Abstract

In photoacoustic tomography (PAT), delivering high energy pulses through optical fiber is critical for achieving high quality imaging. A fiber coupling scheme with a beam homogenizer is demonstrated for coupling high energy pulses in a single multimode fiber. This scheme can benefit PAT applications that require miniaturized illumination or internal illumination with a small fiber. The beam homogenizer is achieved by using a cross cylindrical lens array, which provides a periodic spatial modulation on the phase of the input light. Thus the lens array acts as a phase grating which diffracts the beam into a 2D diffraction pattern. Both theoretical analysis and experiments demonstrate that the focused beam can be split into a 2D spot array that can reduce the peak power on the fiber tip surface and thus enhance the coupling performance. The theoretical analysis of the intensity distribution of the focused beam is carried out by Fourier optics. In experiments, coupled energy at 48 mJ/pulse and 60 mJ/pulse have been achieved and the corresponding coupling efficiency is 70% and 90% in a 1000-μm and a 1500-μm-core-diameter fiber, respectively. The high energy pulses delivered by the multimode fiber are further tested for PAT imaging in phantoms. PAT imaging of a printed dot array shows a large illumination area of 7 cm2 under 5 mm thick chicken breast tissue. In vivo imaging is also demonstrated on the human forearm. The large improvement in coupling energy can potentially benefit PAT with single fiber delivery to achieve large area imaging and deep penetration detection.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber array for the delivery of high peak-power laser pulses for fluid flow measurements

Jonathan P. Parry, Jonathan D. Shephard, Martin J. Thomson, Mohammad R. Taghizadeh, Julian D. C. Jones, and Duncan P. Hand
Appl. Opt. 46(17) 3432-3438 (2007)

Improved hollow-core photonic crystal fiber design for delivery of nanosecond pulses in laser micromachining applications

Jonathan D. Shephard, Francois Couny, Phillip St. J. Russell, Julian D. C. Jones, Jonathan C. Knight, and Duncan P. Hand
Appl. Opt. 44(21) 4582-4588 (2005)

High energy green nanosecond and picosecond pulse delivery through a negative curvature fiber for precision micro-machining

