Abstract

Optical frequency comb lines with poor carrier to noise ratio (CNR) are significantly improved by Brillouin amplification using its extreme narrow bandwidth gain to suppress out of band noise, enabling higher quality signal modulation. Its application to spectral lines of narrow 10 GHz pitch and poor CNR is shown to suppress the otherwise strong phase distortion caused by poor CNR after encoding with 96 Gb/s DP-64-QAM signals and restore the bit error rate (BER) to below the limit for standard forward error correction (FEC). This is also achieved with the required frequency shifted optical pump for amplification obtained by seeding it from the comb itself, sparing the need for lasers and frequency locking. Simultaneous CNR improvement for 38 comb lines is also achieved with BER restored to below the FEC limit, enabled by a multi-line pump that is pre-dispersed to suppress its spectral distortion from the Kerr effect in the gain medium. Carrier performance at minimum BER shows minimal noise impact from the Brillouin amplifier itself. The results highlight the unique advantage of Brillouin gain for phase sensitive communications in transforming otherwise noisy spectral lines into useful high quality signal carriers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-homodyne 24×32-QAM superchannel receiver enabled by all-optical comb regeneration using brillouin amplification

Abel Lorences-Riesgo, Mikael Mazur, Tobias A. Eriksson, Peter A. Andrekson, and Magnus Karlsson
Opt. Express 24(26) 29714-29723 (2016)

Low-noise parametric frequency comb for continuous C-plus-L-band 16-QAM channels generation

Eduardo Temprana, Vahid Ataie, Bill P.-P. Kuo, Evgeny Myslivets, Nikola Alic, and Stojan Radic
Opt. Express 22(6) 6822-6828 (2014)

Demonstration and Evaluation of an Optimized RFS Comb for Terabit Flexible Optical Networks

