Abstract

We propose effective W-state fusion schemes for nonlocal electron-spin states and photon states by using the nitrogen-vacancy centers defect in diamond coupled to microtoroidal resonators. Using these schemes, a (m+n−1)-qubit W state can be obtained by fusing n-qubit and m-qubit W states (m, n ≥ 2), which means these schemes are applicable to create arbitrary scale W states with Bell states as the initial resource. The construction of these schemes is very compact and simple compared with the previous logical-gate-based fusion schemes. We analyze the feasibility and evaluate the optimal resource cost of the schemes, which shows that the present schemes can be realized with high fidelities and less resource cost than the previous schemes. Our schemes may be significant for the large-scale solid-state-based entanglement generation and for photon-qubit-based quantum information processing tasks.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator

Liu-Yong Cheng, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon
Opt. Express 21(5) 5988-5997 (2013)

Conversion of entangled states with nitrogen-vacancy centers coupled to microtoroidal resonators

Y. Q. Ji, X. Q. Shao, and X. X. Yi
Opt. Express 25(14) 15806-15817 (2017)

Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator

Cong Cao, Tie-Jun Wang, Ru Zhang, and Chuan Wang
J. Opt. Soc. Am. B 32(7) 1524-1531 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
    [Crossref]
  2. M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
    [Crossref]
  3. H. T. Ng and K. Kim, “Quantum estimation of magnetic-field gradient using W-state,” Opt. Commun. 331, 353–358 (2014).
    [Crossref]
  4. F. Ozaydin, “Phase damping destroys quantum Fisher information of W states,” Phys. Lett. A 378, 3161–3164 (2014).
    [Crossref]
  5. N. Yu, C. Guo, and R. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401(2014).
    [Crossref] [PubMed]
  6. M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156–161 (1999).
    [Crossref]
  7. J. Joo, J. Lee, and J. Jang, “Park Quantum secure communication with W States,” arXiv:quant-ph/0204003v2.
  8. D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
    [Crossref] [PubMed]
  9. A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78, 3031–3034 (1997).
    [Crossref]
  10. T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Elementary optical gate for expanding an entanglement web,” Phys. Rev. A 77, 030302 (2008).
    [Crossref]
  11. T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
    [Crossref]
  12. T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
    [Crossref] [PubMed]
  13. Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
    [Crossref]
  14. S. Bugu, C. Yesilyurt, and F. Ozaydin, “Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,” Phys. Rev. A 87, 032331 (2013).
    [Crossref]
  15. C. Yesilyurt, S. Bugu, and F. Ozaydin, “An optical gate for simultaneous fusion of four photonic W or Bell states,” Quant. Inf. Process. 12, 2965–2975 (2013).
    [Crossref]
  16. F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
    [Crossref]
  17. X. Han, S. Hu, Q. Guo, H. F. Wang, and S. Zhang, “Effective scheme for W-state fusion with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 14, 1919–1932 (2015).
    [Crossref]
  18. X. Han, S. Hu, Q. Guo, H. F. Wang, A. D. Zhu, and S. Zhang, “Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system,” Sci. Rep. 5, 12790 (2015).
    [Crossref] [PubMed]
  19. X. P. Zang, M. Yang, X. C. Wang, W. Song, and Z. L. Cao, “Fusion of W states in a cavity quantum electrodynamic system,” Can. J. Phys. 93, 1–5 (2015).
    [Crossref]
  20. X. P. Zang, M. Yang, F. Ozaydin, X. C. Wang, W. Song, and Z. L. Cao, “Generating multi-atom entangled W states via light-matter interface based fusion mechanism,” Sci. Rep.5, (2016).
  21. K. Li, F. Z. Kong, M. Yang, Q. Yang, and Z. L. Cao, “Qubit-loss-free fusion of W states,” Phys. Rev. A 94, 062315 (2016).
    [Crossref]
  22. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).
  23. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
    [Crossref] [PubMed]
  24. L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
    [Crossref] [PubMed]
  25. P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
    [Crossref] [PubMed]
  26. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
    [Crossref] [PubMed]
  27. S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photo. Rev. 3, 556–574 (2009).
    [Crossref]
  28. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
    [Crossref]
  29. Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
    [Crossref]
  30. L. Y. Cheng, H. F. Wang, and S. Zhang, “Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond,” J. Opt. Soc. Am. B 30, 1821–1826 (2013).
    [Crossref]
  31. S. Liu, J. Li, R. Yu, and Y. Wu, “Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator,” Opt. Express 21, 3501–3515 (2013).
    [Crossref] [PubMed]
  32. L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator,” Opt. Express 21, 5988–5997 (2013).
    [Crossref] [PubMed]
  33. Z. Jin, Y. Q. Ji, A. D. Zhu, H. F. Wang, and S. Zhang, “Deterministic implementation of optimal symmetric quantum cloning with nitrogen-vacancy centers coupled to a whispering-gallery microresonator,” J. Opt. Soc. Am. B 31, 2516–2523 (2014).
    [Crossref]
  34. K. Xia, G. K. Brennen, D. Ellinas, and J. Twamley, “Deterministic generation of an on-demand Fock state,” Opt. Express 20, 27198–27211 (2012).
    [Crossref] [PubMed]
  35. H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
    [Crossref]
  36. B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
    [Crossref]
  37. C. Cao, T. J. Wang, R. Zhang, and C. Wang, “Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator,” J. Opt. Soc. Am. B,  32, 1524–1531 (2015).
    [Crossref]
  38. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
    [Crossref] [PubMed]
  39. D. F. Walls and G. J. Milburn,Quantum Optics (Springer-Verlag, 1994).
  40. L. Dong, X. M. Xiu, Y. J. Gao, and X. X. Yi, “A nearly deterministic scheme for generating-χ type entangled states with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 12, 1787–1795 (2013).
    [Crossref]
  41. W. Zhang, P. Rui, Z. Y. Zhang, and Q. Yang, “Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities,” New J. Phys. 16, 083019 (2014).
    [Crossref]
  42. Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
    [Crossref]
  43. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009)
    [Crossref]