Piotr Jaworski, Fei Yu, Richard M. Carter, Jonathan C. Knight, Jonathan D. Shephard, and Duncan P. Hand
Opt. Express 23(7) 8498-8506 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  2. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  3. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
    [Crossref] [PubMed]
  4. N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17(6), 066005 (2012).
    [Crossref] [PubMed]
  5. M. A. Lediju Bell, X. Guo, D. Y. Song, and E. M. Boctor, “Transurethral light delivery for prostate photoacoustic imaging,” J. Biomed. Opt. 20(3), 036002 (2015).
    [Crossref] [PubMed]
  6. R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
    [Crossref] [PubMed]
  7. J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
    [Crossref] [PubMed]
  8. L. Lin, J. Xia, T. T. Wong, L. Li, and L. V. Wang, “In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography,” J. Biomed. Opt. 20(1), 016019 (2015).
    [Crossref] [PubMed]
  9. S. Manohar, A. Kharine, J. C. G. Hespen, W. Steenbergen, and T. G. Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
    [Crossref] [PubMed]
  10. W. Xia, D. Piras, M. K. A. Singh, J. C. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4(11), 2555–2569 (2013).
    [Crossref] [PubMed]
  11. M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
    [Crossref] [PubMed]
  12. T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
    [Crossref] [PubMed]
  13. A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
    [Crossref] [PubMed]
  14. H. S. Salehi, T. Wang, P. D. Kumavor, H. Li, and Q. Zhu, “Design of miniaturized illumination for transvaginal co-registered photoacoustic and ultrasound imaging,” Biomed. Opt. Express 5(9), 3074–3079 (2014).
    [Crossref] [PubMed]
  15. S. Seidel and G. Phillipps, “Pulse lengthening by intracavity stimulated Brillouin scattering in a Q-switched, phase-conjugated Nd:YAG laser oscillator,” Appl. Opt. 32(36), 7408–7417 (1993).
    [Crossref] [PubMed]
  16. B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
    [Crossref]
  17. K. Walter, Solid-state Laser Engineering (Springer, 2013).
  18. L. Gallais, J. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
    [Crossref] [PubMed]
  19. R. A. Robinson and I. K. Ilev, “Design and optimization of a flexible high-peak-power laser-to-fiber coupled illumination system used in digital particle image velocimetry,” Rev. Sci. Instrum. 75(11), 4856–4862 (2004).
    [Crossref]
  20. J. Laufer, C. Elwell, D. Delpy, and P. Beard, “Spatially resolved blood oxygenation measurements using time-resolved photoacoustic spectroscopy,” in Oxygen Transport to Tissue XXVII, Vol. 578 of Advances in Experimental Medicine and Biology, G. Cicco, D. F. Bruley, M. Ferrari, and D. K. Harrison, eds. (Springer, 2006).
  21. L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
    [Crossref] [PubMed]
  22. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
    [Crossref] [PubMed]
  23. A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35(14), 2475–2477 (2010).
    [Crossref] [PubMed]
  24. X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophotonics 9(3), 253–259 (2016).
    [Crossref] [PubMed]
  25. H. He, A. Buehler, and V. Ntziachristos, “Optoacoustic endoscopy with curved scanning,” Opt. Lett. 40(20), 4667–4670 (2015).
    [Crossref] [PubMed]
  26. American National Standards Institute, Safe Use of Lasers (Laser Institute of America, 2000).
  27. T. Schmidt-Uhlig, P. Karlitschek, M. Yoda, Y. Sano, and G. Marowsky, “Laser shock processing with 20 MW laser pulses delivered by optical fibers,” Eur. Phys. J. Appl. Phys. 9(3), 235–238 (2000).
    [Crossref]
  28. T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
    [Crossref]
  29. M. C. Teich and B. E. A. Saleh, Fundamentals of Photonics (Wiley Interscience, 2007).
  30. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2005).
  31. R. Magnusson and T. K. Gaylord, “Diffraction efficiencies of thin phase gratings with arbitrary grating space,” J. Opt. Soc. Am. 68(6), 806–808 (1978).
    [Crossref]
  32. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  33. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
    [Crossref] [PubMed]

2016 (3)

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophotonics 9(3), 253–259 (2016).
[Crossref] [PubMed]

2015 (3)

L. Lin, J. Xia, T. T. Wong, L. Li, and L. V. Wang, “In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography,” J. Biomed. Opt. 20(1), 016019 (2015).
[Crossref] [PubMed]

M. A. Lediju Bell, X. Guo, D. Y. Song, and E. M. Boctor, “Transurethral light delivery for prostate photoacoustic imaging,” J. Biomed. Opt. 20(3), 036002 (2015).
[Crossref] [PubMed]

H. He, A. Buehler, and V. Ntziachristos, “Optoacoustic endoscopy with curved scanning,” Opt. Lett. 40(20), 4667–4670 (2015).
[Crossref] [PubMed]

2014 (2)

H. S. Salehi, T. Wang, P. D. Kumavor, H. Li, and Q. Zhu, “Design of miniaturized illumination for transvaginal co-registered photoacoustic and ultrasound imaging,” Biomed. Opt. Express 5(9), 3074–3079 (2014).
[Crossref] [PubMed]

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

2013 (3)

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

W. Xia, D. Piras, M. K. A. Singh, J. C. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4(11), 2555–2569 (2013).
[Crossref] [PubMed]

2012 (2)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17(6), 066005 (2012).
[Crossref] [PubMed]

2011 (1)

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2005 (3)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J. C. G. Hespen, W. Steenbergen, and T. G. Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

2004 (1)

R. A. Robinson and I. K. Ilev, “Design and optimization of a flexible high-peak-power laser-to-fiber coupled illumination system used in digital particle image velocimetry,” Rev. Sci. Instrum. 75(11), 4856–4862 (2004).
[Crossref]

2002 (1)

2001 (1)

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[Crossref]

2000 (1)

T. Schmidt-Uhlig, P. Karlitschek, M. Yoda, Y. Sano, and G. Marowsky, “Laser shock processing with 20 MW laser pulses delivered by optical fibers,” Eur. Phys. J. Appl. Phys. 9(3), 235–238 (2000).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

1993 (1)

1978 (1)

Amra, C.

