Abstract

We demonstrate an electric control metamaterials-high electron mobility transistors (HEMTs) integrated terahertz (THz) modulator whose switching ability is developed by utilizing the symmetric quadruple-split-ring resonators (SRRs) metamaterial configuration and operating voltage is reduced by incorporating the HEMT elements. Meanwhile, the high switching speed of the HEMT implies that the THz modulator has a high potential in modulation speed. Under a reverse gate voltage of −4 V, the THz modulator exhibits a modulation depth of 80% at 0.86 THz and a phase shift of 0.67 rad (38.4°) at 0.77 THz, respectively. In addition, a modulation speed over 2.7 MHz is achieved and an improvement in the modulation speed of hundreds of MHz with optimum RC time constant is expected to achieve for the THz modulator.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High speed terahertz modulation from metamaterials with embedded high electron mobility transistors

David Shrekenhamer, Saroj Rout, Andrew C. Strikwerda, Chris Bingham, Richard D. Averitt, Sameer Sonkusale, and Willie J. Padilla
Opt. Express 19(10) 9968-9975 (2011)

Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation

Saroj Rout and Sameer Sonkusale
Opt. Express 24(13) 14618-14631 (2016)

Polarization-independent active metamaterial for high-frequency terahertz modulation

Oliver Paul, Christian Imhof, Bert Lägel, Sandra Wolff, Jan Heinrich, Sven Höfling, Alfred Forchel, Remigius Zengerle, René Beigang, and Marco Rahm
Opt. Express 17(2) 819-827 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  2. Y. Shi, Q. Zhou, C. Zhang, and B. Jin, “Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 93(12), 121115 (2008).
    [Crossref]
  3. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33(4), 393–395 (2008).
    [Crossref] [PubMed]
  4. C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antenn. Propag. 56(5), 1413–1419 (2008).
    [Crossref]
  5. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [Crossref] [PubMed]
  6. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
    [Crossref]
  7. S. Rout and S. Sonkusale, “Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation,” Opt. Express 24(13), 14618–14631 (2016).
    [Crossref] [PubMed]
  8. W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
    [Crossref]
  9. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  12. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
    [Crossref]
  13. E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
    [Crossref]
  14. A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
    [Crossref]
  15. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
    [Crossref] [PubMed]
  16. H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
    [Crossref] [PubMed]
  17. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  18. H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
    [Crossref]
  19. H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
    [Crossref] [PubMed]
  20. O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
    [Crossref] [PubMed]
  21. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A broadband terahertz metamaterial electrical modulator,” in Proceedings of IEEE Conference on CLEO/QELS (IEEE, 2009), pp. 1–2.
  22. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
    [Crossref] [PubMed]
  23. M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
    [Crossref] [PubMed]
  24. Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
    [Crossref] [PubMed]

2016 (2)

S. Rout and S. Sonkusale, “Wireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulation,” Opt. Express 24(13), 14618–14631 (2016).
[Crossref] [PubMed]

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

2011 (1)

2010 (1)

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

2009 (4)

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

O. Paul, C. Imhof, B. Lägel, S. Wolff, J. Heinrich, S. Höfling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17(2), 819–827 (2009).
[Crossref] [PubMed]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

2008 (5)

Y. Shi, Q. Zhou, C. Zhang, and B. Jin, “Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 93(12), 121115 (2008).
[Crossref]

L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33(4), 393–395 (2008).
[Crossref] [PubMed]

C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antenn. Propag. 56(5), 1413–1419 (2008).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[Crossref] [PubMed]

2007 (2)

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[Crossref]

2006 (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2004 (2)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

2001 (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Averitt, R. D.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A broadband terahertz metamaterial electrical modulator,” in Proceedings of IEEE Conference on CLEO/QELS (IEEE, 2009), pp. 1–2.

Azad, A. K.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A broadband terahertz metamaterial electrical modulator,” in Proceedings of IEEE Conference on CLEO/QELS (IEEE, 2009), pp. 1–2.

Beigang, R.

Bingham, C.

Bingham, C. M.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Bonn, M.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[Crossref]

Brener, I.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

Chan, W. L.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

Chen, H. T.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A broadband terahertz metamaterial electrical modulator,” in Proceedings of IEEE Conference on CLEO/QELS (IEEE, 2009), pp. 1–2.