2016 (1)

K. Li, F. Z. Kong, M. Yang, Q. Yang, and Z. L. Cao, “Qubit-loss-free fusion of W states,” Phys. Rev. A 94, 062315 (2016).
[Crossref]

2015 (6)

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

C. Cao, T. J. Wang, R. Zhang, and C. Wang, “Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator,” J. Opt. Soc. Am. B,  32, 1524–1531 (2015).
[Crossref]

X. Han, S. Hu, Q. Guo, H. F. Wang, and S. Zhang, “Effective scheme for W-state fusion with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 14, 1919–1932 (2015).
[Crossref]

X. Han, S. Hu, Q. Guo, H. F. Wang, A. D. Zhu, and S. Zhang, “Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system,” Sci. Rep. 5, 12790 (2015).
[Crossref] [PubMed]

X. P. Zang, M. Yang, X. C. Wang, W. Song, and Z. L. Cao, “Fusion of W states in a cavity quantum electrodynamic system,” Can. J. Phys. 93, 1–5 (2015).
[Crossref]

2014 (7)

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
[Crossref]

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

H. T. Ng and K. Kim, “Quantum estimation of magnetic-field gradient using W-state,” Opt. Commun. 331, 353–358 (2014).
[Crossref]

F. Ozaydin, “Phase damping destroys quantum Fisher information of W states,” Phys. Lett. A 378, 3161–3164 (2014).
[Crossref]

N. Yu, C. Guo, and R. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401(2014).
[Crossref] [PubMed]

Z. Jin, Y. Q. Ji, A. D. Zhu, H. F. Wang, and S. Zhang, “Deterministic implementation of optimal symmetric quantum cloning with nitrogen-vacancy centers coupled to a whispering-gallery microresonator,” J. Opt. Soc. Am. B 31, 2516–2523 (2014).
[Crossref]

W. Zhang, P. Rui, Z. Y. Zhang, and Q. Yang, “Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities,” New J. Phys. 16, 083019 (2014).
[Crossref]

2013 (6)

L. Dong, X. M. Xiu, Y. J. Gao, and X. X. Yi, “A nearly deterministic scheme for generating-χ type entangled states with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 12, 1787–1795 (2013).
[Crossref]

L. Y. Cheng, H. F. Wang, and S. Zhang, “Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond,” J. Opt. Soc. Am. B 30, 1821–1826 (2013).
[Crossref]

S. Liu, J. Li, R. Yu, and Y. Wu, “Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator,” Opt. Express 21, 3501–3515 (2013).
[Crossref] [PubMed]

L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator,” Opt. Express 21, 5988–5997 (2013).
[Crossref] [PubMed]

S. Bugu, C. Yesilyurt, and F. Ozaydin, “Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,” Phys. Rev. A 87, 032331 (2013).
[Crossref]

C. Yesilyurt, S. Bugu, and F. Ozaydin, “An optical gate for simultaneous fusion of four photonic W or Bell states,” Quant. Inf. Process. 12, 2965–2975 (2013).
[Crossref]