Jiachuan Lin, Lixian Wang, Mingyang Lyu, Amruta Pai, Xiaoguang Zhang, Sophie LaRochelle, and Leslie A. Rusch
J. Opt. Commun. Netw. 9(9) 739-746 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb”, 41st European Conference on Optical Communication (ECOC), PDP.3.1, Valencia, Spain, Sept. 27-Oct 1, 2015.
    [Crossref]
  2. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  3. M. Imran, A. D. Errico, A. Lord, and L. Poti, “Techno-economic analysis of carrier sources in slice-able bandwidth variable transponders,” 42nd European Conference on Optical Communication (ECOC), paper W.4.P1.SC4.33, Dusseldorf, Germany, Sept. 18–22, 2016.
  4. E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
    [Crossref] [PubMed]
  5. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21(24), 29186–29194 (2013).
    [Crossref] [PubMed]
  6. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
    [Crossref] [PubMed]
  7. D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
    [Crossref]
  8. V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
    [Crossref]
  9. J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
    [Crossref] [PubMed]
  10. F. Rohde, E. Benkler, and H. R. Telle, “High contrast, low noise selection and amplification of an individual optical frequency comb line,” Opt. Lett. 38(2), 103–105 (2013).
    [Crossref] [PubMed]
  11. H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
    [Crossref] [PubMed]
  12. J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Express 17(8), 6753–6758 (2009).
    [Crossref] [PubMed]
  13. M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
    [Crossref]
  14. J. Galindo-Santos, A. V. Velasco, A. Carrasco-Sanz, and P. Corredera, “Brillouin filtering of optical combs for narrow linewidth frequency synthesis,” Opt. Commun. 366, 33–37 (2016).
    [Crossref]
  15. A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24×32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express 24(26), 29714–29723 (2016).
    [Crossref] [PubMed]
  16. W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22(19), 23249–23260 (2014).
    [Crossref] [PubMed]
  17. M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. Nguyen Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain”, 21st OptoElectronics and Communications Conference (OECC), paper PD1–3, Niigata, Japan, July 3–7, 2016.
  18. M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. J. Eggleton, and S. Namiki, “Regeneration of noise limited frequency comb lines for 64-QAM by Brillouin gain seeded via SSB modulation”, Optical Fiber Communications Conference (OFC), paper, M3F.4, Los Angeles, USA, Mar. 19–23, 2017.
    [Crossref]
  19. M. D. Pelusi, A. Choudhary, T. Inoue, B. Eggleton, D. Marpaung, and S. Namiki, “Multi-line regeneration of noise limited frequency combs by Brillouin amplification via a self-seeded dispersed pump”, Conference on Lasers and Electro-Optics (CLEO), paper SM2L.4, San Jose, USA, May 14–19, 2017.
    [Crossref]
  20. M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers,” IEEE Photonic Tech. Lett. 9(1), 124–126 (1997).
    [Crossref]
  21. A. David and M. Horowitz, “Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers,” Opt. Express 19(12), 11792–11803 (2011).
    [Crossref] [PubMed]
  22. J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
    [Crossref]
  23. J. Zhang and M. R. Phillips, “Cancellation of intensity noise caused by stimulated Brillouin scattering in an optical fiber transmission system,” Optical Fiber Communication Conference (OFC), paper PDP-24, 2005.
  24. J. Capmany, B. Ortega, and D. Pastor, “Fibre optic bandpass filter with subpicometre bandwidth using a fibre grating and two fibre Fabry-Perot filters,” Electron. Lett. 33(23), 1970–1972 (1997).
    [Crossref]
  25. M. C. Tien, J. F. Bauters, M. J. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
    [Crossref] [PubMed]
  26. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 3rd edition, 2001).
  27. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  28. A. Villafranca, J. Lázaro, I. Salinas, and I. Garcés, “Stimulated Brillouin scattering gain profile characterization by interaction between two narrow-linewidth optical sources,” Opt. Express 13(19), 7336–7341 (2005).
    [Crossref] [PubMed]
  29. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett. 27(17), 1552–1554 (2002).
    [Crossref] [PubMed]
  30. O. Shlomovits, T. Langer, and M. Tur, “The effect of source phase noise on stimulated Brillouin amplification,” J. Lightwave Technol. 33(12), 2639–2645 (2015).
    [Crossref]
  31. A. Loayssa, R. Hernández, D. Benito, and S. Galech, “Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation,” Opt. Lett. 29(6), 638–640 (2004).
    [Crossref] [PubMed]
  32. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
    [Crossref] [PubMed]
  33. T. Inoue and S. Namiki, “Adaptive adjustment of reference constellation for demodulating 16QAM signal with intrinsic distortion due to imperfect modulation,” Opt. Express 21(24), 29120–29128 (2013).
    [Crossref] [PubMed]
  34. T. Inoue and S. Namiki, “Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter,” Opt. Express 22(13), 15376–15387 (2014).
    [Crossref] [PubMed]
  35. M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
    [Crossref] [PubMed]
  36. F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
    [Crossref]
  37. Y. Souidi, F. Taleb, J. Zheng, M. W. Lee, F. Du Burck, and V. Roncin, “Low-noise and high-gain Brillouin optical amplifier for narrowband active optical filtering based on a pump-to-signal optoelectronic tracking,” Appl. Opt. 55(2), 248–253 (2016).
    [Crossref] [PubMed]
  38. M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
    [Crossref]
  39. S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
    [Crossref] [PubMed]
  40. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
    [Crossref] [PubMed]

2016 (3)

2015 (3)

2014 (4)

2013 (5)

2012 (1)

2011 (4)

2010 (2)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (1)

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

2006 (1)

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

1997 (3)

J. Capmany, B. Ortega, and D. Pastor, “Fibre optic bandpass filter with subpicometre bandwidth using a fibre grating and two fibre Fabry-Perot filters,” Electron. Lett. 33(23), 1970–1972 (1997).
[Crossref]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers,” IEEE Photonic Tech. Lett. 9(1), 124–126 (1997).
[Crossref]

1994 (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Alem, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Alic, N.

Al-Taiy, H.

Amin Shoaie, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Ammann, M. J.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
[Crossref]

Andrekson, P. A.

Ataie, V.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
[Crossref]

Bauters, J. F.

Ben-Ezra, S.

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Benito, D.

Benkler, E.

Blumenthal, D. J.

Bowers, J. E.

Brasch, V.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Brès, C.-S.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Capmany, J.

J. Capmany, B. Ortega, and D. Pastor, “Fibre optic bandpass filter with subpicometre bandwidth using a fibre grating and two fibre Fabry-Perot filters,” Electron. Lett. 33(23), 1970–1972 (1997).
[Crossref]

Carrasco-Sanz, A.