Chen, Q.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Chen, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A broadband terahertz metamaterial electrical modulator,” in Proceedings of IEEE Conference on CLEO/QELS (IEEE, 2009), pp. 1–2.

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Federici, J.

Feng, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Forchel, A.

Giles, R. C.

Gossard, A. C.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grischkowsky, D.

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[Crossref]

Heinrich, J.

Hendry, E.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[Crossref]

Highstrete, C.

Höfling, S.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hu, J.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Hwang, J. H.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Imhof, C.

Jang, J. H.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Jansen, C.

C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antenn. Propag. 56(5), 1413–1419 (2008).
[Crossref]

Jia, Q. X.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Jin, B.

Y. Shi, Q. Zhou, C. Zhang, and B. Jin, “Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 93(12), 121115 (2008).
[Crossref]

Jokerst, N. M.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Kafesaki, M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kasarla, S. R.

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kim, D.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Kim, H. W.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Koch, M.

C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antenn. Propag. 56(5), 1413–1419 (2008).
[Crossref]

Koschny, T.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kuipers, L.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[Crossref]

Kurner, T.

C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antenn. Propag. 56(5), 1413–1419 (2008).
[Crossref]

Lägel, B.

Lee, M.

Li, L.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Li, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Liang, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Lim, H. C.

Liu, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Lockyear, M. J.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[Crossref]

Lu, H.

Lu, X.

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

Mendis, R.

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[Crossref]

Mittleman, D.

C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antenn. Propag. 56(5), 1413–1419 (2008).
[Crossref]

Mittleman, D. M.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Möller, L.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Nouman, M. T.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

O’Hara, J. F.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[Crossref] [PubMed]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Ohara, J. F.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19(10), 9968–9975 (2011).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A broadband terahertz metamaterial electrical modulator,” in Proceedings of IEEE Conference on CLEO/QELS (IEEE, 2009), pp. 1–2.

Palit, S.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Paul, O.

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Piesiewicz, R.

C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antenn. Propag. 56(5), 1413–1419 (2008).
[Crossref]

Qiao, S.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Rahm, M.

Rivas, J. G.

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Rout, S.

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shi, Y.

Y. Shi, Q. Zhou, C. Zhang, and B. Jin, “Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 93(12), 121115 (2008).
[Crossref]

Shrekenhamer, D.

Singh, R.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Sinyukov, A.

Smith, D. R.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Sonkusale, S.

Soukoulis, C. M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Strikwerda, A. C.

Sun, H.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Sun, L.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Taylor, A. J.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[Crossref] [PubMed]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A broadband terahertz metamaterial electrical modulator,” in Proceedings of IEEE Conference on CLEO/QELS (IEEE, 2009), pp. 1–2.

Tian, Z.

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

Trugman, S. A.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

H. T. Chen, H. Lu, A. K. Azad, R. D. Averitt, A. C. Gossard, S. A. Trugman, J. F. O’Hara, and A. J. Taylor, “Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays,” Opt. Express 16(11), 7641–7648 (2008).
[Crossref] [PubMed]

Tyler, T.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

Wolff, S.

Woo, J. M.

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Wu, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Xie, C.

Xu, G.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Yang, H.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Yang, Z.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zengerle, R.

Zhang, B.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zhang, C.

Y. Shi, Q. Zhou, C. Zhang, and B. Jin, “Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 93(12), 121115 (2008).
[Crossref]

Zhang, W.

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

Zhang, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zhou, Q.

Y. Shi, Q. Zhou, C. Zhang, and B. Jin, “Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 93(12), 121115 (2008).
[Crossref]

Zhou, Y.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zide, J. M. O.

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

Zou, X.

