Abstract

We demonstrate the penetration of thick metallic and ferromagnetic barriers for imaging of conductive targets underneath. Our system is based on an 85Rb radio-frequency atomic magnetometer operating in electromagnetic induction imaging modality in an unshielded environment. Detrimental effects, including unpredictable magnetic signatures from ferromagnetic screens and variations in the magnetic background, are automatically compensated by active compensation coils controlled by servo loops. We exploit the tunability and low-frequency sensitivity of the atomic magnetometer to directly image multiple conductive targets concealed by a 2.5 mm ferromagnetic steel shield and/or a 2.0 mm aluminium shield, in a single scan. The performance of the atomic magnetometer allows imaging without any prior knowledge of the barriers or the targets, and without the need of background subtraction. A dedicated edge detection algorithm allows automatic estimation of the targets’ size within 3.3 mm and of their position within 2.4 mm. Our results prove the feasibility of a compact, sensitive and automated sensing platform for imaging of concealed objects in a range of applications, from security screening to search and rescue.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic induction tomography using an all-optical 87Rb atomic magnetometer

Arne Wickenbrock, Sarunas Jurgilas, Albert Dow, Luca Marmugi, and Ferruccio Renzoni
Opt. Lett. 39(22) 6367-6370 (2014)

Active underwater detection with an array of atomic magnetometers

Cameron Deans, Luca Marmugi, and Ferruccio Renzoni
Appl. Opt. 57(10) 2346-2351 (2018)

Remote detection of rotating machinery with a portable atomic magnetometer

Luca Marmugi, Lorenzo Gori, Sarah Hussain, Cameron Deans, and Ferruccio Renzoni
Appl. Opt. 56(3) 743-749 (2017)

References

  • View by:
  • |
  • |
  • |

  1. U.N. Security Council, Resolution 2309, (S/RES/2309) 22nd September 2016.
  2. Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).
  3. K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.
  4. N. Jaccard, T. W. Rogers, and L. D. Griffin, “Automated detection of cars in transmission X-ray images of freight containers,” in IEEE International Conference on Adv. Vid. and Sig. Surv. (AVSS), 11th (2014), pp. 387–392.
  5. V. V. Verbinski and V. J. Orphan, “Vehicle and cargo inspection system,” Proc. SPIE 2867, 235–238 (1997).
    [Crossref]
  6. V. J. Orphan, E. Muenchau, J. Gormley, and R. Richardson, “Advanced γ-ray technology for scanning cargo containers,” Appl. Rad. Isot. 63(5), 723–732 (2005).
    [Crossref]
  7. D. R. Brown and T. Gozani, “Cargo inspection system based on pulsed fast neutron analysis,” Nucl. Instr. Meth. Phys. Res. B 99(1–4), 753–756 (1995).
    [Crossref]
  8. G. Vourvopoulos and P. C. Womble, “Pulsed fast/thermal neutron analysis: a technique for explosives detection,” Talanta 54(3), 459–468 (2001).
    [Crossref]
  9. K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
    [Crossref]
  10. A. V. Korzhenevskii and V. A. Cherepenin, “Magnetic induction tomography,” J. Commun. Technol. Electron. 42(4), 469–474 (1997).
  11. H. Griffiths, “Magnetic induction tomography,” Meas. Sci. Tech. 12(8), 1126 (2001).
    [Crossref]
  12. B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Electromagnetic imaging through thick metallic enclosures,” AIP Adv. 5, 087143 (2015).
    [Crossref]
  13. B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Magnetic Imaging: a New Tool for UK National Nuclear Security,” Sci. Rep. 5, 7944 (2015).
    [Crossref] [PubMed]
  14. R. Guilizzoni, J. C. Watson, P. Bartlett, and F. Renzoni, “Penetrating power of resonant electromagnetic induction imaging,” AIP Adv. 6, 095017 (2016).
    [Crossref]
  15. J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
    [Crossref]
  16. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
    [Crossref]
  17. I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Mag. Res. 185, 214–220 (2007).
    [Crossref]
  18. C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108(10), 103503 (2016).
    [Crossref]
  19. A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, “Magnetic induction tomography using an all-optical 87Rb atomic magnetometer,” Opt. Lett. 39(22), 6367–6370 (2014).
    [Crossref] [PubMed]
  20. A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
    [Crossref]
  21. C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Optical atomic magnetometry for magnetic induction imaging of the heart,” Proc. Spie 9900, 9900F (2016).
  22. D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999).
  23. H. Griffiths, W. Gough, S. Watson, and R. J. Williams, “Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography,” Physiol. Meas. 28(7), S301 (2007).
    [Crossref] [PubMed]