J. Galindo-Santos, A. V. Velasco, A. Carrasco-Sanz, and P. Corredera, “Brillouin filtering of optical combs for narrow linewidth frequency synthesis,” Opt. Commun. 366, 33–37 (2016).
[Crossref]

Chang, F.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Chen, J.

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

Chraplyvy, A. R.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers,” IEEE Photonic Tech. Lett. 9(1), 124–126 (1997).
[Crossref]

Corredera, P.

J. Galindo-Santos, A. V. Velasco, A. Carrasco-Sanz, and P. Corredera, “Brillouin filtering of optical combs for narrow linewidth frequency synthesis,” Opt. Commun. 366, 33–37 (2016).
[Crossref]

David, A.

Du Burck, F.

Eriksson, T. A.

Ferreira, M. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Freude, W.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Galech, S.

Galindo-Santos, J.

J. Galindo-Santos, A. V. Velasco, A. Carrasco-Sanz, and P. Corredera, “Brillouin filtering of optical combs for narrow linewidth frequency synthesis,” Opt. Commun. 366, 33–37 (2016).
[Crossref]

Gallion, P.

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

Garcés, I.

Hartinger, K.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Heck, M. J.

Heras, C.

Hernández, R.

Herr, T.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Hillerkuss, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Hoffmann, S.

Holzwarth, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Horowitz, M.

A. David and M. Horowitz, “Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers,” Opt. Express 19(12), 11792–11803 (2011).
[Crossref] [PubMed]

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers,” IEEE Photonic Tech. Lett. 9(1), 124–126 (1997).
[Crossref]

Hu, W.

Inoue, T.

Ishizawa, A.

Jamshidi, K.

Jaouen, Y.

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

Jaouën, Y.

Jordan, M.

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Junker, M.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
[Crossref]

Karlsson, M.

Kikuchi, K.

Kippenberg, T. J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Klinger, J.

H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
[Crossref] [PubMed]

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
[Crossref]

Koga, M.

Koos, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Kuo, B. P. P.

Kuo, B. P.-P.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
[Crossref]

Langer, T.

Lauermann, M.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Lauterbach, K. U.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
[Crossref]

Lázaro, J.

Lee, M. W.

Leuthold, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Li, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Li, X.

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

Liu, L.

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
[Crossref]

Loayssa, A.

Lorences-Riesgo, A.

Marshall, T.

Mazur, M.

Mizuochi, T.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Mizutori, A.

Myslivets, E.

Namiki, S.

Nebendahl, B.

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
[Crossref] [PubMed]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Nishikawa, T.

Noé, R.

Onohara, K.

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “Fibre optic bandpass filter with subpicometre bandwidth using a fibre grating and two fibre Fabry-Perot filters,” Electron. Lett. 33(23), 1970–1972 (1997).
[Crossref]

Parmigiani, F.

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “Fibre optic bandpass filter with subpicometre bandwidth using a fibre grating and two fibre Fabry-Perot filters,” Electron. Lett. 33(23), 1970–1972 (1997).
[Crossref]

Pelayo, J.

Petit, H.

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

Pfau, T.

Pfeifle, J.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Pinto, J. L.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Preußler, S.

Radic, S.

Resan, B.

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Rocha, J. F.

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Rohde, F.

Roncin, V.

Salinas, I.

Schellinger, T.

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Schindler, P.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Schmogrow, R.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Schneider, T.

H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
[Crossref] [PubMed]

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
[Crossref] [PubMed]

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
[Crossref]

Schwarzbacher, A. T.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
[Crossref]

Shlomovits, O.

Sogawa, T.

Soto, M. A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Souidi, Y.

Spencer, D. T.

Subías, J.

Szafraniec, B.

Takada, A.

Takara, H.

Takushima, Y.

Taleb, F.

Tanemura, T.

Telle, H. R.

Temprana, E.

V. Ataie, E. Temprana, L. Liu, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer,” J. Lightwave Technol. 33(3), 694–699 (2015).
[Crossref]

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Thévenaz, L.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Tien, M. C.

