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

Inoue, J.

Irmscher, G.

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

Ishii, Y.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[Crossref]

Jackman, R. J.

R. J. Jackman, J. L. Wilbur, and G. M. Whitesides, “Fabrication of submicrometer features on curved substrates by microcontact printing,” Science 269(5224), 664–666 (1995).
[Crossref] [PubMed]

Jerabek, V.

V. Prajzler, P. Nekvindova, P. Hybs, and V. Jerabek, “Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Jiang, G.

Jokerst, N. M.

Karppinen, M.

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

Kaur, K. S.

Keil, N.

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

Kinoshita, M.

Kintaka, K.

Kivilahti, J. K.

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

Kleinert, M.

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

Koike, S.

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[Crossref]

Kokubun, Y.

Kung, S.-Y.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Lee, J. S.

Leonberger, F. J.

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Lin, C.

Lin, X.

X. Lin, X. Dou, A. X. Wang, and R. T. Chen, “Polymeric Waveguide Array with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” Proc. SPIE 7944, 794411 (2011).
[Crossref]

Liu, F.

Liu, X.

Liu, Z.

Lu, H.

Lu, M.

Ma, L.

Maese-Novo, A.

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

Meyer, R.

Misawa, S.

Miyamoto, Y.

Miyazaki, M.

Murakowski, J.

Nekvindova, P.

V. Prajzler, P. Nekvindova, P. Hybs, and V. Jerabek, “Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Nishio, K.

Nozawa, M.

O’Brien, P.

Ogura, T.

Ohashi, K.

Oikawa, M.

Ortsiefer, M.

Osten, W.

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Opt. Photonik 6(4), 40–43 (2011).
[Crossref]

Prajzler, V.

V. Prajzler, P. Nekvindova, P. Hybs, and V. Jerabek, “Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Prather, D.

Pruss, C.

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Opt. Photonik 6(4), 40–43 (2011).
[Crossref]

Pustai, D.

Rosengren, L.

C. Strandman, L. Rosengren, H. G. A. Elderstig, and Y. Backlund, “Fabrication of 45 deg; mirrors together with well-defined v-grooves using wet anisotropic etching of silicon,” J. Microelectromech. Syst. 4(4), 213–219 (1995).
[Crossref]

Sandstrom, R. L.

W. Eidelloth and R. L. Sandstrom, “Wet etching of gold films compatible with high Tc superconducting thin films,” Appl. Phys. Lett. 59(13), 1632–1634 (1991).
[Crossref]

Sang-Yeon Cho,

Scarcella, C.

Schwartz, E.

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

Selvarasah, S.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Shimoda, N.

Shun-Der Wu,

Song, S.

Spiga, S.

Strandman, C.

C. Strandman, L. Rosengren, H. G. A. Elderstig, and Y. Backlund, “Fabrication of 45 deg; mirrors together with well-defined v-grooves using wet anisotropic etching of silicon,” J. Microelectromech. Syst. 4(4), 213–219 (1995).
[Crossref]

Subramanian, A. Z.

Sure, A.

Thienpont, H.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Ura, S.

Van Daele, P.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Van Erps, J.

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Van Kerrebrouck, J.

Van Steenberge, G.

Verplancke, R.

Villalaz, R. A.

Wang, A. X.

X. Lin, X. Dou, A. X. Wang, and R. T. Chen, “Polymeric Waveguide Array with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” Proc. SPIE 7944, 794411 (2011).
[Crossref]

Wang, F.

Wang, M. R.

Whitesides, G. M.

R. J. Jackman, J. L. Wilbur, and G. M. Whitesides, “Fabrication of submicrometer features on curved substrates by microcontact printing,” Science 269(5224), 664–666 (1995).
[Crossref] [PubMed]

Wilbur, J. L.

R. J. Jackman, J. L. Wilbur, and G. M. Whitesides, “Fabrication of submicrometer features on curved substrates by microcontact printing,” Science 269(5224), 664–666 (1995).
[Crossref] [PubMed]

Xu, Y.

Yamada, H.

Yang, J. J.

Yanik, A. A.

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Yoshimura, T.

Zawadzki, C.

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

Zhao, Y.

Zhaoran Huang, M. A.