2017 (1)

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

2016 (4)

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108(10), 103503 (2016).
[Crossref]

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Optical atomic magnetometry for magnetic induction imaging of the heart,” Proc. Spie 9900, 9900F (2016).

R. Guilizzoni, J. C. Watson, P. Bartlett, and F. Renzoni, “Penetrating power of resonant electromagnetic induction imaging,” AIP Adv. 6, 095017 (2016).
[Crossref]

2015 (2)

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Electromagnetic imaging through thick metallic enclosures,” AIP Adv. 5, 087143 (2015).
[Crossref]

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Magnetic Imaging: a New Tool for UK National Nuclear Security,” Sci. Rep. 5, 7944 (2015).
[Crossref] [PubMed]

2014 (1)

2011 (1)

K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
[Crossref]

2007 (3)

H. Griffiths, W. Gough, S. Watson, and R. J. Williams, “Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography,” Physiol. Meas. 28(7), S301 (2007).
[Crossref] [PubMed]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Mag. Res. 185, 214–220 (2007).
[Crossref]

2005 (1)

V. J. Orphan, E. Muenchau, J. Gormley, and R. Richardson, “Advanced γ-ray technology for scanning cargo containers,” Appl. Rad. Isot. 63(5), 723–732 (2005).
[Crossref]

2004 (1)

Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).

2001 (2)

G. Vourvopoulos and P. C. Womble, “Pulsed fast/thermal neutron analysis: a technique for explosives detection,” Talanta 54(3), 459–468 (2001).
[Crossref]

H. Griffiths, “Magnetic induction tomography,” Meas. Sci. Tech. 12(8), 1126 (2001).
[Crossref]

1997 (2)

A. V. Korzhenevskii and V. A. Cherepenin, “Magnetic induction tomography,” J. Commun. Technol. Electron. 42(4), 469–474 (1997).

V. V. Verbinski and V. J. Orphan, “Vehicle and cargo inspection system,” Proc. SPIE 2867, 235–238 (1997).
[Crossref]

1995 (1)

D. R. Brown and T. Gozani, “Cargo inspection system based on pulsed fast neutron analysis,” Nucl. Instr. Meth. Phys. Res. B 99(1–4), 753–756 (1995).
[Crossref]

Bagley, G.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

Bartlett, P.

R. Guilizzoni, J. C. Watson, P. Bartlett, and F. Renzoni, “Penetrating power of resonant electromagnetic induction imaging,” AIP Adv. 6, 095017 (2016).
[Crossref]

Bartlett, P. A.

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Magnetic Imaging: a New Tool for UK National Nuclear Security,” Sci. Rep. 5, 7944 (2015).
[Crossref] [PubMed]

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Electromagnetic imaging through thick metallic enclosures,” AIP Adv. 5, 087143 (2015).
[Crossref]

Blanchard, J. W.

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

Brown, D. R.

D. R. Brown and T. Gozani, “Cargo inspection system based on pulsed fast neutron analysis,” Nucl. Instr. Meth. Phys. Res. B 99(1–4), 753–756 (1995).
[Crossref]

Budker, D.

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Checkoway, S.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Chen, Z.

Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).

Cherepenin, V. A.

A. V. Korzhenevskii and V. A. Cherepenin, “Magnetic induction tomography,” J. Commun. Technol. Electron. 42(4), 469–474 (1997).