2012 (1)

2011 (2)

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
[Crossref]

2010 (3)

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[Crossref]

2009 (4)

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009)
[Crossref]

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photo. Rev. 3, 556–574 (2009).
[Crossref]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
[Crossref] [PubMed]

2008 (2)

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Elementary optical gate for expanding an entanglement web,” Phys. Rev. A 77, 030302 (2008).
[Crossref]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

2006 (1)

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

2005 (1)

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref] [PubMed]

2004 (2)

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

2000 (1)

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

1999 (1)

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156–161 (1999).
[Crossref]

1997 (1)

A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78, 3031–3034 (1997).
[Crossref]

Altintas, A. A.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
[Crossref]

Barclay, P. E.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009)
[Crossref]

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Beausoleil, R. G.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009)
[Crossref]

Benjamin, S. C.

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photo. Rev. 3, 556–574 (2009).
[Crossref]

Benson, O.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Brennen, G. K.

Browne, D. E.

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref] [PubMed]

Bugu, S.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
[Crossref]

C. Yesilyurt, S. Bugu, and F. Ozaydin, “An optical gate for simultaneous fusion of four photonic W or Bell states,” Quant. Inf. Process. 12, 2965–2975 (2013).
[Crossref]

S. Bugu, C. Yesilyurt, and F. Ozaydin, “Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,” Phys. Rev. A 87, 032331 (2013).
[Crossref]

Cao, C.

Cao, Z. L.

K. Li, F. Z. Kong, M. Yang, Q. Yang, and Z. L. Cao, “Qubit-loss-free fusion of W states,” Phys. Rev. A 94, 062315 (2016).
[Crossref]

X. P. Zang, M. Yang, X. C. Wang, W. Song, and Z. L. Cao, “Fusion of W states in a cavity quantum electrodynamic system,” Can. J. Phys. 93, 1–5 (2015).
[Crossref]

X. P. Zang, M. Yang, F. Ozaydin, X. C. Wang, W. Song, and Z. L. Cao, “Generating multi-atom entangled W states via light-matter interface based fusion mechanism,” Sci. Rep.5, (2016).

Chen, Q.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[Crossref]

Cheng, L. Y.

Childress, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

Christodoulides, D. N.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).

Cirac, J. I.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

Deng, F. G.

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

Domhan, M.

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Dong, L.

L. Dong, X. M. Xiu, Y. J. Gao, and X. X. Yi, “A nearly deterministic scheme for generating-χ type entangled states with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 12, 1787–1795 (2013).
[Crossref]

Döscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Dreisow, F.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Du, J. F.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Duan, R.

N. Yu, C. Guo, and R. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401(2014).
[Crossref] [PubMed]

Dür, W.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

Dutt, M. G.

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

Dutt, M. V.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Ellinas, D.

Feng, M.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[Crossref]

Fu, K. M. C.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009)
[Crossref]

Gaebel, T.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

Gao, Y. J.

L. Dong, X. M. Xiu, Y. J. Gao, and X. X. Yi, “A nearly deterministic scheme for generating-χ type entangled states with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 12, 1787–1795 (2013).
[Crossref]

Gräfe, M.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Guo, C.

N. Yu, C. Guo, and R. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401(2014).
[Crossref] [PubMed]

Guo, Q.

X. Han, S. Hu, Q. Guo, H. F. Wang, and S. Zhang, “Effective scheme for W-state fusion with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 14, 1919–1932 (2015).
[Crossref]

X. Han, S. Hu, Q. Guo, H. F. Wang, A. D. Zhu, and S. Zhang, “Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system,” Sci. Rep. 5, 12790 (2015).
[Crossref] [PubMed]

Han, X.

X. Han, S. Hu, Q. Guo, H. F. Wang, A. D. Zhu, and S. Zhang, “Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system,” Sci. Rep. 5, 12790 (2015).
[Crossref] [PubMed]

X. Han, S. Hu, Q. Guo, H. F. Wang, and S. Zhang, “Effective scheme for W-state fusion with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 14, 1919–1932 (2015).
[Crossref]

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Heilmann, R.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Heinrich, M.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Hemme, P.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

Horne, M. A.

A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78, 3031–3034 (1997).
[Crossref]

Hu, S.

