Abstract

One promising application of photonics to astronomical instrumentation is the miniaturization of near-infrared (NIR) spectrometers for large ground- and space-based astronomical telescopes. Here we present new results from our effort to fabricate arrayed waveguide grating (AWG) spectrometers for astronomical applications entirely in-house. Our latest devices have a peak overall of ∼23%, a spectral resolving power (λ/δλ) of ~1300, and cover the entire H band (1450−1650 nm) for Transverse Electric (TE) polarization. These AWGs use a silica-on-silicon platform with a very thin layer of Si3N4 as the core of the waveguides. They have a free spectral range of ~10 nm at a of ~1600 about wavelength nm and a contrast ratio or crosstalk of 2% (−17 dB). Various practical aspects of implementing AWGs as astronomical spectrographs are discussed, including the coupling of the light between the fibers and AWGs, high-temperature annealing to improve the throughput of the devices at ~1500 nm, cleaving at the output focal plane of the AWG to provide continuous wavelength coverage, and a novel algorithm to make the devices polarization insensitive over a broad band. These milestones will guide the development of the next generation of AWGs with wider free spectral range and higher resolving power and throughput.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy

Nick Cvetojevic, Nemanja Jovanovic, Jon Lawrence, Michael Withford, and Joss Bland-Hawthorn
Opt. Express 20(3) 2062-2072 (2012)

Characterization and on-sky demonstration of an integrated photonic spectrograph for astronomy

N. Cvetojevic, J. S. Lawrence, S. C. Ellis, J. Bland-Hawthorn, R. Haynes, and A. Horton
Opt. Express 17(21) 18643-18650 (2009)

Low-crosstalk Si arrayed waveguide grating with parabolic tapers

Tong Ye, Yunfei Fu, Lei Qiao, and Tao Chu
Opt. Express 22(26) 31899-31906 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 62690N (2006).
    [Crossref]
  2. N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18, 8277–8285 (2010).
    [Crossref] [PubMed]
  3. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournil’, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
    [Crossref]
  4. S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
    [Crossref]
  5. R. J. Harris and J. Allington-Smith, “Applications of integrated photonic spectrographs in astronomy,” Mon. Not. R. Astron. Soc. 428, 3139–3150 (2013).
    [Crossref]
  6. K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14, 4064–4072 (2006).
    [Crossref] [PubMed]
  7. J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17, 1880–1884 (2009).
    [Crossref] [PubMed]
  8. J. Allington-Smith and J. Bland-Hawthorn, “Astrophotonic spectroscopy: defining the potential advantage,” Mon. Not. R. Astron. Soc. 404, 232–238 (2010).
  9. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [invited],” Photon. Res. 3, B47–B59 (2015).
    [Crossref]
  10. N. Cvetojevic, N. Jovanovic, J. Bland-Hawthorn, R. Haynes, and J. Lawrence, “Miniature spectrographs: characterization of arrayed waveguide gratings for astronomy,” Proc. SPIE 7739, 77394H (2010).
    [Crossref]
  11. P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
    [Crossref]
  12. M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 22 (1996).
    [Crossref]
  13. J. F. Bauters, M. J. Heck, D. John, M.-C. Tien, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss silica-based waveguides with millimeter bend radius,” in Proceedings of the 36th European Conference on Optical Communication, 1–3 (2010).
  14. D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss silicon nitride arrayed-waveguide grating (de) multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
    [Crossref] [PubMed]
  15. I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.
  16. N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
    [Crossref] [PubMed]
  17. N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
    [Crossref]
  18. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18, 8430–8439 (2010).
    [Crossref] [PubMed]
  19. R. R. Thomson, T. A. Birks, S. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
    [Crossref] [PubMed]
  20. T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. Leon-Saval, and R. R. Thomson, “The photonic lantern,” Adv. Opt. Photon. 7, 107–167 (2015).
    [Crossref]
  21. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
    [Crossref]
  22. G. Meltz, W. Morey, and W. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
    [Crossref] [PubMed]
  23. C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
    [Crossref]
  24. E. Lindley, S.-S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22, 31575–31581 (2014).
    [Crossref]
  25. T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
    [Crossref]
  26. J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
    [Crossref]
  27. P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
    [Crossref]
  28. R. Salvaterra, “High redshift gamma-ray bursts,” J. High Energy Astrophys. 7, 35–43 (2015).
    [Crossref]
  29. “Gemini telescope GNIRS slit properties,” http://http://www.gemini.edu/sciops/instruments/gnirs/spectroscopy/slits#throughputs .
  30. “MOIRCS grisms,” https://subarutelescope.org/Observing/Instruments/MOIRCS/spec_sensitivity.html .
  31. D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light-Sci. Appl. 1, e1 (2012).
    [Crossref]
  32. J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
    [Crossref] [PubMed]
  33. J. F. Bauters, M. J. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
    [Crossref] [PubMed]
  34. T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).
  35. “Fimmwave Photon Design,” https://www.photond.com .
  36. E. Irene, “Residual stress in silicon nitride films,” J. Electron. Mater. 5, 287–298 (1976).
    [Crossref]
  37. Y. Sakamaki, S. Kamei, T. Hashimoto, T. Kitoh, and H. Takahashi, “Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method,” J. Lightwave Technol. 27, 5710–5715 (2009).
    [Crossref]
  38. C. H. Henry, R. Kazarinov, H. Lee, K. Orlowsky, and L. Katz, “Low loss silicon nitride – silica optical waveguides on silicon,” Appl. Opt. 26, 2621–2624 (1987).
    [Crossref] [PubMed]
  39. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
    [Crossref]
  40. S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
    [Crossref]
  41. H. Takahashi, Y. Hibino, and I. Nishi, “Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992).
    [Crossref] [PubMed]
  42. R. Smith and S. Collins, “Thick films of silicon nitride,” Sensor. Actuat. A-Phys. 23, 830–834 (1990).
    [Crossref]
  43. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).
  44. S. Janz and J. Čtyrokỳ, Frontiers in Planar Lightwave Circuit Technology (Springer, 2006).
    [Crossref]