Comfort, C.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Darrer, B. J.

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Electromagnetic imaging through thick metallic enclosures,” AIP Adv. 5, 087143 (2015).
[Crossref]

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Magnetic Imaging: a New Tool for UK National Nuclear Security,” Sci. Rep. 5, 7944 (2015).
[Crossref] [PubMed]

Deans, C.

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108(10), 103503 (2016).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Optical atomic magnetometry for magnetic induction imaging of the heart,” Proc. Spie 9900, 9900F (2016).

Dow, A.

Gnanvo, K.

K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
[Crossref]

Gormley, J.

V. J. Orphan, E. Muenchau, J. Gormley, and R. Richardson, “Advanced γ-ray technology for scanning cargo containers,” Appl. Rad. Isot. 63(5), 723–732 (2005).
[Crossref]

Gough, W.

H. Griffiths, W. Gough, S. Watson, and R. J. Williams, “Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography,” Physiol. Meas. 28(7), S301 (2007).
[Crossref] [PubMed]

Gozani, T.

D. R. Brown and T. Gozani, “Cargo inspection system based on pulsed fast neutron analysis,” Nucl. Instr. Meth. Phys. Res. B 99(1–4), 753–756 (1995).
[Crossref]

Grasso, L. V.

K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
[Crossref]

Griffin, L. D.

N. Jaccard, T. W. Rogers, and L. D. Griffin, “Automated detection of cars in transmission X-ray images of freight containers,” in IEEE International Conference on Adv. Vid. and Sig. Surv. (AVSS), 11th (2014), pp. 387–392.

Griffiths, D. J.

D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999).

Griffiths, H.

H. Griffiths, W. Gough, S. Watson, and R. J. Williams, “Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography,” Physiol. Meas. 28(7), S301 (2007).
[Crossref] [PubMed]

H. Griffiths, “Magnetic induction tomography,” Meas. Sci. Tech. 12(8), 1126 (2001).
[Crossref]

Guilizzoni, R.

R. Guilizzoni, J. C. Watson, P. Bartlett, and F. Renzoni, “Penetrating power of resonant electromagnetic induction imaging,” AIP Adv. 6, 095017 (2016).
[Crossref]

Halderman, J. A.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Hohlmann, M.

K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
[Crossref]

Hussain, S.

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108(10), 103503 (2016).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Optical atomic magnetometry for magnetic induction imaging of the heart,” Proc. Spie 9900, 9900F (2016).

Jaccard, N.

N. Jaccard, T. W. Rogers, and L. D. Griffin, “Automated detection of cars in transmission X-ray images of freight containers,” in IEEE International Conference on Adv. Vid. and Sig. Surv. (AVSS), 11th (2014), pp. 387–392.

Joseph, M.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

Jurgilas, S.

Kang, K.

Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).

Korzhenevskii, A. V.

A. V. Korzhenevskii and V. A. Cherepenin, “Magnetic induction tomography,” J. Commun. Technol. Electron. 42(4), 469–474 (1997).

Leefer, N.

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

Lloyd, C.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

Locke, J. B.

K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
[Crossref]

Marmugi, L.

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108(10), 103503 (2016).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Optical atomic magnetometry for magnetic induction imaging of the heart,” Proc. Spie 9900, 9900F (2016).

A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, “Magnetic induction tomography using an all-optical 87Rb atomic magnetometer,” Opt. Lett. 39(22), 6367–6370 (2014).
[Crossref] [PubMed]

Mitra, D.

K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
[Crossref]

Mowery, K.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Muenchau, E.

V. J. Orphan, E. Muenchau, J. Gormley, and R. Richardson, “Advanced γ-ray technology for scanning cargo containers,” Appl. Rad. Isot. 63(5), 723–732 (2005).
[Crossref]

Orphan, V. J.