Adv. Mater. (1)

S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, “Flexible Plasmonics on Unconventional and Nonplanar Substrates,” Adv. Mater. 23(38), 4422–4430 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Eidelloth and R. L. Sandstrom, “Wet etching of gold films compatible with high Tc superconducting thin films,” Appl. Phys. Lett. 59(13), 1632–1634 (1991).
[Crossref]

IEEE Photonics Technol. Lett. (2)

N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technol. Lett. 20(20), 1727–1729 (2008).
[Crossref]

Z. Zhang, M. Kleinert, A. Maese-Novo, G. Irmscher, E. Schwartz, C. Zawadzki, and N. Keil, “Multicore Polymer Waveguides and Multistep 45deg Mirrors for 3D Photonic Integration,” IEEE Photonics Technol. Lett. 26(19), 1986–1989 (2014).
[Crossref]

IEEE Trans. Adv. Packag. (1)

Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag. 26(2), 122–127 (2003).
[Crossref]

IEEE Trans. Electron. Packag. Manuf. (1)

M. Immonen, M. Karppinen, and J. K. Kivilahti, “Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects,” IEEE Trans. Electron. Packag. Manuf. 28(4), 304–311 (2005).
[Crossref]

J. Lightwave Technol. (6)

J. Microelectromech. Syst. (1)

C. Strandman, L. Rosengren, H. G. A. Elderstig, and Y. Backlund, “Fabrication of 45 deg; mirrors together with well-defined v-grooves using wet anisotropic etching of silicon,” J. Microelectromech. Syst. 4(4), 213–219 (1995).
[Crossref]

Opt. Express (6)

Opt. Photonik (1)

M. Häfner, C. Pruss, and W. Osten, “Laser direct writing,” Opt. Photonik 6(4), 40–43 (2011).
[Crossref]

Proc. IEEE (1)

J. W. Goodman, F. J. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984).
[Crossref]

Proc. SPIE (1)

X. Lin, X. Dou, A. X. Wang, and R. T. Chen, “Polymeric Waveguide Array with 45 Degree Slopes Fabricated by Bottom Side Tilted Exposure,” Proc. SPIE 7944, 794411 (2011).
[Crossref]

Radioengineering (1)

V. Prajzler, P. Nekvindova, P. Hybs, and V. Jerabek, “Properties of the Optical Planar Polymer Waveguides Deposited on Printed Circuit Boards,” Radioengineering 24(2), 442–448 (2015).
[Crossref]

Science (1)

R. J. Jackman, J. L. Wilbur, and G. M. Whitesides, “Fabrication of submicrometer features on curved substrates by microcontact printing,” Science 269(5224), 664–666 (1995).
[Crossref] [PubMed]

Other (16)

D. Derickson, ed., Fiber Optic Test and Measurement, 1st ed. (Prentice Hall, 1997).

“SM-13,” https://www.newport.com/p/SM-13 .

“JSR Micro / Materials Innovation,” http://jsr-nv.savvybyte.com/index.php/ElectronicMaterials/PackagingMaterials/WPR/ .

J. Schrauwen, S. Scheerlinck, D. Van Thourhout, and R. Baets, “Polymer wedge for perfectly vertical light coupling to silicon,” in (2009), Vol. 7218, p. 72180B–72180B–8.

Y. Yang, K. Chen, W. Jin, and K. S. Chiang, “Mode Converter with Polymer Long-Period Waveguide Grating,” in Asia Communications and Photonics Conference 2014 (2014), Paper AW4C.4 (Optical Society of America, 2014), p. AW4C.4.
[Crossref]

S. K. Mishra, B. Zou, and K. S. Chiang, “Surface Plasmon Resonance Sensor Based on a Polymer Waveguide with a Copper Thin-Film Overlay,” in Asia Communications and Photonics Conference 2015 (2015), Paper AM3H.6 (Optical Society of America, 2015), p. AM3H.6.
[Crossref]

Y. Aoki, J. R. Mizuno, Y. Shimada, and K. Iga, “Parallel and bi-directional optical interconnect module using vertical cavity surface emitting lasers (VCSELs) and 3-D micro optical bench (MOB),” in 1999 Digest of the LEOS Summer Topical Meetings: Nanostructures and Quantum Dots/WDM Components/VCSELs and Microcavaties/RF Photonics for CATV and HFC Systems (Cat. No.99TH8455) (1999), pp. III9–II10.

E. Timurdogan, Z. Su, K. Settaluri, S. Lin, S. Moazeni, C. Sun, G. Leake, D. D. Coolbaugh, B. R. Moss, M. Moresco, V. Stojanovic, and M. R. Watts, “An ultra low power 3D integrated intra-chip silicon electronic-photonic link,” 2015 Opt. Fiber Commun. Conf. Exhib. OFC Proc. 3 pp. (2015).
[Crossref]

“EpoCore & EpoClad Serien | micro resist technology GmbH,” http://www.microresist.de/en/products/negative-photoresists/uv-lithography-broadband-and-i-line-exposure/epocore-epoclad-serien .