Asano, T.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Bauer, D. R.

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

Boctor, E. M.

M. A. Lediju Bell, X. Guo, D. Y. Song, and E. M. Boctor, “Transurethral light delivery for prostate photoacoustic imaging,” J. Biomed. Opt. 20(3), 036002 (2015).
[Crossref] [PubMed]

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17(6), 066005 (2012).
[Crossref] [PubMed]

Boyd, R. D.

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

Britten, J. A.

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

Buehler, A.

Deán-Ben, X. L.

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophotonics 9(3), 253–259 (2016).
[Crossref] [PubMed]

Del Rio, S. P.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Fehm, T. F.

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophotonics 9(3), 253–259 (2016).
[Crossref] [PubMed]

Feit, M. D.

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

Frenz, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Gallais, L.

Gaylord, T. K.

Gostic, M.

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophotonics 9(3), 253–259 (2016).
[Crossref] [PubMed]

Guo, X.

M. A. Lediju Bell, X. Guo, D. Y. Song, and E. M. Boctor, “Transurethral light delivery for prostate photoacoustic imaging,” J. Biomed. Opt. 20(3), 036002 (2015).
[Crossref] [PubMed]

He, H.

Heijblom, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Herzog, E.

Hespen, J. C. G.

S. Manohar, A. Kharine, J. C. G. Hespen, W. Steenbergen, and T. G. Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[Crossref] [PubMed]

Hirota, K.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Horiguchi, A.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Ilev, I. K.

R. A. Robinson and I. K. Ilev, “Design and optimization of a flexible high-peak-power laser-to-fiber coupled illumination system used in digital particle image velocimetry,” Rev. Sci. Instrum. 75(11), 4856–4862 (2004).
[Crossref]

Irisawa, K.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Ishihara, M.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Ito, K.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Jaeger, M.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Kanao, S.

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

Kang, H. J.

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17(6), 066005 (2012).
[Crossref] [PubMed]

Kang, J. U.

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17(6), 066005 (2012).
[Crossref] [PubMed]

Karlitschek, P.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[Crossref]

T. Schmidt-Uhlig, P. Karlitschek, M. Yoda, Y. Sano, and G. Marowsky, “Laser shock processing with 20 MW laser pulses delivered by optical fibers,” Eur. Phys. J. Appl. Phys. 9(3), 235–238 (2000).
[Crossref]

Kasamatsu, T.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Kawaguchi, M.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Kharine, A.

S. Manohar, A. Kharine, J. C. G. Hespen, W. Steenbergen, and T. G. Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[Crossref] [PubMed]

Kitai, T.

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

Klaase, J. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

Kruger, R. A.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Kumavor, P. D.

Kuo, N.

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17(6), 066005 (2012).
[Crossref] [PubMed]

Kuzmiak, C. M.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Lam, R. B.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Lediju Bell, M. A.

M. A. Lediju Bell, X. Guo, D. Y. Song, and E. M. Boctor, “Transurethral light delivery for prostate photoacoustic imaging,” J. Biomed. Opt. 20(3), 036002 (2015).
[Crossref] [PubMed]

Leeuwen, T. G.

S. Manohar, A. Kharine, J. C. G. Hespen, W. Steenbergen, and T. G. Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[Crossref] [PubMed]

Lemor, R.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Li, H.

Li, L.

L. Lin, J. Xia, T. T. Wong, L. Li, and L. V. Wang, “In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography,” J. Biomed. Opt. 20(1), 016019 (2015).
[Crossref] [PubMed]

Lin, L.

L. Lin, J. Xia, T. T. Wong, L. Li, and L. V. Wang, “In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography,” J. Biomed. Opt. 20(1), 016019 (2015).
[Crossref] [PubMed]

Magnusson, R.

Manohar, S.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

W. Xia, D. Piras, M. K. A. Singh, J. C. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4(11), 2555–2569 (2013).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J. C. G. Hespen, W. Steenbergen, and T. G. Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[Crossref] [PubMed]

Marowsky, G.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[Crossref]

T. Schmidt-Uhlig, P. Karlitschek, M. Yoda, Y. Sano, and G. Marowsky, “Laser shock processing with 20 MW laser pulses delivered by optical fibers,” Eur. Phys. J. Appl. Phys. 9(3), 235–238 (2000).
[Crossref]

Maslov, K.