V. J. Orphan, E. Muenchau, J. Gormley, and R. Richardson, “Advanced γ-ray technology for scanning cargo containers,” Appl. Rad. Isot. 63(5), 723–732 (2005).
[Crossref]

V. V. Verbinski and V. J. Orphan, “Vehicle and cargo inspection system,” Proc. SPIE 2867, 235–238 (1997).
[Crossref]

Quintero, A. S.

K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
[Crossref]

Renzoni, F.

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108(10), 103503 (2016).
[Crossref]

R. Guilizzoni, J. C. Watson, P. Bartlett, and F. Renzoni, “Penetrating power of resonant electromagnetic induction imaging,” AIP Adv. 6, 095017 (2016).
[Crossref]

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Optical atomic magnetometry for magnetic induction imaging of the heart,” Proc. Spie 9900, 9900F (2016).

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Magnetic Imaging: a New Tool for UK National Nuclear Security,” Sci. Rep. 5, 7944 (2015).
[Crossref] [PubMed]

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Electromagnetic imaging through thick metallic enclosures,” AIP Adv. 5, 087143 (2015).
[Crossref]

A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, “Magnetic induction tomography using an all-optical 87Rb atomic magnetometer,” Opt. Lett. 39(22), 6367–6370 (2014).
[Crossref] [PubMed]

Rescorla, E.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Richardson, R.

V. J. Orphan, E. Muenchau, J. Gormley, and R. Richardson, “Advanced γ-ray technology for scanning cargo containers,” Appl. Rad. Isot. 63(5), 723–732 (2005).
[Crossref]

Rogers, T. W.

N. Jaccard, T. W. Rogers, and L. D. Griffin, “Automated detection of cars in transmission X-ray images of freight containers,” in IEEE International Conference on Adv. Vid. and Sig. Surv. (AVSS), 11th (2014), pp. 387–392.

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Romalis, M. V.

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Mag. Res. 185, 214–220 (2007).
[Crossref]

Savukov, I. M.

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Mag. Res. 185, 214–220 (2007).
[Crossref]

Seltzer, S. J.

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Mag. Res. 185, 214–220 (2007).
[Crossref]

Shacham, H.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Shenton-Taylor, C.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

Singleton, C.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Tatum, P.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

Taylor, S.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

Verbinski, V. V.

V. V. Verbinski and V. J. Orphan, “Vehicle and cargo inspection system,” Proc. SPIE 2867, 235–238 (1997).
[Crossref]

Vourvopoulos, G.

G. Vourvopoulos and P. C. Womble, “Pulsed fast/thermal neutron analysis: a technique for explosives detection,” Talanta 54(3), 459–468 (2001).
[Crossref]

Wang, Q.

Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).

Wang, X.

Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).

Ward, R.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

Watson, J. C.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

R. Guilizzoni, J. C. Watson, P. Bartlett, and F. Renzoni, “Penetrating power of resonant electromagnetic induction imaging,” AIP Adv. 6, 095017 (2016).
[Crossref]

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Magnetic Imaging: a New Tool for UK National Nuclear Security,” Sci. Rep. 5, 7944 (2015).
[Crossref] [PubMed]

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Electromagnetic imaging through thick metallic enclosures,” AIP Adv. 5, 087143 (2015).
[Crossref]

Watson, S.

H. Griffiths, W. Gough, S. Watson, and R. J. Williams, “Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography,” Physiol. Meas. 28(7), S301 (2007).
[Crossref] [PubMed]

Wickenbrock, A.

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

A. Wickenbrock, S. Jurgilas, A. Dow, L. Marmugi, and F. Renzoni, “Magnetic induction tomography using an all-optical 87Rb atomic magnetometer,” Opt. Lett. 39(22), 6367–6370 (2014).
[Crossref] [PubMed]

Williams, R. J.

H. Griffiths, W. Gough, S. Watson, and R. J. Williams, “Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography,” Physiol. Meas. 28(7), S301 (2007).
[Crossref] [PubMed]

Womble, P. C.