X. Han, S. Hu, Q. Guo, H. F. Wang, and S. Zhang, “Effective scheme for W-state fusion with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 14, 1919–1932 (2015).
[Crossref]

X. Han, S. Hu, Q. Guo, H. F. Wang, A. D. Zhu, and S. Zhang, “Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system,” Sci. Rep. 5, 12790 (2015).
[Crossref] [PubMed]

Imoto, N.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
[Crossref]

T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
[Crossref] [PubMed]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Elementary optical gate for expanding an entanglement web,” Phys. Rev. A 77, 030302 (2008).
[Crossref]

Jacques, V.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Jang, J.

J. Joo, J. Lee, and J. Jang, “Park Quantum secure communication with W States,” arXiv:quant-ph/0204003v2.

Jelezko, F.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Ji, Y. Q.

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Jin, Z.

Jonathan, D.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156–161 (1999).
[Crossref]

Joo, J.

J. Joo, J. Lee, and J. Jang, “Park Quantum secure communication with W States,” arXiv:quant-ph/0204003v2.

Keil, R.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Kewes, G.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Kim, K.

H. T. Ng and K. Kim, “Quantum estimation of magnetic-field gradient using W-state,” Opt. Commun. 331, 353–358 (2014).
[Crossref]

Koashi, M.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
[Crossref]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
[Crossref] [PubMed]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Elementary optical gate for expanding an entanglement web,” Phys. Rev. A 77, 030302 (2008).
[Crossref]

Kong, F. Z.

K. Li, F. Z. Kong, M. Yang, Q. Yang, and Z. L. Cao, “Qubit-loss-free fusion of W states,” Phys. Rev. A 94, 062315 (2016).
[Crossref]

Lee, J.

J. Joo, J. Lee, and J. Jang, “Park Quantum secure communication with W States,” arXiv:quant-ph/0204003v2.

Li, J.

Li, K.

K. Li, F. Z. Kong, M. Yang, Q. Yang, and Z. L. Cao, “Qubit-loss-free fusion of W states,” Phys. Rev. A 94, 062315 (2016).
[Crossref]

Liu, S.

Löchel, B. L.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Long, G. L.

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
[Crossref]

Lovett, B. W.

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photo. Rev. 3, 556–574 (2009).
[Crossref]

Lukin, M. D.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

Matsunaga, E.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
[Crossref]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Milburn, G. J.

D. F. Walls and G. J. Milburn,Quantum Optics (Springer-Verlag, 1994).

Mizuochi, N.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Murao, M.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156–161 (1999).
[Crossref]

Neumann, P.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Ng, H. T.

H. T. Ng and K. Kim, “Quantum estimation of magnetic-field gradient using W-state,” Opt. Commun. 331, 353–358 (2014).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).

Nolte, S.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Nüsse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Ozaydin, F.

F. Ozaydin, “Phase damping destroys quantum Fisher information of W states,” Phys. Lett. A 378, 3161–3164 (2014).
[Crossref]

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
[Crossref]

C. Yesilyurt, S. Bugu, and F. Ozaydin, “An optical gate for simultaneous fusion of four photonic W or Bell states,” Quant. Inf. Process. 12, 2965–2975 (2013).
[Crossref]

S. Bugu, C. Yesilyurt, and F. Ozaydin, “Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,” Phys. Rev. A 87, 032331 (2013).
[Crossref]

X. P. Zang, M. Yang, F. Ozaydin, X. C. Wang, W. Song, and Z. L. Cao, “Generating multi-atom entangled W states via light-matter interface based fusion mechanism,” Sci. Rep.5, (2016).

Özdemir, S. K.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
[Crossref]

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
[Crossref]

T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
[Crossref] [PubMed]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Elementary optical gate for expanding an entanglement web,” Phys. Rev. A 77, 030302 (2008).
[Crossref]

Perez-Leija, A.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Plenio, M. B.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156–161 (1999).
[Crossref]

Popa, I.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Rempp, F.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Ren, B. C.

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

Rudolph, T.

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref] [PubMed]

Rui, P.

W. Zhang, P. Rui, Z. Y. Zhang, and Q. Yang, “Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities,” New J. Phys. 16, 083019 (2014).
[Crossref]

Santori, C.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009)
[Crossref]

Schell, A. W.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Smith, J. M.

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photo. Rev. 3, 556–574 (2009).
[Crossref]

Song, W.

X. P. Zang, M. Yang, X. C. Wang, W. Song, and Z. L. Cao, “Fusion of W states in a cavity quantum electrodynamic system,” Can. J. Phys. 93, 1–5 (2015).
[Crossref]

X. P. Zang, M. Yang, F. Ozaydin, X. C. Wang, W. Song, and Z. L. Cao, “Generating multi-atom entangled W states via light-matter interface based fusion mechanism,” Sci. Rep.5, (2016).