2016 (3)

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
[Crossref]

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).

2015 (3)

2014 (2)

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

E. Lindley, S.-S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22, 31575–31581 (2014).
[Crossref]

2013 (3)

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

R. J. Harris and J. Allington-Smith, “Applications of integrated photonic spectrographs in astronomy,” Mon. Not. R. Astron. Soc. 428, 3139–3150 (2013).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournil’, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express 3, 1523–1536 (2013).
[Crossref]

2012 (4)

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light-Sci. Appl. 1, e1 (2012).
[Crossref]

2011 (4)

2010 (4)

J. Allington-Smith and J. Bland-Hawthorn, “Astrophotonic spectroscopy: defining the potential advantage,” Mon. Not. R. Astron. Soc. 404, 232–238 (2010).

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18, 8430–8439 (2010).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, J. Bland-Hawthorn, R. Haynes, and J. Lawrence, “Miniature spectrographs: characterization of arrayed waveguide gratings for astronomy,” Proc. SPIE 7739, 77394H (2010).
[Crossref]

N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18, 8277–8285 (2010).
[Crossref] [PubMed]

2009 (2)

2006 (3)

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 62690N (2006).
[Crossref]

K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14, 4064–4072 (2006).
[Crossref] [PubMed]

2003 (1)

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

1997 (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[Crossref]

1996 (1)

M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 22 (1996).
[Crossref]

1995 (1)

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

1992 (1)

1990 (1)

R. Smith and S. Collins, “Thick films of silicon nitride,” Sensor. Actuat. A-Phys. 23, 830–834 (1990).
[Crossref]

1989 (1)

1987 (1)

1976 (1)

E. Irene, “Residual stress in silicon nitride films,” J. Electron. Mater. 5, 287–298 (1976).
[Crossref]

Akca, I. B.

I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.

Allington-Smith, J.

