Abstract

We study the use of nanopatterned silicon membranes to obtain optically-induced heating in water. We show that by varying the detuning between an absorptive optical resonance of the patterned membrane and an illumination laser, both the magnitude and response time of the temperature rise can be controlled. This allows for either sequential or selective heating of different patterned areas on chip. We obtain a steady-state temperature of approximately 100 °C for a 805.5nm CW laser power density of 66 µW/μm2 and observe microbubble formation. The ability to spatially and temporally control temperature on the microscale should enable the study of heat-induced effects in a variety of chemical and biological lab-on-chip applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermo-optical dynamics in an optically pumped Photonic Crystal nano-cavity

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Robert-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde
Opt. Express 17(19) 17118-17129 (2009)

Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip

Takasumi Tanabe, Masaya Notomi, Satoshi Mitsugi, Akihiko Shinya, and Eiichi Kuramochi
Opt. Lett. 30(19) 2575-2577 (2005)

References

  • View by:
  • |
  • |
  • |

  1. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires And Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
    [Crossref] [PubMed]
  2. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
    [Crossref] [PubMed]
  3. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” ACS Nano 3(5), 1231–1237 (2009).
    [Crossref] [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  5. G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
    [Crossref] [PubMed]
  6. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  7. Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
    [Crossref] [PubMed]
  8. G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
    [Crossref] [PubMed]
  9. R. Biswas and M. L. Povinelli, “Sudden, Laser-Induced Heating through Silicon Nanopatterning,” ACS Photonics 2(12), 1681–1685 (2015).
    [Crossref]
  10. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  11. P. Pottier, L. Shi, and Y.-A. Peter, “Determination of guided-mode resonances in photonic crystal slabs,” J. Opt. Soc. Am. B 29(1), 109–117 (2012).
    [Crossref]
  12. A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in 2003), 393–395.
  13. G. E. Jellisonand and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76(6), 3758–3761 (1994).
    [Crossref]
  14. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
    [Crossref]
  15. E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
    [Crossref]
  16. M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
    [Crossref] [PubMed]
  17. C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
    [Crossref] [PubMed]
  18. P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
    [Crossref] [PubMed]
  19. Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
    [Crossref] [PubMed]
  20. C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
    [Crossref] [PubMed]
  21. Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
    [Crossref] [PubMed]
  22. A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
    [Crossref] [PubMed]
  23. P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Res. 34(11), e77 (2006).
    [Crossref] [PubMed]
  24. A. Sposito, V. Hoang, and D. L. DeVoe, “Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip,” Lab Chip 16(18), 3524–3531 (2016).
    [Crossref] [PubMed]
  25. C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Sci. Technol. B 31(5), 050606 (2013).
    [Crossref]
  26. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref] [PubMed]
  27. D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
    [Crossref]
  28. E. Guyon, H. J. P. L. Petit, and C. D. Mitescu, Physical Hydrodynamics (Oxford University Press, USA, 2001).

2016 (1)

A. Sposito, V. Hoang, and D. L. DeVoe, “Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip,” Lab Chip 16(18), 3524–3531 (2016).
[Crossref] [PubMed]

2015 (1)

R. Biswas and M. L. Povinelli, “Sudden, Laser-Induced Heating through Silicon Nanopatterning,” ACS Photonics 2(12), 1681–1685 (2015).
[Crossref]

2014 (2)

G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
[Crossref] [PubMed]

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

2013 (3)

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Sci. Technol. B 31(5), 050606 (2013).
[Crossref]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

2012 (4)

P. Pottier, L. Shi, and Y.-A. Peter, “Determination of guided-mode resonances in photonic crystal slabs,” J. Opt. Soc. Am. B 29(1), 109–117 (2012).
[Crossref]

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
[Crossref] [PubMed]

2011 (3)

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

2010 (1)

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

2009 (1)

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref] [PubMed]

2008 (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (2)

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires And Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

2006 (3)

E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[Crossref]

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Res. 34(11), e77 (2006).
[Crossref] [PubMed]

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

2003 (1)

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

1994 (1)

G. E. Jellisonand and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76(6), 3758–3761 (1994).
[Crossref]

1983 (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
[Crossref]

Acimovic, S. S.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Au, L.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
[Crossref] [PubMed]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Barsic, D. N.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires And Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in 2003), 393–395.