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Szameit, A.

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Tame, M.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
[Crossref]

Tashima, T.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
[Crossref]

T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
[Crossref] [PubMed]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Elementary optical gate for expanding an entanglement web,” Phys. Rev. A 77, 030302 (2008).
[Crossref]

Taylor, J. M.

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

Togan, E.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Twamley, J.

Vedral, V.

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156–161 (1999).
[Crossref]

Vidal, G.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

Wakatsuki, T.

T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
[Crossref] [PubMed]

Walls, D. F.

D. F. Walls and G. J. Milburn,Quantum Optics (Springer-Verlag, 1994).

Wang, C.

Wang, G. Y.

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

Wang, H. F.

Wang, T. J.

Wang, X. C.

X. P. Zang, M. Yang, X. C. Wang, W. Song, and Z. L. Cao, “Fusion of W states in a cavity quantum electrodynamic system,” Can. J. Phys. 93, 1–5 (2015).
[Crossref]

X. P. Zang, M. Yang, F. Ozaydin, X. C. Wang, W. Song, and Z. L. Cao, “Generating multi-atom entangled W states via light-matter interface based fusion mechanism,” Sci. Rep.5, (2016).

Watanabe, H.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Wei, H. R.

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
[Crossref]

Weinfurter, H.

A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78, 3031–3034 (1997).
[Crossref]

Wolters, J.

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Wrachtrup, J.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

Wu, Y.

Xia, K.

Xiu, X. M.

L. Dong, X. M. Xiu, Y. J. Gao, and X. X. Yi, “A nearly deterministic scheme for generating-χ type entangled states with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 12, 1787–1795 (2013).
[Crossref]

Yamamoto, T.

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
[Crossref]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
[Crossref] [PubMed]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Elementary optical gate for expanding an entanglement web,” Phys. Rev. A 77, 030302 (2008).
[Crossref]

Yamasaki, S.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Yang, M.

K. Li, F. Z. Kong, M. Yang, Q. Yang, and Z. L. Cao, “Qubit-loss-free fusion of W states,” Phys. Rev. A 94, 062315 (2016).
[Crossref]

X. P. Zang, M. Yang, X. C. Wang, W. Song, and Z. L. Cao, “Fusion of W states in a cavity quantum electrodynamic system,” Can. J. Phys. 93, 1–5 (2015).
[Crossref]

X. P. Zang, M. Yang, F. Ozaydin, X. C. Wang, W. Song, and Z. L. Cao, “Generating multi-atom entangled W states via light-matter interface based fusion mechanism,” Sci. Rep.5, (2016).

Yang, Q.

K. Li, F. Z. Kong, M. Yang, Q. Yang, and Z. L. Cao, “Qubit-loss-free fusion of W states,” Phys. Rev. A 94, 062315 (2016).
[Crossref]

W. Zhang, P. Rui, Z. Y. Zhang, and Q. Yang, “Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities,” New J. Phys. 16, 083019 (2014).
[Crossref]

Yang, W.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

Yeon, K. H.

Yesilyurt, C.

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
[Crossref]

C. Yesilyurt, S. Bugu, and F. Ozaydin, “An optical gate for simultaneous fusion of four photonic W or Bell states,” Quant. Inf. Process. 12, 2965–2975 (2013).
[Crossref]

S. Bugu, C. Yesilyurt, and F. Ozaydin, “Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,” Phys. Rev. A 87, 032331 (2013).
[Crossref]

Yi, X. X.

L. Dong, X. M. Xiu, Y. J. Gao, and X. X. Yi, “A nearly deterministic scheme for generating-χ type entangled states with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 12, 1787–1795 (2013).
[Crossref]

Yu, N.

N. Yu, C. Guo, and R. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401(2014).
[Crossref] [PubMed]

Yu, R.

Zang, X. P.

X. P. Zang, M. Yang, X. C. Wang, W. Song, and Z. L. Cao, “Fusion of W states in a cavity quantum electrodynamic system,” Can. J. Phys. 93, 1–5 (2015).
[Crossref]

X. P. Zang, M. Yang, F. Ozaydin, X. C. Wang, W. Song, and Z. L. Cao, “Generating multi-atom entangled W states via light-matter interface based fusion mechanism,” Sci. Rep.5, (2016).

Zeilinger, A.

A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78, 3031–3034 (1997).
[Crossref]

Zhang, R.

Zhang, S.

Zhang, W.

W. Zhang, P. Rui, Z. Y. Zhang, and Q. Yang, “Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities,” New J. Phys. 16, 083019 (2014).
[Crossref]

Zhang, Z. Y.