Tkach, R. W.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers,” IEEE Photonic Tech. Lett. 9(1), 124–126 (1997).
[Crossref]

Tong, Z.

Tur, M.

Vedadi, A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Velasco, A. V.

J. Galindo-Santos, A. V. Velasco, A. Carrasco-Sanz, and P. Corredera, “Brillouin filtering of optical combs for narrow linewidth frequency synthesis,” Opt. Commun. 366, 33–37 (2016).
[Crossref]

Villafranca, A.

Villuendas, F.

Wegner, D.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Wei, W.

Weimann, C.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Weingarten, K.

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

Wenzel, N.

Wiatrek, A.

Wiberg, A. O. J.

Wise, A.

Yi, L.

W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22(19), 23249–23260 (2014).
[Crossref] [PubMed]

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

Yu, Y.

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Zadok, A.

Zheng, J.

Zhou, J.

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

Zyskind, J. L.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers,” IEEE Photonic Tech. Lett. 9(1), 124–126 (1997).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

J. Capmany, B. Ortega, and D. Pastor, “Fibre optic bandpass filter with subpicometre bandwidth using a fibre grating and two fibre Fabry-Perot filters,” Electron. Lett. 33(23), 1970–1972 (1997).
[Crossref]

IEEE Commun. Mag. (1)

F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100G transport networks,” IEEE Commun. Mag. 48(3), S48–S55 (2010).
[Crossref]

IEEE Photonic Tech. Lett. (2)

J. Zhou, J. Chen, Y. Jaouen, L. Yi, X. Li, H. Petit, and P. Gallion, “A new frequency model for pump-to-signal RIN transfer in Brillouin fiber amplifiers,” IEEE Photonic Tech. Lett. 19(13), 978–980 (2007).
[Crossref]

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, “Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers,” IEEE Photonic Tech. Lett. 9(1), 124–126 (1997).
[Crossref]

IEEE Photonics J. (1)

D. Hillerkuss, T. Schellinger, M. Jordan, C. Weimann, F. Parmigiani, B. Resan, K. Weingarten, S. Ben-Ezra, B. Nebendahl, C. Koos, W. Freude, and J. Leuthold, “High-quality optical frequency comb by spectral slicing of spectra broadened by SPM,” IEEE Photonics J. 5(5), 7201011 (2013).
[Crossref]

IEEE T. Microw. Theory (1)

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K. U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE T. Microw. Theory 54(4), 1576–1581 (2006).
[Crossref]

J. Lightwave Technol. (4)

Nat. Commun. (1)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Pfeifle, V. Brasch, M. Lauermann, Y. Yu, D. Wegner, T. Herr, K. Hartinger, P. Schindler, J. Li, D. Hillerkuss, R. Schmogrow, C. Weimann, R. Holzwarth, W. Freude, J. Leuthold, T. J. Kippenberg, and C. Koos, “Coherent terabit communications with microresonator Kerr frequency combs,” Nat. Photonics 8(5), 375–380 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Galindo-Santos, A. V. Velasco, A. Carrasco-Sanz, and P. Corredera, “Brillouin filtering of optical combs for narrow linewidth frequency synthesis,” Opt. Commun. 366, 33–37 (2016).
[Crossref]

Opt. Express (13)

A. Lorences-Riesgo, M. Mazur, T. A. Eriksson, P. A. Andrekson, and M. Karlsson, “Self-homodyne 24×32-QAM superchannel receiver enabled by all-optical comb regeneration using Brillouin amplification,” Opt. Express 24(26), 29714–29723 (2016).
[Crossref] [PubMed]

W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Bandwidth-tunable narrowband rectangular optical filter based on stimulated Brillouin scattering in optical fiber,” Opt. Express 22(19), 23249–23260 (2014).
[Crossref] [PubMed]

A. David and M. Horowitz, “Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers,” Opt. Express 19(12), 11792–11803 (2011).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, A. Takada, T. Sogawa, and M. Koga, “Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser,” Opt. Express 21(24), 29186–29194 (2013).
[Crossref] [PubMed]

Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
[Crossref] [PubMed]

J. Subías, C. Heras, J. Pelayo, and F. Villuendas, “All in fiber optical frequency metrology by selective Brillouin amplification of single peak in an optical comb,” Opt. Express 17(8), 6753–6758 (2009).
[Crossref] [PubMed]