R. J. Harris and J. Allington-Smith, “Applications of integrated photonic spectrographs in astronomy,” Mon. Not. R. Astron. Soc. 428, 3139–3150 (2013).
[Crossref]

J. Allington-Smith and J. Bland-Hawthorn, “Astrophotonic spectroscopy: defining the potential advantage,” Mon. Not. R. Astron. Soc. 404, 232–238 (2010).

Argyros, A.

Auner, G. W.

Avrutsky, I.

Baets, R.

Barton, J. S.

Bauters, J.

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light-Sci. Appl. 1, e1 (2012).
[Crossref]

Bauters, J. F.

Betters, C.

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Bienstman, P.

Birks, T. A.

Bland-Hawthorn, J.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
[Crossref]

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).

E. Lindley, S.-S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22, 31575–31581 (2014).
[Crossref]

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

R. R. Thomson, T. A. Birks, S. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref] [PubMed]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18, 8430–8439 (2010).
[Crossref] [PubMed]

J. Allington-Smith and J. Bland-Hawthorn, “Astrophotonic spectroscopy: defining the potential advantage,” Mon. Not. R. Astron. Soc. 404, 232–238 (2010).

N. Cvetojevic, N. Jovanovic, J. Bland-Hawthorn, R. Haynes, and J. Lawrence, “Miniature spectrographs: characterization of arrayed waveguide gratings for astronomy,” Proc. SPIE 7739, 77394H (2010).
[Crossref]

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17, 1880–1884 (2009).
[Crossref] [PubMed]

J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 62690N (2006).
[Crossref]

Blumenthal, D. J.

Bogaerts, W.

Bowers, J. E.

Bruinink, C. M.

Bryant, J.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Brzeski, J.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Case, S.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Cerutti, L.

Chaganti, K.

Chen, X.

Cheng, W.

Colless, M.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Collins, S.

R. Smith and S. Collins, “Thick films of silicon nitride,” Sensor. Actuat. A-Phys. 23, 830–834 (1990).
[Crossref]

Couch, Warrick

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Cox, M. P.

Croom, S.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Ctyrok?, J.

S. Janz and J. Čtyrokỳ, Frontiers in Planar Lightwave Circuit Technology (Springer, 2006).
[Crossref]

Cvetojevic, N.

E. Lindley, S.-S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22, 31575–31581 (2014).
[Crossref]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, J. Bland-Hawthorn, R. Haynes, and J. Lawrence, “Miniature spectrographs: characterization of arrayed waveguide gratings for astronomy,” Proc. SPIE 7739, 77394H (2010).
[Crossref]

Dagenais, M.

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
[Crossref]

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).

Dai, D.

Dave, U.

De Groote, A.

de Ridder, R. M.

I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.

Dhakal, A.

Driessen, A.

I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.

Dumon, P.

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

Edrees, H. M.

Ellis, S.

E. Lindley, S.-S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22, 31575–31581 (2014).
[Crossref]

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Ellis, S. C.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Freeman, Kenneth

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Fruchter, A.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Gassenq, A.

Gatkine, P.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
[Crossref]

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

Gencarelli, F.

Gers, L.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Gers, Luke

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Gilbert, J.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Gillingham, P.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Glazebrook, Karl

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Glenn, W.

Goodwin, M.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Green, W.

Gris-Sánchez, I.

Harris, R. J.

R. J. Harris and J. Allington-Smith, “Applications of integrated photonic spectrographs in astronomy,” Mon. Not. R. Astron. Soc. 428, 3139–3150 (2013).
[Crossref]

Hashimoto, T.

Hattasan, N.

Haynes, R.

N. Cvetojevic, N. Jovanovic, J. Bland-Hawthorn, R. Haynes, and J. Lawrence, “Miniature spectrographs: characterization of arrayed waveguide gratings for astronomy,” Proc. SPIE 7739, 77394H (2010).
[Crossref]

Haynes, Roger

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Healy, N.

Heck, M. J.

Heideman, R. G.

Heijmans, J.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Henry, C. H.

Hens, Z.

Hibino, Y.

Horton, A.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 62690N (2006).
[Crossref]

Horton, A. J.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Hu, C.