Mikami, Y.

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

Montilla, L. G.

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

Natoli, J.

Niederhauser, J. J.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Ntziachristos, V.

Olafsson, R.

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

Perry, M. D.

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

Phillipps, G.

Piras, D.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

W. Xia, D. Piras, M. K. A. Singh, J. C. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4(11), 2555–2569 (2013).
[Crossref] [PubMed]

Razansky, D.

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophotonics 9(3), 253–259 (2016).
[Crossref] [PubMed]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
[Crossref] [PubMed]

A. Buehler, E. Herzog, D. Razansky, and V. Ntziachristos, “Video rate optoacoustic tomography of mouse kidney perfusion,” Opt. Lett. 35(14), 2475–2477 (2010).
[Crossref] [PubMed]

Reinecke, D. R.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Robinson, R. A.

R. A. Robinson and I. K. Ilev, “Design and optimization of a flexible high-peak-power laser-to-fiber coupled illumination system used in digital particle image velocimetry,” Rev. Sci. Instrum. 75(11), 4856–4862 (2004).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

Salehi, H. S.

Sano, Y.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[Crossref]

T. Schmidt-Uhlig, P. Karlitschek, M. Yoda, Y. Sano, and G. Marowsky, “Laser shock processing with 20 MW laser pulses delivered by optical fibers,” Eur. Phys. J. Appl. Phys. 9(3), 235–238 (2000).
[Crossref]

Schmidt-Uhlig, T.

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[Crossref]

T. Schmidt-Uhlig, P. Karlitschek, M. Yoda, Y. Sano, and G. Marowsky, “Laser shock processing with 20 MW laser pulses delivered by optical fibers,” Eur. Phys. J. Appl. Phys. 9(3), 235–238 (2000).
[Crossref]

Seidel, S.

Shiina, T.

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

Shinchi, M.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Shinmoto, H.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

Shung, K. K.

Singh, M. K. A.

Song, D. Y.

M. A. Lediju Bell, X. Guo, D. Y. Song, and E. M. Boctor, “Transurethral light delivery for prostate photoacoustic imaging,” J. Biomed. Opt. 20(3), 036002 (2015).
[Crossref] [PubMed]

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17(6), 066005 (2012).
[Crossref] [PubMed]

Steed, D.

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Steenbergen, W.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

W. Xia, D. Piras, M. K. A. Singh, J. C. van Hespen, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography,” Biomed. Opt. Express 4(11), 2555–2569 (2013).
[Crossref] [PubMed]

S. Manohar, A. Kharine, J. C. G. Hespen, W. Steenbergen, and T. G. Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[Crossref] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

Sugie, T.

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

Toi, M.

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

Torii, M.

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

Tsuda, H.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Tsujita, K.

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

van den Engh, F. M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

van der Schaaf, M.

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

van Hespen, J. C.

van Leeuwen, T. G.

Wang, L. V.

L. Lin, J. Xia, T. T. Wong, L. Li, and L. V. Wang, “In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography,” J. Biomed. Opt. 20(1), 016019 (2015).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Wang, T.

Weber, P.

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

Witte, R. S.

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

Wong, T. T.

L. Lin, J. Xia, T. T. Wong, L. Li, and L. V. Wang, “In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography,” J. Biomed. Opt. 20(1), 016019 (2015).
[Crossref] [PubMed]

Xia, J.

L. Lin, J. Xia, T. T. Wong, L. Li, and L. V. Wang, “In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography,” J. Biomed. Opt. 20(1), 016019 (2015).
[Crossref] [PubMed]

Xia, W.

Xu, M.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Yang, H. C.

Yang, J. M.

Yoda, M.

T. Schmidt-Uhlig, P. Karlitschek, M. Yoda, Y. Sano, and G. Marowsky, “Laser shock processing with 20 MW laser pulses delivered by optical fibers,” Eur. Phys. J. Appl. Phys. 9(3), 235–238 (2000).
[Crossref]

Zhou, Q.