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, 2007).

“Lumerical Solutions, Inc. | Innovative Photonic Design Tools,” https://www.lumerical.com/ .

J. M. Tamkin, B. Bagwell, B. T. Kimbrough, G. Jabbour, and M. R. Descour, “High-speed gray-scale laser direct-write technology for micro-optic fabrication,” in Micromachining Technology for Micro-Optics and Nano-Optics (2003), Vol. 4984, pp. 210–218.

M. A. Zaverton, J. Sierchio, Y.-S. Kim, D. Hansen, W. Bletcher, J. Tamkin, and T. Milster, “Maskless Lithography Tool for Fabrication and Inspection of Diffractive Optical Elements and Computer Generated Holograms,” in International Optical Design Conference and Optical Fabrication and Testing(2010), Paper OTuC5 (Optical Society of America, 2010), p. OTuC5.
[Crossref]

C. Summitt, S. Wang, L. Johnson, M. Zaverton, T. Milster, and Y. Takashima, “Flexible micro-optics fabrication by direct laser writing toward CMOS compatible 3D optical circuit,” in G. von Freymann, W. V. Schoenfeld, and R. C. Rumpf, eds. (2013), p. 86130K.

C. Summitt, S. Wang, L. Johnson, M. Zaverton, T. Ge, T. Milster, and Y. Takashima, “Micro-optics fabrication by mask-based and mask-less mixed lithography process towards 3D optical circuits,” in G. von Freymann, W. V. Schoenfeld, and R. C. Rumpf, eds. (2014), p. 89740C.

“3D printing on the micrometer scale - Nanoscribe GmbH,” https://www.nanoscribe.de/files/4514/8179/1302/DataSheet_PPGT_V04_2016_web.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 A schematic of an optical interconnect using an out-of-plane optical coupler.
Figure 2
Figure 2 Fabrication process of a 45 degree optical coupler with an under cladding layer on a Si substrate. A binary mask patterns a latent image of a mirror blank inside a buffer coat material. Local exposure at a distance L from the left edge of the mirror blank by direct laser writing form a mirror surface after development. Waveguide core is coated and patterned followed by coating of an upper cladding layer.
Fig. 3
Fig. 3 Block diagram of the MLT. A 365 nm laser enters an optical relay system which directs the beam to an AOM. The beam is modulated as referenced by the input bitmap pattern to produce a variable exposure as the sample is translated.
Fig. 4
Fig. 4 Left: (a-d) Cross sectional SEM showing the effect of shifting exposure of laser direct writing L: location of the focused UV spot measured from the left edge of the mirror blank on surface topology of mirror surface. Also indicated is RMS error in waves (λ = 1.55 µm): (a) L = 8µm, (b) 9µm, (c) 10µm, and (d) 11µm, all with dose = 1140 mJ/cm2. Right: (e) Surface topology of the mirrors depicted in (a-d) is plotted.
Fig. 5
Fig. 5 Left: (a-d) Cross sectional SEM of mirror, (a) 55 degrees for 266 mJ/cm2, 45 degrees for (b) 646 mJ/cm2, (c) 48 degrees for 798 mJ/cm2, and (d) 52 degrees for 1140 mJ/cm2. Right: (e) Surface topology after development for dosages of (a)-(d).
Fig. 6
Fig. 6 Topology of WPR5100 after applying linear exposure dose. Nonlinear response to the dose can be seen around 150-250 μm.
Fig. 7
Fig. 7 (a) Optical micrograph showing top down view of optical waveguides and coupler before applying the upper cladding layer. The gold coated region covers the optical coupler only but not the waveguides. (b) Cross sectional SEM of optical coupler, (c) Cross sectional SEM of waveguide. Note: (b) and (c) are cleaved from opposite side of sample used in (a). The output mode is fit to a Gaussian curve with 1/e2 diameter = 13.1 µm (d).
Fig. 8
Fig. 8 Modal analysis of waveguide (outlined in black). (a) Supported waveguide mode when Epoclad is used for upper and lower cladding using Epocore for the core material. (b) Supported waveguide mode when no upper cladding layer is used. (c) Cross section along the z axis of the supported waveguide modes with and without upper cladding layer.

Tables (1)

Tables Icon

Table 1 Loss measurement results

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T w 0 [ 1+ ( d z R ) 2 ] 1/2 w 0
Insertion loss=αβγδe

Metrics