Bermúdez Ureña, E.

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

Berto, P.

G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
[Crossref] [PubMed]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Bischof, J. C.

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
[Crossref] [PubMed]

Biswas, R.

R. Biswas and M. L. Povinelli, “Sudden, Laser-Induced Heating through Silicon Nanopatterning,” ACS Photonics 2(12), 1681–1685 (2015).
[Crossref]

Brongersma, M. L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires And Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Brujan, E.-A.

E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[Crossref]

Cao, J.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Cao, L.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires And Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Celanovic, I.

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

Chan, D. L. C.

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

Chen, J.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Cho, E. C.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Cobley, C. M.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Conjusteau, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Copland, J. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

DeVoe, D. L.

A. Sposito, V. Hoang, and D. L. DeVoe, “Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip,” Lab Chip 16(18), 3524–3531 (2016).
[Crossref] [PubMed]

Donner, J. S.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Eghtedari, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Fan, S.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Favazza, C.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Gao, F.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in 2003), 393–395.

González, M. U.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref] [PubMed]

Guichard, A. R.

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires And Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Guo, F.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hashmi, A.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Heiman, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Hoang, V.

A. Sposito, V. Hoang, and D. L. DeVoe, “Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip,” Lab Chip 16(18), 3524–3531 (2016).
[Crossref] [PubMed]

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Huang, T. J.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Jellisonand, G. E.

G. E. Jellisonand and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76(6), 3758–3761 (1994).
[Crossref]

Joannopoulos, J. D.

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[Crossref] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Kim, C.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Kotov, N. A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Kreuzer, M. P.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref] [PubMed]

Li, S.

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Lin, C.

C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Sci. Technol. B 31(5), 050606 (2013).
[Crossref]

Liu, H.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Mai, J. D.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Mao, Z.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Martínez, L. J.

C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Sci. Technol. B 31(5), 050606 (2013).
[Crossref]

McCloskey, D.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Modine, F. A.

G. E. Jellisonand and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76(6), 3758–3761 (1994).
[Crossref]

Monneret, S.

G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
[Crossref] [PubMed]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

Motamedi, M.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Neild, A.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

Neuzil, P.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Res. 34(11), e77 (2006).
[Crossref] [PubMed]

Oh, S.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Res. 34(11), e77 (2006).
[Crossref] [PubMed]

Oraevsky, A.

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

Peter, Y.-A.

Pipper, J.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Res. 34(11), e77 (2006).
[Crossref] [PubMed]

Polleux, J.

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

Pottier, P.

Povinelli, M. L.

R. Biswas and M. L. Povinelli, “Sudden, Laser-Induced Heating through Silicon Nanopatterning,” ACS Photonics 2(12), 1681–1685 (2015).
[Crossref]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Sci. Technol. B 31(5), 050606 (2013).
[Crossref]

Qin, Z.

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
[Crossref] [PubMed]

Quidant, R.

G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
[Crossref] [PubMed]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref] [PubMed]

Reilly-Collette, M.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Rigneault, H.

G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
[Crossref] [PubMed]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

Rogers, P.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

Rufo, J.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shi, L.

Soljacic, M.

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

Song, K. H.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Sposito, A.

A. Sposito, V. Hoang, and D. L. DeVoe, “Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip,” Lab Chip 16(18), 3524–3531 (2016).
[Crossref] [PubMed]

Suh, W.

Toyoda, T.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
[Crossref]

Urena, E. B.

G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Vogel, A.