Hu, Y.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
[Crossref]

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

Inoue, Y.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Ireland, M.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Irene, E.

E. Irene, “Residual stress in silicon nitride films,” J. Electron. Mater. 5, 287–298 (1976).
[Crossref]

Ismail, N.

I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.

Janz, S.

S. Janz and J. Čtyrokỳ, Frontiers in Planar Lightwave Circuit Technology (Springer, 2006).
[Crossref]

Jia, Z.

Jin, G.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

John, D.

J. F. Bauters, M. J. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. J. Heck, D. John, M.-C. Tien, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss silica-based waveguides with millimeter bend radius,” in Proceedings of the 36th European Conference on Optical Communication, 1–3 (2010).

John, D. D.

Jovanovic, N.

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, J. Bland-Hawthorn, R. Haynes, and J. Lawrence, “Miniature spectrographs: characterization of arrayed waveguide gratings for astronomy,” Proc. SPIE 7739, 77394H (2010).
[Crossref]

Kamei, S.

Kaper, L.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Kar, A. K.

Katz, L.

Kazarinov, R.

Kern, P.

Kitoh, T.

Kouveliotou, C.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Kuyken, B.

Kymissis, I.

Lawrence, J.

E. Lindley, S.-S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22, 31575–31581 (2014).
[Crossref]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

N. Cvetojevic, N. Jovanovic, J. Bland-Hawthorn, R. Haynes, and J. Lawrence, “Miniature spectrographs: characterization of arrayed waveguide gratings for astronomy,” Proc. SPIE 7739, 77394H (2010).
[Crossref]

Lawrence, J. S.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Le Thomas, N.

Lee, H.

Lee, Steve

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Leinse, A.

Leo, F.

Leon-Saval, S.

Leon-Saval, S. G.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18, 8430–8439 (2010).
[Crossref] [PubMed]

Lindley, E.

Liu, X.

Löhmannsröben, Hans-Gerd

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Loo, R.

Lu, S.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

Malik, A.

Martens, D.

Masetti, N.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Mashanovich, G.

Meltz, G.

Meng, Y.

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

Min, S.-S.

Miziarski, S.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Miziarski, Stan

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Morey, W.

Muneeb, M.

Nedeljkovic, M.

Nishi, I.

O’Byrne, John

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Oda, K.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

Orlowsky, K.

Osgood, R.

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[Crossref]

Palazzi, E.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Pathak, S.

Peacock, A.

Pervez, N. K.

Peyskens, F.

Pian, E.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Pollnau, M.

I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.

Pun, E.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

Robertson, G.

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

Rodriguez, J.-B.

Roelkens, G.

Rol, E.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Roth, Martin M.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Ruocco, A.

Ryckeboer, E.

Sakamaki, Y.

Salakhutdinov, I.

Salvaterra, R.

R. Salvaterra, “High redshift gamma-ray bursts,” J. High Energy Astrophys. 7, 35–43 (2015).
[Crossref]

Saunders, W.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Schmidt, Brian

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Shen, L.

Shimura, Y.

Shortridge, K.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Smette, A.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Smit, M. K.

M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 22 (1996).
[Crossref]

Smith, G.

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Smith, R.

R. Smith and S. Collins, “Thick films of silicon nitride,” Sensor. Actuat. A-Phys. 23, 830–834 (1990).
[Crossref]

Subramanian, A. Z.

Sun, F.

I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.

Takahashi, H.

Thomson, R. R.

Thourhout, D. Van

Tien, M.-C.

Tinney, Christopher G.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Toba, H.

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Tournil’, E.

Trinh, C. Q.

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Uvin, S.

Van Campenhout, J.

Van Dam, C.

M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 22 (1996).
[Crossref]

Van Dorpe, P.

Van Thourhout, D.

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

Veilleux, S.

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
[Crossref]

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).

Vincent, B.

Vreeswijk, P.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Wang, D.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

Wang, Z.

Wijers, R.

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Withford, M.

Wong, W.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

Worhoff, K.

I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.

Wuytens, P.

Xie, W.

Yan, Y.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

Yerolatsitis, S.

Yi, D.