G. Vourvopoulos and P. C. Womble, “Pulsed fast/thermal neutron analysis: a technique for explosives detection,” Talanta 54(3), 459–468 (2001).
[Crossref]

Wood, J.

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

Wu, X.

Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).

Wustrow, E.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Wypych, T.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

Zhang, L.

Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).

AIP Adv. (2)

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Electromagnetic imaging through thick metallic enclosures,” AIP Adv. 5, 087143 (2015).
[Crossref]

R. Guilizzoni, J. C. Watson, P. Bartlett, and F. Renzoni, “Penetrating power of resonant electromagnetic induction imaging,” AIP Adv. 6, 095017 (2016).
[Crossref]

Appl. Phys. Lett. (2)

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Electromagnetic induction imaging with a radio-frequency atomic magnetometer,” Appl. Phys. Lett. 108(10), 103503 (2016).
[Crossref]

A. Wickenbrock, N. Leefer, J. W. Blanchard, and D. Budker, “Eddy current imaging with an atomic radio-frequency magnetometer,” Appl. Phys. Lett. 108, 183507 (2016).
[Crossref]

Appl. Rad. Isot. (1)

V. J. Orphan, E. Muenchau, J. Gormley, and R. Richardson, “Advanced γ-ray technology for scanning cargo containers,” Appl. Rad. Isot. 63(5), 723–732 (2005).
[Crossref]

Comput. Tomogr. (1)

Q. Wang, Z. Chen, X. Wu, X. Wang, L. Zhang, and K. Kang, “Review of X-ray security inspection technology,” Comput. Tomogr. 1, 008 (2004).

IEEE Trans. Magn. (1)

J. Wood, R. Ward, C. Lloyd, P. Tatum, C. Shenton-Taylor, S. Taylor, G. Bagley, M. Joseph, and J. C. Watson, “Effect of shielding conductivity on magnetic induction tomographic security imagery,” IEEE Trans. Magn. 53(4), 4000406 (2017).
[Crossref]

J. Commun. Technol. Electron. (1)

A. V. Korzhenevskii and V. A. Cherepenin, “Magnetic induction tomography,” J. Commun. Technol. Electron. 42(4), 469–474 (1997).

J. Mag. Res. (1)

I. M. Savukov, S. J. Seltzer, and M. V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” J. Mag. Res. 185, 214–220 (2007).
[Crossref]

Meas. Sci. Tech. (1)

H. Griffiths, “Magnetic induction tomography,” Meas. Sci. Tech. 12(8), 1126 (2001).
[Crossref]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3(4), 227–234 (2007).
[Crossref]

Nucl. Instr. Meth. Phys. Res. B (1)

D. R. Brown and T. Gozani, “Cargo inspection system based on pulsed fast neutron analysis,” Nucl. Instr. Meth. Phys. Res. B 99(1–4), 753–756 (1995).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. A (1)

K. Gnanvo, L. V. Grasso, M. Hohlmann, J. B. Locke, A. S. Quintero, and D. Mitra, “Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors,” Nucl. Instrum. Meth. Phys. Res. A 652(1), 16–20 (2011).
[Crossref]

Opt. Lett. (1)

Physiol. Meas. (1)

H. Griffiths, W. Gough, S. Watson, and R. J. Williams, “Residual capacitive coupling and the measurement of permittivity in magnetic induction tomography,” Physiol. Meas. 28(7), S301 (2007).
[Crossref] [PubMed]

Proc. Spie (1)

C. Deans, L. Marmugi, S. Hussain, and F. Renzoni, “Optical atomic magnetometry for magnetic induction imaging of the heart,” Proc. Spie 9900, 9900F (2016).

V. V. Verbinski and V. J. Orphan, “Vehicle and cargo inspection system,” Proc. SPIE 2867, 235–238 (1997).
[Crossref]

Sci. Rep. (1)

B. J. Darrer, J. C. Watson, P. A. Bartlett, and F. Renzoni, “Magnetic Imaging: a New Tool for UK National Nuclear Security,” Sci. Rep. 5, 7944 (2015).
[Crossref] [PubMed]

Talanta (1)

G. Vourvopoulos and P. C. Womble, “Pulsed fast/thermal neutron analysis: a technique for explosives detection,” Talanta 54(3), 459–468 (2001).
[Crossref]

Other (4)

U.N. Security Council, Resolution 2309, (S/RES/2309) 22nd September 2016.