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

Y. Shi, Q. Zhou, C. Zhang, and B. Jin, “Ultrafast high-field carrier transport in GaAs measured by femtosecond pump-terahertz probe spectroscopy,” Appl. Phys. Lett. 93(12), 121115 (2008).
[Crossref]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94(21), 213511 (2009).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

A. K. Azad, Z. Tian, H. T. Chen, X. Lu, S. R. Kasarla, W. Zhang, A. J. Taylor, and J. F. O’Hara, “Ultrafast optical control of terahertz surface plasmons in subwavelength hole arrays at room temperature,” Appl. Phys. Lett. 95(1), 011105 (2009).
[Crossref]

H. T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. Ohara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metameterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93(9), 091117 (2008).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11(11), 444–446 (2001).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

C. Jansen, R. Piesiewicz, D. Mittleman, T. Kurner, and M. Koch, “The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems,” IEEE Trans. Antenn. Propag. 56(5), 1413–1419 (2008).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Nano Lett. (1)

Y. Zhang, S. Qiao, S. Liang, Z. Wu, Z. Yang, Z. Feng, H. Sun, Y. Zhou, L. Sun, Z. Chen, X. Zou, B. Zhang, J. Hu, S. Li, Q. Chen, L. Li, G. Xu, Y. Zhao, and S. Liu, “Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure,” Nano Lett. 15(5), 3501–3506 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (2)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

E. Hendry, M. J. Lockyear, J. G. Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

M. T. Nouman, H. W. Kim, J. M. Woo, J. H. Hwang, D. Kim, and J. H. Jang, “Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors,” Sci. Rep. 6(1), 26452 (2016).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Other (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A broadband terahertz metamaterial electrical modulator,” in Proceedings of IEEE Conference on CLEO/QELS (IEEE, 2009), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Three-dimensional schematic diagram of a unit cell. The geometry and dimensions of a single metamaterial element are: W = G = 4 μm, E = 8 μm, L = H = 34 μm. The period and resonance frequency of the metamaterial element are 56 μm × 56 μm and 0.85 THz, respectively. Moreover, the length and width of the gate are 1μm and 10 μm, respectively. (b) Equivalent circuit of the metamaterial-HEMT unit, where the variable resistor RHEMT corresponds to loss strongly related to the 2DEG concentration of HEMT within the split gap. (c) Simulated electric field distributions on Z-axis (i.e. Ez distributions) at the resonance frequency of 0.85 THz when the 2DEG depleted completely. (d) Schematic layout of the device. There are totally 72 × 72 = 5184 metamaterial elements (i.e. 20736 HEMTs) in the device, corresponding to an active area (the area in the red dashed line) of 4 mm × 4 mm. In addition, the actual size of the whole device is 6.4 mm × 4.2 mm. (e) The HEMT epitaxial structure of the device and band diagram of the gate metal-HEMT interface. The delta-doping concentration in AlGaAs layers are 2.5 × 1012 cm−2 and 1.0 × 1012 cm−2, respectively.

Fig. 2
Fig. 2

(a) Schematic cross-section of the fabricated device. (b) SEM (scanning electron microscope) image after the gate process. (c) Close-up cross-section SEM image of the fabricated device. (d) Optical microscope photo of the fabricated device. (e) Front (the upper part) and back (the lower part) image of the mounted device. The printed circuit board (PCB) has dimensions of 3 cm × 7 cm. The square hole and light blocking layer have dimensions of 4 mm × 4 mm and 1 cm × 1 cm, respectively.

Fig. 3
Fig. 3

DC behaviors for an individual HEMT designed on the margin of the device. (a) Output characteristics. (b) Transfer characteristics.

Fig. 4
Fig. 4

THz-TDS experimental results versus gate voltage (Vg). (a) Intensity transmission in time domain. The reference signal was measured after the device removed out of the THz-TDS system. (b) Intensity transmission in frequency domain. The resonance frequency of the device is 0.86 THz which is almost the same as the designed value (0.85 THz). (c) Phase characteristic in frequency domain. (d) Modulation depth at 0.86 THz (black) and phase shift at 0.77 THz (blue) with respect to Vg.

Fig. 5
Fig. 5

Current-voltage (I-V) characteristic measured by Agilent B1500A and capacitance- voltage (C-V) characteristic measured by Agilent E4990A.

Fig. 6
Fig. 6

Schematic circuit set-up of frequency response measurement.

Fig. 7
Fig. 7

(a) Experimental results of current response method under differentR1. (b) The RC time constant fitting of the3-dB bandwidth under different R1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

MD(ω)= T ( ω ) Vg=0V -T ( ω ) Vg T ( ω ) Vg=0V
Gain=10*log( CH2/ CH1 )=10*log( R 2 +1/ 2πfC R 1 + R 2 +1/ 2πfC )
Gain10*log( 1/ 2πfC R 1 +1/ 2πfC )