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

Zhao, H.

Zheng, Jessica

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

Zhu, T.

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
[Crossref]

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Arbitrary on-chip optical filter using complex waveguide Bragg gratings,” Appl. Phys. Lett. 108, 101104 (2016).
[Crossref]

Astron. Astrophys. (2)

N. Cvetojevic, N. Jovanovic, C. Betters, J. Lawrence, S. Ellis, G. Robertson, and J. Bland-Hawthorn, “First starlight spectrum captured using an integrated photonic micro-spectrograph,” Astron. Astrophys. 544, L1 (2012).
[Crossref]

P. Vreeswijk, A. Smette, A. Fruchter, E. Palazzi, E. Rol, R. Wijers, C. Kouveliotou, L. Kaper, E. Pian, N. Masetti, and et al., “Low-resolution VLT spectroscopy of GRBs 991216, 011211 and 021211,” Astron. Astrophys. 447, 145–156 (2006).
[Crossref]

Astron. J. (1)

C. Q. Trinh, S. C. Ellis, J. Bland-Hawthorn, J. S. Lawrence, A. J. Horton, S. G. Leon-Saval, K. Shortridge, J. Bryant, S. Case, M. Colless, Warrick Couch, Kenneth Freeman, Hans-Gerd Löhmannsröben, Luke Gers, Karl Glazebrook, Roger Haynes, Steve Lee, John O’Byrne, Stan Miziarski, Martin M. Roth, Brian Schmidt, Christopher G. Tinney, and Jessica Zheng, “GNOSIS: the first instrument to use fiber Bragg gratings for OH suppression,” Astron. J. 145, 51 (2013).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

M. K. Smit and C. Van Dam, “Phasar-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quant. 22 (1996).
[Crossref]

IEEE Photonics J. (2)

S. Pathak, P. Dumon, D. Van Thourhout, and W. Bogaerts, “Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator,” IEEE Photonics J. 6, 1–9 (2014).
[Crossref]

T. Zhu, Y. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultrabroadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1–12 (2016).

J. Electron. Mater. (1)

E. Irene, “Residual stress in silicon nitride films,” J. Electron. Mater. 5, 287–298 (1976).
[Crossref]

J. High Energy Astrophys. (1)

R. Salvaterra, “High redshift gamma-ray bursts,” J. High Energy Astrophys. 7, 35–43 (2015).
[Crossref]

J. Lightwave Technol. (2)

Y. Sakamaki, S. Kamei, T. Hashimoto, T. Kitoh, and H. Takahashi, “Loss uniformity improvement of arrayed-waveguide grating with mode-field converters designed by wavefront matching method,” J. Lightwave Technol. 27, 5710–5715 (2009).
[Crossref]

H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed waveguide N × N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).
[Crossref]

Light-Sci. Appl. (1)

D. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light-Sci. Appl. 1, e1 (2012).
[Crossref]

Mon. Not. R. Astron. Soc. (2)

R. J. Harris and J. Allington-Smith, “Applications of integrated photonic spectrographs in astronomy,” Mon. Not. R. Astron. Soc. 428, 3139–3150 (2013).
[Crossref]

J. Allington-Smith and J. Bland-Hawthorn, “Astrophotonic spectroscopy: defining the potential advantage,” Mon. Not. R. Astron. Soc. 404, 232–238 (2010).

Opt. Express (10)

K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14, 4064–4072 (2006).
[Crossref] [PubMed]

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17, 1880–1884 (2009).
[Crossref] [PubMed]

N. K. Pervez, W. Cheng, Z. Jia, M. P. Cox, H. M. Edrees, and I. Kymissis, “Photonic crystal spectrometer,” Opt. Express 18, 8277–8285 (2010).
[Crossref] [PubMed]

D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss silicon nitride arrayed-waveguide grating (de) multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
[Crossref] [PubMed]

N. Cvetojevic, N. Jovanovic, J. Lawrence, M. Withford, and J. Bland-Hawthorn, “Developing arrayed waveguide grating spectrographs for multi-object astronomical spectroscopy,” Opt. Express 20, 2062–2072 (2012).
[Crossref] [PubMed]