B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
[Crossref] [PubMed]

T. Inoue and S. Namiki, “Adaptive adjustment of reference constellation for demodulating 16QAM signal with intrinsic distortion due to imperfect modulation,” Opt. Express 21(24), 29120–29128 (2013).
[Crossref] [PubMed]

T. Inoue and S. Namiki, “Carrier recovery for M-QAM signals based on a block estimation process with Kalman filter,” Opt. Express 22(13), 15376–15387 (2014).
[Crossref] [PubMed]

S. Preußler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Brillouin scattering gain bandwidth reduction down to 3.4MHz,” Opt. Express 19(9), 8565–8570 (2011).
[Crossref] [PubMed]

A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19(22), 21945–21955 (2011).
[Crossref] [PubMed]

A. Villafranca, J. Lázaro, I. Salinas, and I. Garcés, “Stimulated Brillouin scattering gain profile characterization by interaction between two narrow-linewidth optical sources,” Opt. Express 13(19), 7336–7341 (2005).
[Crossref] [PubMed]

M. C. Tien, J. F. Bauters, M. J. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express 19(14), 13551–13556 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

M. F. Ferreira, J. F. Rocha, and J. L. Pinto, “Analysis of the gain and noise characteristics of fibre Brillouin amplifiers,” Opt. Quantum Electron. 26(1), 35–44 (1994).
[Crossref]

Science (1)

E. Temprana, E. Myslivets, B. P.-P. Kuo, L. Liu, V. Ataie, N. Alic, and S. Radic, “Overcoming Kerr-induced capacity limit in optical fiber transmission,” Science 348(6242), 1445–1448 (2015).
[Crossref] [PubMed]

Other (7)

B. J. Puttnam, R. S. Luís, W. Klaus, J. Sakaguchi, J.-M. Delgado Mendinueta, Y. Awaji, N. Wada, Y. Tamura, T. Hayashi, M. Hirano, and J. Marciante, “2.15 Pb/s transmission using a 22 core homogeneous single-mode multi-core fiber and wideband optical comb”, 41st European Conference on Optical Communication (ECOC), PDP.3.1, Valencia, Spain, Sept. 27-Oct 1, 2015.
[Crossref]

M. Imran, A. D. Errico, A. Lord, and L. Poti, “Techno-economic analysis of carrier sources in slice-able bandwidth variable transponders,” 42nd European Conference on Optical Communication (ECOC), paper W.4.P1.SC4.33, Dusseldorf, Germany, Sept. 18–22, 2016.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. Eggleton, H. Nguyen Tan, K. Solis-Trapala, and S. Namiki, “Low noise, regeneration of optical frequency comb-lines for 64QAM enabled by SBS gain”, 21st OptoElectronics and Communications Conference (OECC), paper PD1–3, Niigata, Japan, July 3–7, 2016.

M. Pelusi, A. Choudhary, T. Inoue, D. Marpaung, B. J. Eggleton, and S. Namiki, “Regeneration of noise limited frequency comb lines for 64-QAM by Brillouin gain seeded via SSB modulation”, Optical Fiber Communications Conference (OFC), paper, M3F.4, Los Angeles, USA, Mar. 19–23, 2017.
[Crossref]

M. D. Pelusi, A. Choudhary, T. Inoue, B. Eggleton, D. Marpaung, and S. Namiki, “Multi-line regeneration of noise limited frequency combs by Brillouin amplification via a self-seeded dispersed pump”, Conference on Lasers and Electro-Optics (CLEO), paper SM2L.4, San Jose, USA, May 14–19, 2017.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 3rd edition, 2001).