W. Zhang, P. Rui, Z. Y. Zhang, and Q. Yang, “Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities,” New J. Phys. 16, 083019 (2014).
[Crossref]

Zhu, A. D.

X. Han, S. Hu, Q. Guo, H. F. Wang, A. D. Zhu, and S. Zhang, “Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system,” Sci. Rep. 5, 12790 (2015).
[Crossref] [PubMed]

Z. Jin, Y. Q. Ji, A. D. Zhu, H. F. Wang, and S. Zhang, “Deterministic implementation of optimal symmetric quantum cloning with nitrogen-vacancy centers coupled to a whispering-gallery microresonator,” J. Opt. Soc. Am. B 31, 2516–2523 (2014).
[Crossref]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

Zukowski, M.

A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78, 3031–3034 (1997).
[Crossref]

Appl. Phys. Lett. (2)

J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. L. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009)
[Crossref]

Can. J. Phys. (1)

X. P. Zang, M. Yang, X. C. Wang, W. Song, and Z. L. Cao, “Fusion of W states in a cavity quantum electrodynamic system,” Can. J. Phys. 93, 1–5 (2015).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Photo. Rev. (1)

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” Laser Photo. Rev. 3, 556–574 (2009).
[Crossref]

Nat. Photonics (1)

M. Gräfe, R. Heilmann, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, D. N. Christodoulides, and A. Szameit, “On-chip generation of high-order single-photon W-states,” Nat. Photonics 8, 791–795 (2014).
[Crossref]

Nature (1)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

New J. Phys. (3)

W. Zhang, P. Rui, Z. Y. Zhang, and Q. Yang, “Probabilistically cloning two single-photon states using weak cross-Kerr nonlinearities,” New J. Phys. 16, 083019 (2014).
[Crossref]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

Ş. K. Özdemir, E. Matsunaga, T. Tashima, T. Yamamoto, M. Koashi, and N. Imoto, “An optical fusion gate for W-states,” New J. Phys. 13, 103003 (2011).
[Crossref]

Opt. Commun. (1)

H. T. Ng and K. Kim, “Quantum estimation of magnetic-field gradient using W-state,” Opt. Commun. 331, 353–358 (2014).
[Crossref]

Opt. Express (3)

Phys. Lett. A (1)

F. Ozaydin, “Phase damping destroys quantum Fisher information of W states,” Phys. Lett. A 378, 3161–3164 (2014).
[Crossref]

Phys. Rev. A (10)

M. Murao, D. Jonathan, M. B. Plenio, and V. Vedral, “Quantum telecloning and multiparticle entanglement,” Phys. Rev. A 59, 156–161 (1999).
[Crossref]

S. Bugu, C. Yesilyurt, and F. Ozaydin, “Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,” Phys. Rev. A 87, 032331 (2013).
[Crossref]

F. Ozaydin, S. Bugu, C. Yesilyurt, A. A. Altintas, M. Tame, and Ş. K. Özdemir, “Fusing multiple W states simultaneously with a Fredkin gate,” Phys. Rev. A 89, 042311 (2014).
[Crossref]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

T. Tashima, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Elementary optical gate for expanding an entanglement web,” Phys. Rev. A 77, 030302 (2008).
[Crossref]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010).
[Crossref]

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011).
[Crossref]

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91, 032324 (2015).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91, 032328 (2015).
[Crossref]

K. Li, F. Z. Kong, M. Yang, Q. Yang, and Z. L. Cao, “Qubit-loss-free fusion of W states,” Phys. Rev. A 94, 062315 (2016).
[Crossref]

Phys. Rev. Lett. (6)

F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004).
[Crossref] [PubMed]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin,” Phys. Rev. Lett. 92, 076401 (2004).
[Crossref] [PubMed]

T. Tashima, T. Wakatsuki, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local transformation of two Einstein-Podolsky-Rosen photon pairs into a three-photon W State,” Phys. Rev. Lett. 102, 130502 (2009).
[Crossref] [PubMed]

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref] [PubMed]

A. Zeilinger, M. A. Horne, H. Weinfurter, and M. Żukowski, “Three-particle entanglements from two entangled pairs,” Phys. Rev. Lett. 78, 3031–3034 (1997).
[Crossref]

N. Yu, C. Guo, and R. Duan, “Obtaining a W state from a Greenberger-Horne-Zeilinger state via stochastic local operations and classical communication with a rate approaching unity,” Phys. Rev. Lett. 112, 160401(2014).
[Crossref] [PubMed]