J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” Opt. Express 19, 24090–24101 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. J. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
[Crossref] [PubMed]

E. Lindley, S.-S. Min, S. Leon-Saval, N. Cvetojevic, J. Lawrence, S. Ellis, and J. Bland-Hawthorn, “Demonstration of uniform multicore fiber Bragg gratings,” Opt. Express 22, 31575–31581 (2014).
[Crossref]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18, 8430–8439 (2010).
[Crossref] [PubMed]

R. R. Thomson, T. A. Birks, S. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quant. Electron. (1)

S. Lu, W. Wong, E. Pun, Y. Yan, D. Wang, D. Yi, and G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quant. Electron. 35, 783–790 (2003).
[Crossref]

Photon. Res. (1)

Proc. SPIE (4)

N. Cvetojevic, N. Jovanovic, J. Bland-Hawthorn, R. Haynes, and J. Lawrence, “Miniature spectrographs: characterization of arrayed waveguide gratings for astronomy,” Proc. SPIE 7739, 77394H (2010).
[Crossref]

P. Gatkine, S. Veilleux, Y. Hu, T. Zhu, Y. Meng, J. Bland-Hawthorn, and M. Dagenais, “Development of high-resolution arrayed waveguide grating spectrometers for astronomical applications: first results,” Proc. SPIE 9912, 991271 (2016).
[Crossref]

J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 62690N (2006).
[Crossref]

J. Lawrence, J. Bland-Hawthorn, J. Bryant, J. Brzeski, M. Colless, S. Croom, L. Gers, J. Gilbert, P. Gillingham, M. Goodwin, J. Heijmans, A. Horton, M. Ireland, S. Miziarski, W. Saunders, and G. Smith, “Hector: a high-multiplex survey instrument for spatially resolved galaxy spectroscopy,” Proc. SPIE 8446, 844653 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997).
[Crossref]

Sensor. Actuat. A-Phys. (1)

R. Smith and S. Collins, “Thick films of silicon nitride,” Sensor. Actuat. A-Phys. 23, 830–834 (1990).
[Crossref]

Other (7)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2010).

S. Janz and J. Čtyrokỳ, Frontiers in Planar Lightwave Circuit Technology (Springer, 2006).
[Crossref]

“Fimmwave Photon Design,” https://www.photond.com .

“Gemini telescope GNIRS slit properties,” http://http://www.gemini.edu/sciops/instruments/gnirs/spectroscopy/slits#throughputs .

“MOIRCS grisms,” https://subarutelescope.org/Observing/Instruments/MOIRCS/spec_sensitivity.html .

I. B. Akca, N. Ismail, F. Sun, A. Driessen, K. Worhoff, M. Pollnau, and R. M. de Ridder, “High-resolution integrated spectrometers in silicon-oxynitride,” in CLEO:2011 Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JWA65.