Zhu, Q.

Appl. Opt. (1)

Appl. Phys. B (1)

T. Schmidt-Uhlig, P. Karlitschek, G. Marowsky, and Y. Sano, “New simplified coupling scheme for the delivery of 20 MW Nd:YAG laser pulses by large core optical fibers,” Appl. Phys. B 72(2), 183–186 (2001).
[Crossref]

Biomed. Opt. Express (2)

Breast Cancer (1)

T. Kitai, M. Torii, T. Sugie, S. Kanao, Y. Mikami, T. Shiina, and M. Toi, “Photoacoustic mammography: initial clinical results,” Breast Cancer 21(2), 146–153 (2014).
[Crossref] [PubMed]

Eur. Phys. J. Appl. Phys. (1)

T. Schmidt-Uhlig, P. Karlitschek, M. Yoda, Y. Sano, and G. Marowsky, “Laser shock processing with 20 MW laser pulses delivered by optical fibers,” Eur. Phys. J. Appl. Phys. 9(3), 235–238 (2000).
[Crossref]

Eur. Radiol. (1)

M. Heijblom, D. Piras, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, W. Steenbergen, and S. Manohar, “The state of the art in breast imaging using the Twente Photoacoustic Mammoscope: results from 31 measurements on malignancies,” Eur. Radiol. 26(11), 3874–3887 (2016).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24(4), 436–440 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17(6), 066005 (2012).
[Crossref] [PubMed]

M. A. Lediju Bell, X. Guo, D. Y. Song, and E. M. Boctor, “Transurethral light delivery for prostate photoacoustic imaging,” J. Biomed. Opt. 20(3), 036002 (2015).
[Crossref] [PubMed]

L. Lin, J. Xia, T. T. Wong, L. Li, and L. V. Wang, “In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography,” J. Biomed. Opt. 20(1), 016019 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

X. L. Deán-Ben, T. F. Fehm, M. Gostic, and D. Razansky, “Volumetric hand-held optoacoustic angiography as a tool for real-time screening of dense breast,” J. Biophotonics 9(3), 253–259 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Med. Phys. (1)

R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, “Dedicated 3D photoacoustic breast imaging,” Med. Phys. 40(11), 113301 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Nat. Protoc. (1)

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc. 6(8), 1121–1129 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (2)

S. Manohar, A. Kharine, J. C. G. Hespen, W. Steenbergen, and T. G. Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol. 50(11), 2543–2557 (2005).
[Crossref] [PubMed]

L. G. Montilla, R. Olafsson, D. R. Bauer, and R. S. Witte, “Real-time photoacoustic and ultrasound imaging: a simple solution for clinical ultrasound systems with linear arrays,” Phys. Med. Biol. 58(1), N1–N12 (2013).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

B. C. Stuart, M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, M. D. Feit, and A. M. Rubenchik, “Development of high damage threshold optics for petawatt-class short-pulse lasers,” Proc. SPIE 2377, 247–359 (1995).
[Crossref]

Prostate (1)

A. Horiguchi, K. Tsujita, K. Irisawa, T. Kasamatsu, K. Hirota, M. Kawaguchi, M. Shinchi, K. Ito, T. Asano, H. Shinmoto, H. Tsuda, and M. Ishihara, “A pilot study of photoacoustic imaging system for improved real-time visualization of neurovascular bundle during radical prostatectomy,” Prostate 76(3), 307–315 (2016).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. A. Robinson and I. K. Ilev, “Design and optimization of a flexible high-peak-power laser-to-fiber coupled illumination system used in digital particle image velocimetry,” Rev. Sci. Instrum. 75(11), 4856–4862 (2004).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Other (6)

J. Laufer, C. Elwell, D. Delpy, and P. Beard, “Spatially resolved blood oxygenation measurements using time-resolved photoacoustic spectroscopy,” in Oxygen Transport to Tissue XXVII, Vol. 578 of Advances in Experimental Medicine and Biology, G. Cicco, D. F. Bruley, M. Ferrari, and D. K. Harrison, eds. (Springer, 2006).