Quant. Inf. Process. (3)

X. Han, S. Hu, Q. Guo, H. F. Wang, and S. Zhang, “Effective scheme for W-state fusion with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 14, 1919–1932 (2015).
[Crossref]

C. Yesilyurt, S. Bugu, and F. Ozaydin, “An optical gate for simultaneous fusion of four photonic W or Bell states,” Quant. Inf. Process. 12, 2965–2975 (2013).
[Crossref]

L. Dong, X. M. Xiu, Y. J. Gao, and X. X. Yi, “A nearly deterministic scheme for generating-χ type entangled states with weak cross-Kerr nonlinearities,” Quant. Inf. Process. 12, 1787–1795 (2013).
[Crossref]

Sci. Rep. (1)

X. Han, S. Hu, Q. Guo, H. F. Wang, A. D. Zhu, and S. Zhang, “Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system,” Sci. Rep. 5, 12790 (2015).
[Crossref] [PubMed]

Science (2)

L. Childress, M. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science,  314, 281–285 (2006).
[Crossref] [PubMed]

P. Neumann, N. Mizuochi, F. Rempp, P. Hemme, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008).
[Crossref] [PubMed]

Other (4)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, Cambridge, 2000).

X. P. Zang, M. Yang, F. Ozaydin, X. C. Wang, W. Song, and Z. L. Cao, “Generating multi-atom entangled W states via light-matter interface based fusion mechanism,” Sci. Rep.5, (2016).

D. F. Walls and G. J. Milburn,Quantum Optics (Springer-Verlag, 1994).

J. Joo, J. Lee, and J. Jang, “Park Quantum secure communication with W States,” arXiv:quant-ph/0204003v2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The schematic of NV center positioned on the surface of the MTR. (b) Energy-level configuration with couplings to the cavity mode. Quantum information is encoded in the spin states |ms = ±1〉 of the |3 A2〉 triplet, i.e., |−〉 = |ms = −1〉 and |+〉 = |ms = +1〉. The excited state | A 2 = ( | E | + + | E + | ) / 2. δ = γeB0 is the level splitting induced by an external magnetic field B0, and γe is the electron gyromagnetic ratio.
Fig. 2
Fig. 2 Schematic of NV centers W states fusion scheme. c-PBSi (i=1,2,3…) denotes the polarizing beam splitter in the circular basis; HWPi are half-wave plates; and HWP π 2 implements the transformation |R〉 ↔ |L〉. OWM is one-way mirror transmits photons from one side, and reflect photons from another side without remodulating. The PSL introduces a π phase for |L〉 and does not affect |R〉. QWP is a quarter-wave plate. P45 is a 45° polarizer projecting the polarization to ( | H + | V ) / 2. Di are conventional photon detectors.
Fig. 3
Fig. 3 Schematic of photonic W-states fusion scheme based on NV centers. All the optical elements are the same as Fig. 2.
Fig. 4
Fig. 4 (a)The fidelity of W state fusion schemes for electron spin of NV center versus the parameter g / κ γ, where g / κ γ 0.5. (b)The fidelity of photonic W state fusion scheme of NV center versus the same parameters.
Fig. 5
Fig. 5 The optimal cost of the four situations. As shown, the green line is the case of the scheme of [13]. The red, pink and blue line represent the scheme [14], [15] and [16], respectively. The purple line and the orange line are the cases of the scheme [21] and the present schemes, respectively.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