J. F. Bauters, M. J. Heck, D. John, M.-C. Tien, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss silica-based waveguides with millimeter bend radius,” in Proceedings of the 36th European Conference on Optical Communication, 1–3 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 a) The Si3N4/SiO2 waveguides used in AWG #1 and #2. b) Mode profile for TE (neff = 1.4659) and TM polarizations (neff = 1.4473). Note that the TM mode is weakly confined.
Fig. 2
Fig. 2 CAD of AWG #1. Note the vertical cleaving marks near the top corners of the chip to aid cleaving the edges to expose the optical quality cross-section of the waveguides for fiber coupling. The extra waveguides at the bottom are reference waveguides for calibration. The AWG has a small footprint of only 16mm × 7mm. The actual writing area is 11.5 mm2, thus making it suitable for e-beam lithography. The AWG input, output and the reference waveguides have on-chip coupling tapers as a continuation of the waveguides, shown in left and right insets. UHNA3 fibers are used for characterization by butt-coupling one by one to the tapers. A zoomed-in version of the input and output FPRs are shown at the bottom for clarity.
Fig. 3
Fig. 3 Fabrication sequence of AWGs [11].
Fig. 4
Fig. 4 Top panel: A schematic of the setup used for AWG characterization. Bottom panel: The AWG sample (label 1) is mounted in the center on top of a tip-tilt-rotation mount (label 2). The input and output fibers are mounted on 3-axis stages with 10 nm-precision (left:3 and right:4). The input fiber is mounted on a fiber rotator (label 5), which, along with the polarization controller, allows for polarization tuning.
Fig. 5
Fig. 5 Simulation of taper conversion efficiency as a function of length for a linear taper. Here, we have also taken into account an estimated propagation loss for the taper of 1.5 dB/cm.
Fig. 6
Fig. 6 Panel 1: The overall throughputs of AWG #1 and the curved reference waveguide are shown. The dashed line indicates the peak overall throughput of the AWG (about −6.4 dB or ∼23%). The red dots represent the overall throughputs measured in the centers of the orders. Panel 2: The measured resolving power of the AWG as a function of wavelength. Panel 3: The transmission of the AWG normalized to the curved reference waveguide is shown for all 23 spectral orders. The five colors show the ‘on-chip throughput’ of the five output channels. The dashed line represents the peak on-chip (i.e. normalized to the reference waveguide) throughput of the AWG (about −3 dB or ~50%). Panel 4: A more detailed view of one of the spectral orders is presented to show the FSR, spectral FWHM, spectral channel spacing, and crosstalk. The measurement errors are less than 0.1 dB, so no error bars are shown.
Fig. 7
Fig. 7 The overall transmission of AWG #1 and the curved reference waveguide before and after annealing. The absorption peak near 1500 nm is mitigated to a large extent by the annealing process, but the overall throughput has degraded. The wavelength shift between the order centers of the original and annealed AWGs is due to a change in the effective index of refraction of the waveguides as a result of annealing.
Fig. 8
Fig. 8 a) The modified CAD of AWG #2 to maintain the cleaving plane parallel to the crystal plane of the wafer. As a result, the device footprint is slightly smaller than Fig. 2. Out of the three inputs seen in the CAD, only the central input waveguide was used for characterization, the other two are redundant. b) A microscope image showing the extra rectangular region added to the output FPR to accommodate the cleaving tolerance of few tens of microns. The sample described in the text and Fig. 9 was actually cleaved with an unintended 20 µm offset (indicated by the vertical white line).
Fig. 9
Fig. 9 Top panel: A section of the spectral response (overall throughput) of AWG #2 at six consecutive points (spaced by 2 µm) around the center of the FPR. Bottom left panel: The overall throughput integrated over a length of 6 µm along the FPR. The blue line shows the integrated throughput for the central point and the red line shows the same for a point 6 µm offset from the center. The dashed line indicates the peak overall throughput. The window above shows the measured variation of resolving power as a function of wavelength. Bottom right panel: A zoomed-in view of a section of the 6 µm integrated throughput response, showing the FSR, spectral channel spacing, and spectral FWHM.
Fig. 10
Fig. 10 The ratio n e f f , T E n e f f , T M × ( n e f f λ d n d λ ) T M ( n e f f λ d n d λ ) T E (see Eq. (5)) as a function of wavelength for a set of different single-mode waveguide geometries. A ratio close to unity is desirable to achieve broadband polarization insensitivity over a broad band using the TE-TM order overlap method.

Tables (2)

Tables Icon

Table 1 Summary of the characteristics of the two AWGs.

Tables Icon

Table 2 Search for appropriate waveguide geometry (integer solution to p) for a polarization insensitive AWG for TE order = 165

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = n s l a b m × D i D o L o ,
Δ L = m λ n e f f , T E = m λ n e f f , T M
n e f f , T M n e f f , T E = 1 p m
F S R = λ m × n e f f n g r o u p ,
( F S R ) T E ( F S R ) T M = m p m × n e f f , T E n e f f , T M × n g r o u p , T M n g r o u p , T E = m p m × n e f f , T E n e f f , T M × ( n e f f λ d n d λ ) T M ( n e f f λ d n d λ ) T E

Metrics