K. Walter, Solid-state Laser Engineering (Springer, 2013).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

American National Standards Institute, Safe Use of Lasers (Laser Institute of America, 2000).

M. C. Teich and B. E. A. Saleh, Fundamentals of Photonics (Wiley Interscience, 2007).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the coupling optics. The incident beam from the pulse laser is split into beamlets by a cross cylindrical lens array, and the beamlets are focused by a plano-convex lens at its focal plane. To couple the light into a fiber, the fiber input end is placed at the focal plane of the plano-convex lens.

Fig. 2
Fig. 2

(a) Optical model of the coupling scheme with the lens array. The lens array transforms the incident plane wave into multiple spherical wavelets. Constructive interference happens where the propagation angle θ m satisfies psin θ m = mλ, which forms the mth diffraction order on the focal plane. (b) 1D plot of the periodic phase modulation function introduced by the lens array. P is the pitch of the lens array.

Fig. 3
Fig. 3

The light intensity distribution map (left column) and a corresponding intensity line profile (right column) at the focal plane. (a) and (b) are obtained by theoretical analysis; (c) and (d) are obtained by Zemax simulation; (e) and (f) are obtained by experiment. The location for the line profile is marked by an arrow.

Fig. 4
Fig. 4

Measured light intensity distribution map (a) and line profile; (b) at the output of the multimode fiber. The location for the line profile is marked by an arrow.

Fig. 5
Fig. 5

Experimental setup of the photoacoustic tomography with fiber delivering high energy pulses. The laser beam from the optical parametric oscillator (OPO) is homogenized and coupled into a multimode fiber to deliver light to phantom. DAQ: data acquisition system.

Fig. 6
Fig. 6

Output power characterization at different wavelengths and fiber core sizes. (a) Averaged pulse energy coupled into a 1000-µm-core-diameter fiber (blue curve). The error bar indicates the energy fluctuation measured over one hundred consecutive pulses. The laser energy measured at the input of the fiber is shown in red curve. (b) Similar power characterization as in (a) but with the light coupled into a 1500-µm-core-diameter fiber. (c) Comparison of the coupling efficiency of the two types of fiber.

Fig. 7
Fig. 7

PAT image of printed dots array. (a) Imaging result without the cover of chicken breast and the effective imaged area in a 10-mm-diameter circle. (b) Imaging result with the cover of 5 mm thick chicken breast and the increased effective imaged area in a 30-mm-diameter circle.

Fig. 8
Fig. 8

In vivo PAT image of forearm. (a) Overlay of PAT image (colored) on top of ultrasound image (grey scale). The PAT image highlights the skin surface and locations of several blood vessels labeled with numbers. (b) Photograph of the forearm where the blood vessels imaged by PAT are also marked. The dash line shows the place of the cross-sectional image.

Tables (2)

Tables Icon

Table 1 PAT systems with fiber delivery

Tables Icon

Table 2 Specifications of the cross cylindrical lens array

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

U 0 (ξ,η)=A t cl (ξ,η),
f(x,y)= e jk x 2 2 f cl ,
t cl (ξ,η)=[ n e jk (ξ ξ n ) 2 2 f cl rect( ξ ξ n p ) ] [ n e jk (η η n ) 2 2 f cl rect( η η n p ) ],
rect(x)={ 0 if | x |>0.5 0.5 if | x |=0.5 1 if | x |<0.5 .
U f (x,y)= A e jk f L jλ f L e j k 2 f L ( x 2 + y 2 )( 1 d f L ) F[ U 0 (ξ,η) ] ,
I f (x,y)= | U f (x,y) | 2 .
t(ξ,η)= e jk ξ 2 + η 2 2 f cl rect( ξ p )rect( η p ) .
ϕ( ξ,η )= k( ξ 2 + η 2 ) 2 f cl rect( ξ p )rect( η p )[ comb( ξ p )comb( η p ) ] ,
comb(x)= n δ( xn ) .
Δϕ= k[ ( p/2 ) 2 + ( p/2 ) 2 ] 2 f cl = k p 2 4 f cl .
Λ m = f L tan θ m f L sin θ m = mλ f L p .
ΔΛ= λ f L p .

Metrics