E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[Crossref]

Wang, L. V.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Wang, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Wang, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Xia, Y.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Xie, Y.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Xu, J.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Yabe, M.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
[Crossref]

Yang, S.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Yu, G.

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Zhang, C.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Res. 34(11), e77 (2006).
[Crossref] [PubMed]

Zhang, Q.

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

Zhao, C.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, Y.

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

Zheng, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhu, C.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhu, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

Zhuo, L.

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Res. 34(11), e77 (2006).
[Crossref] [PubMed]

ACS Nano (4)

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-Assisted Optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon Near-Field Coupling in Metal Dimers as a Step toward Single-Molecule Sensing,” ACS Nano 3(5), 1231–1237 (2009).
[Crossref] [PubMed]

G. Baffou, P. Berto, E. Bermúdez Ureña, R. Quidant, S. Monneret, J. Polleux, and H. Rigneault, “Photoinduced Heating of Nanoparticle Arrays,” ACS Nano 7(8), 6478–6488 (2013).
[Crossref] [PubMed]

C. Kim, E. C. Cho, J. Chen, K. H. Song, L. Au, C. Favazza, Q. Zhang, C. M. Cobley, F. Gao, Y. Xia, and L. V. Wang, “In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages,” ACS Nano 4(8), 4559–4564 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

R. Biswas and M. L. Povinelli, “Sudden, Laser-Induced Heating through Silicon Nanopatterning,” ACS Photonics 2(12), 1681–1685 (2015).
[Crossref]

Chem. Soc. Rev. (1)

Z. Qin and J. C. Bischof, “Thermophysical and biological responses of gold nanoparticle laser heating,” Chem. Soc. Rev. 41(3), 1191–1217 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (1)

G. E. Jellisonand and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76(6), 3758–3761 (1994).
[Crossref]

J. Fluid Mech. (1)

E.-A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281–308 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D Appl. Phys. 16(5), L97–L100 (1983).
[Crossref]

J. Vac. Sci. Technol. B (1)

C. Lin, L. J. Martínez, and M. L. Povinelli, “Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance,” J. Vac. Sci. Technol. B 31(5), 050606 (2013).
[Crossref]

Lab Chip (6)

A. Sposito, V. Hoang, and D. L. DeVoe, “Rapid real-time PCR and high resolution melt analysis in a self-filling thermoplastic chip,” Lab Chip 16(18), 3524–3531 (2016).
[Crossref] [PubMed]

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip 11(21), 3710–3715 (2011).
[Crossref] [PubMed]

Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo, and T. J. Huang, “Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles,” Lab Chip 13(9), 1772–1779 (2013).
[Crossref] [PubMed]

C. Zhao, Y. Xie, Z. Mao, Y. Zhao, J. Rufo, S. Yang, F. Guo, J. D. Mai, and T. J. Huang, “Theory and experiment on particle trapping and manipulation via optothermally generated bubbles,” Lab Chip 14(2), 384–391 (2014).
[Crossref] [PubMed]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip 11(22), 3816–3820 (2011).
[Crossref] [PubMed]

A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman, and J. Xu, “Oscillating bubbles: a versatile tool for lab on a chip applications,” Lab Chip 12(21), 4216–4227 (2012).
[Crossref] [PubMed]

Nano Lett. (2)

M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High Sensitivity of In Vivo Detection of Gold Nanorods Using a Laser Optoacoustic Imaging System,” Nano Lett. 7(7), 1914–1918 (2007).
[Crossref] [PubMed]

L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, “Plasmon-Assisted Local Temperature Control to Pattern Individual Semiconductor Nanowires And Carbon Nanotubes,” Nano Lett. 7(11), 3523–3527 (2007).
[Crossref] [PubMed]

Nanoscale (1)

G. Baffou, E. B. Urena, P. Berto, S. Monneret, R. Quidant, and H. Rigneault, “Deterministic temperature shaping using plasmonic nanoparticle assemblies,” Nanoscale 6(15), 8984–8989 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

P. Neuzil, C. Zhang, J. Pipper, S. Oh, and L. Zhuo, “Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes,” Nucleic Acids Res. 34(11), e77 (2006).
[Crossref] [PubMed]

Phys. Rev. A (1)

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Other (2)

A. N. Bashkatov and E. A. Genina, “Water refractive index in dependence on temperature and wavelength: a simple approximation,” in 2003), 393–395.