J. Zhang and M. R. Phillips, “Cancellation of intensity noise caused by stimulated Brillouin scattering in an optical fiber transmission system,” Optical Fiber Communication Conference (OFC), paper PDP-24, 2005.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of frequency comb noise suppression by narrowband Brillouin amplification to boost carrier to noise ratio before carrier modulation for enabling low distortion signal generation. The Brillouin amplifier is backward-pumped in the gain medium by spectral lines seeded from the comb, after up-shifting its frequency by △fB via electro-optic modulation.
Fig. 2
Fig. 2 (a) Experimental set-up of frequency comb source and Brillouin comb amplifier using self-seeded pump with △fB frequency shift by single sideband (SSB) modulator. (b) Optical spectrum from modelocked laser (MLL), and frequency comb after parametric broadening in highly nonlinear fiber (HNLF), and zoom of comb lines at ≈1563nm on a high resolution OSA.
Fig. 3
Fig. 3 Brillouin amplifier characterization. (a) Single-sideband (SSB) generation at △fB offset for ECL source input at 1552.6 nm, using IQ-modulator biased for optimum carrier suppression. (b) Critical power for Stimulated Brillouin scattering in 4.46 km of SSMF with ECL source input. (c) Brillouin gain spectra for 4.46 km SSMF with increasing pump power in case of a CW pump, and a frequency swept CW probe of power −10 dBm.
Fig. 4
Fig. 4 Experiment set-up of source encoding of spectral line carrier with 96 Gb/s DP-64-QAM signal before coherent detection and offline digital signal processing (DSP), in case of frequency comb or ECL carrier source input, and with and without Brillouin amplifier (BA).
Fig. 5
Fig. 5 Pump pre-dispersion impact on Brillouin comb amplifier. Optical spectra of (a) frequency comb source and self-seeded 20-line pump before and after propagation through 4.46 km SSMF, without pump pre-dispersion, giving mirrored distortion from pump to comb. (b) Frequency comb after Brillouin amplifier with 40-line pump for with and without pump pre-dispersion in 3 km SSMF to achieve higher gain.
Fig. 6
Fig. 6 High resolution optical spectrum from Brillouin comb amplifier for 40-line pump on and off, of (a) all amplified lines, with corresponding gain (circle points), and (b) zoom of comb line at 1552.6 nm with upper frequency sideband on log frequency scale in the inset.
Fig. 7
Fig. 7 64-QAM modulation of frequency comb lines restored by Brillouin comb amplification (BA) with 40-line pump. (a) Signal constellations for frequency comb line source without Brillouin amplifier, compared to (b) reference ECL source direct to data modulator, (c) BER and (d) constellations of frequency comb lines with BA, versus reference ECL case.
Fig. 8
Fig. 8 Performance comparison of frequency comb and ECL carrier sources. BER of spectral line at 1552.6 nm modulated with 96 Gb/s DP-64-QAM, after Brillouin amplification (BA) of frequency comb with 40-line pump versus single line pump (giving 23 dB gain), and ECL input giving 20 and 24 dB gain, compared to reference ECL direct to data modulator.
Fig. 9
Fig. 9 Wavelength dependence of (a) BER, and (b) signal constellations after modulation with 96 Gb/s DP-64-QAM of spectral line from C-band optical frequency comb in Fig. 2(b), with and without including Brillouin amplifier (BA) by single line pump at optimum △fB, compared to the reference case of wavelength tunable ECL connected direct to data modulator.
Fig. 10
Fig. 10 Brillouin amplifier (BA) gain impact on (a) BER, and (b) signal constellations, for frequency comb line versus ECL input, after output modulation with 96 Gb/s DP-64-QAM, for carrier at 1552.6 nm wavelength, and single line pump at optimum △fB.
Fig. 11
Fig. 11 Brillouin amplifier (BA) input power impact on (a) on/off gain and output power, in case of low noise ECL carrier source, with single line pump at optimum △fB, and (b) BER, and (c) signal constellations after modulation with 96 Gb/s DP-64-QAM.
Fig. 12
Fig. 12 Impact of Brillouin amplifier pump frequency detuning from optimum △fB for peak gain on (a) BER, (b) gain, and (c) signal constellations after output modulation with 96 Gb/s DP-64-QAM, for frequency comb line or ECL input at 1552.6 nm wavelength, and similar gain of 23-24 dB from single line pump.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ f B =2n  V A / λ
ΔCNR= Δ S ( 1+ N SBS N c ) Δ B +[ Δ S Δ B G ] 
G >   Δ S Δ B Δ S [ Δ B ( 1+ N SBS N c ) ] ,
lim    G ΔCNR= ΔCN R lim = Δ S Δ B ( 1+ N SBS N c )

Metrics