K. Mowery, E. Wustrow, T. Wypych, C. Singleton, C. Comfort, E. Rescorla, S. Checkoway, J. A. Halderman, and H. Shacham, “Security Analysis of a Full-Body Scanner,” 23rd USENIX Security Symposium (2014), pp. 369–384.

N. Jaccard, T. W. Rogers, and L. D. Griffin, “Automated detection of cars in transmission X-ray images of freight containers,” in IEEE International Conference on Adv. Vid. and Sig. Surv. (AVSS), 11th (2014), pp. 387–392.

D. J. Griffiths, Introduction to Electrodynamics (Prentice-Hall, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Measurement setup. (a) Targets concealed between shields to simulate an enclosure. (b) Targets, and their weak secondary field contribution, shielded from sensor. This configuration is used with a single shield and multiple shields. To highlight the gap between the targets and the shields (5 mm), the xy-translational stage is not shown.
Fig. 2
Fig. 2 Electromagnetic phase images of concealed objects. (a) Cu disk (diameter 40 mm, thickness 2 mm) concealed between Al shields, thickness 1 mm and 2 mm (ν = 630 Hz, δCu = 2.6 mm, δAl = 3.3 mm). This corresponds to the arrangement of Fig. 1(a). (b) Cu disk (diameter 30 mm, thickness 2 mm) concealed behind a 2.5 mm thick ferromagnetic steel shield (ν = 470 Hz, δCu = 3 mm). This corresponds to the arrangement of Fig. 1(b), with a single shield. (c) Cu disk (diameter 30 mm, thickness 2 mm) and Cu square (sidelength 20 mm, thickness 2 mm) concealed behind a 2 mm thick Al shield (ν = 580 Hz, δCu = 2.7 mm, δAl = 3.4 mm). For arrangement, see Fig. 1(b), with a single shield. The rounded corners of square targets are a common feature of EII/MIT imaging attributed to a reduction of the circular eddy current flow at the corners.
Fig. 3
Fig. 3 Electromagnetic phase imaging through various shields. First column, 2 mm Al shield. ν = 560 Hz, δCu = 2.8 mm, δAl = 3.5 mm. For arrangement, see Fig. 1(b), with a single shield. Second column, 2.5 mm ferromagnetic steel shield. ν = 470 Hz, δCu = 3.0 mm, δAl = 3.8 mm. For arrangement, see Fig. 1(b), with a single shield. Third column, combination of the 2.5 mm steel shield and 2 mm Al shield. ν = 330 Hz, δCu = 3.6 mm, δAl = 4.5 mm. For arrangement, see Fig. 1(b), with two shields.
Fig. 4
Fig. 4 Shape and size reconstruction of targets concealed behind ferromagnetic and metallic shields. (a) Edge-detection algorithm applied to Fig. 3(c). (b) Edge-detection algorithm applied to Fig. 3(h). (c) Multiple target detection. Cu disk (left, diameter 30 mm, thickness 2 mm) and Al square (right, side-length 20 mm, thickness 2 mm), concealed by 2 mm Al shield (ν = 580 Hz, δCu = 2.7 mm, δAl = 3.4 mm).
Fig. 5
Fig. 5 Object size and localization via edge detection. Position and size are accurately reproduced for all shield materials and targets. (a) Extracted center point of concealed targets imaged in Fig. 3. σz = 0.61 mm, σx = 2.58 mm. (b) Estimated size (diameter/sidelength) for the same data. Actual sizes included to guide the eye (dotted lines).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E = i E i : E i , E j E , E i E j = ,
e i E i , e j E i : e i e j < ρ ,

Metrics