r ( ω p ) = a ^ o u t ( t ) a ^ i n ( t ) = [ i ( ω c ω p ) κ 2 ] [ i ( ω 0 ω p ) + γ 2 ] + g 2 [ i ( ω c ω p ) + κ 2 ] [ i ( ω 0 ω p ) + γ 2 ] + g 2 .
r 0 ( ω p ) = i ( ω c ω p ) κ 2 i ( ω c ω p ) + κ 2 .
r = κ γ 4 + g 2 κ γ 4 + g 2 , r 0 = 1 .
| L | | L | , | R | | R | , | L | + | L | + , | R | + | r | | R | + .
| W n A = 1 n [ | ( n 1 ) a | 1 + 1 + n 1 | W n 1 a | 1 1 ] = | a | + 1 + | b | 1 ,
| W m B = 1 m [ | ( m 1 ) b | 1 + 2 + m 1 | W m 1 b | 1 2 ] = | c | + 2 + | d | 2 .
| Φ 0 = | W n A | W m B | L 1 | L 2 = 1 m n [ | ( n 1 ) a | ( m 1 ) b | 1 + 1 | 1 + 2 + n 1 | W n 1 a | ( m 1 ) b | 1 1 | 1 + 2 + m 1 | ( n 1 ) a | W m 1 b | 1 + 1 | 1 2 + ( n 1 ) ( m 1 ) | W n 1 a | W m 1 b | 1 1 | 1 2 ] | L 1 | L 2 = ( | a | + 1 + | b | 1 ) ( | c | + 2 + | d | 2 ) | L 1 | L 2 .
| Φ 1 = ( | a | L 1 | + 1 | b | R 1 | 1 ) ( | c | + 2 + | d | 2 ) | L 2 .
| Φ 2 = ( | a | c | L 1 | + 1 | + 2 + | a | d | L 1 | + 1 | 2 | b | c | L 1 | 1 | + 2 + | b | d | R 1 | 1 | 2 ) | L 2 .
| ϕ 1 = | b | d | 1 | 2 | L 2 .
| ϕ 2 = ( | a | c | + 1 | + 2 + | a | d | + 1 | 2 | b | c | 1 | + 2 ) | L 2 ,
| ϕ 3 = | L 2 | a | c | + 1 | + 2 + | L 2 | a | d | + 1 | 2 + | R 2 | b | c | 1 | + 2 .
| ϕ 4 = | L 2 | a | c | + 1 | + 2 + | L 2 | a | d | + 1 | 2 + | R 2 | b | c | 1 | 2 .
| ϕ 5 = ( | H 2 + | V 2 ) 2 ( | a | c | + 2 + | a | d | 2 + | b | c | 2 ) | + 1 .
| ϕ 6 = | a | c | + 2 + | a | d | 2 + | b | c | 2 = 1 n m [ | ( n 1 ) a | ( m 1 ) b | 1 + 2 + m 1 | ( n 1 ) a | W m 1 b | 1 2 + n 1 | W n 1 a | ( m 1 ) b | 1 2 ] = n + m 1 n m | W n + m 1 .
| W n A = 1 n [ | ( n 1 ) R a | 1 L 1 + n 1 | W n 1 a | 1 R 1 ] = | a | L 1 + | b | R 1 ,
| W m B = 1 m [ | ( m 1 ) R b | 1 L 2 + m 1 | W m 1 b | 1 R 2 ] . = | c | L 2 + | d | R 2 .
| Ψ 0 = | W n A | W m B | + 1 | + 2 = ( | a | L 1 + | b | R 1 ) ( | c | L 2 + | d | R 2 ) | + 1 | + 2 .
| Ψ 1 = ( | a | L 1 | + 1 + | b | R 1 | + 1 ) ( | c | L 2 | + 2 + | d | R 2 | 2 ) .
| Ψ 2 = ( | a | c | L 1 | L 2 | + 1 | + 2 + | a | d | L 1 | R 2 | + 1 | 2 + | b | c | L 1 | L 2 | + 1 | + 2 + | b | d | R 1 | R 2 | + 1 | 2 ) .
| ψ 3 = ( | a | c | L 1 | L 2 | + 1 | + 2 + | a | d | L 1 | R 2 | + 1 | 2 | b | c | R 1 | L 2 | + 1 | + 2 + | b | d | L 1 | R 2 | 1 | 2 ) .
| ψ 1 = | b | d | L 1 | R 2 | 2 .
| ψ 2 = | a | c | L 1 | L 2 | + 2 + | a | d | L 1 | R 2 | 2 | b | c | R 1 | L 2 | + 2 ,
| Ψ 4 = | a | c | L 1 | L 2 | + 2 + | a | d | R 1 | R 2 | 2 + | b | c | R 1 | L 2 | + 2 .
| Ψ 4 = ( | H 2 + | V 2 ) 2 ( | a | c | L 1 + | a | d | R 1 + | b | c | R 1 ) .
| ϕ 5 = | a | c | L 1 + | a | d | R 1 + | b | c | R 1 = 1 n m [ | ( n 1 ) R a | ( m 1 ) R b | 1 L 1 + m 1 | ( n 1 ) R a | W m 1 b | 1 R 1 + n 1 | W n 1 a | ( m 1 ) R b | 1 R 1 ] = n + m 1 n m | W n + m 1 .
P s = ( n 1 ) ( n m ) + ( m 1 ) ( n m ) + 1 ( n m ) = n + m 1 n m , P r = 1 P s = ( n 1 ) ( m 1 ) n m .
R [ W m + n 1 ] = P s 1 ( R [ W m ] + R [ W n ] ) .

Metrics