E. Guyon, H. J. P. L. Petit, and C. D. Mitescu, Physical Hydrodynamics (Oxford University Press, USA, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of an array of microheaters. Maroon and black circles are devices with different resonance wavelengths, λ1 and λ2. (b) Sequential heating (closely-spaced resonance wavelengths): upon illumination by a single laser, the device type with resonant wavelength closer to the laser wavelength will heat up first. τ1 and τ2 represent the response times and T1, T2 the steady-state temperatures. (c-d) Selective heating (widely-spaced resonance wavelengths): illumination by a laser close to λ1 will predominantly heat devices with resonant wavelength at λ1 (c); illumination by a laser close to λ2 will predominantly heat those with resonant wavelength at λ2 (d).

Fig. 2
Fig. 2

(a,b) Schematic of a (a) plain silicon slab and (b) a photonic crystal microheater slab, each illuminated at normal incidence by a plane wave. (c) The corresponding measured transmission spectrum and FDTD fitted transmission and absorption spectra for the unpatterned slab. (d) Measured and CMT-fitted transmission spectra of the microheater slab; dotted blue and red lines show the laser wavelengths used in measurements. (e,f) Transmitted power from the unpatterned (e) and photonic-crystal (f) slabs, normalized to the incident power.

Fig. 3
Fig. 3

Simulated time-dependent (a) transmission, (b) temperature, and (c) absorption.

Fig. 4
Fig. 4

Experimental transmitted power through the photonic-crystal microheater, normalized to the incident power of 201 mW. Detunings of 4 nm and 6 nm are achieved using laser wavelengths of 974 nm and 976 nm, respectively.

Fig. 5
Fig. 5

(a,b) The measured spectra of the two fabricated devices around (a) 805nm and (b) 970nm. Inset shows the proposed use of these structures on a larger chip. (c,d) Experimental transmitted power through both devices, normalized to the incident power of 140 mW using laser wavelengths of 805.5 nm (green) and 976nm (blue).

Fig. 6
Fig. 6

(a) Measured spectra (monitored around 940 nm) of device 2, under electric heating using a Thorlabs temperature-controlled lens tube, (b) temperature measurements of the sample using the Seek Thermal Compact camera, and (c) experimental and simulation of spectral shift for elevated temperature up to 100°C.

Fig. 7
Fig. 7

(a) Measured spectra of device 2 as a function of laser power for CW illumination at 805.5 nm. Inset is a microscopic image of the bubble (black circle to the left) and an unilluminated device of 100 µm diameter (grey circle to the right). (b) Sample temperature versus illumination power (error bar determined by experimental resonance linewidth).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T trans ( t )= ( t s γ i ) 2 + ( t s ( ω op ω 0 ' ( t ) )+ r s γ r ) 2 ( ω op ω 0 ' ( t ) ) 2 + ( γ r + γ i ) 2 ,
ω 0 ' ( t )= ω 0 ω 0 n 0 dn dT ( T( ρ,z,t ) T 0 ),
ρ s C s T(ρ,z,t) t =( kT(ρ,z,t) )+ P abs ( t ) ,
P abs ( t )= P in 2 γ i γ r ( ω op ω 0 ' ( t ) ) 2 + ( γ r + γ i ) 2  .
ρ w C w [ T(ρ,z,t) t +.( T(ρ,z,t) v(ρ,z,t) ) ]k 2 T(ρ,z,t)=0,
v t +( v. )v=ν 2 v+ f th ( T ),
f th ( T )=βgδT u z ,

Metrics