Abstract

We report on kW-class dense wavelength beam combining of a laser diode module consisting of ten broad-area laser diode bars by using a novel multi-laser cavity approach based on a thin-film filter (TFF) as a dispersive optical element. The wavelength-stabilized output of the TFF cavity is beam combined upon a −1st order transmission grating. Hereby, a cylindrical telescope is used for linear dispersion-matching between the TFF and the combiner grating. On the basis of simulations of the resulting beam quality deterioration, we are able to optimize the cavity and the combiner setup for optimal beam quality preservation. We demonstrate a highly efficient direct diode laser with 1.1-kW output power and a symmetrical beam parameter product of about 6mm × mrad (95 % power content) in both beam axis.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-brightness spectral beam combining of diode laser array stack in an external cavity

Huicheng Meng, Tangyou Sun, Hao Tan, Junhong Yu, Weichuan Du, Fei Tian, Jianming Li, Songxing Gao, Xiaojun Wang, and Deyong Wu
Opt. Express 23(17) 21819-21824 (2015)

kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters

U. Witte, F. Schneider, M. Traub, D. Hoffmann, S. Drovs, T. Brand, and A. Unger
Opt. Express 24(20) 22917-22929 (2016)

CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating

Jun Zhang, Hangyu Peng, Xihong Fu, Yun Liu, Li Qin, Guoqing Miao, and Lijun Wang
Opt. Express 21(3) 3627-3632 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Huang, B. Chann, and J. D. Glenn, “Ultra-high brightness, wavelength-stabilized, kW-class fiber coupled diode laser,” Proc. SPIE 7918, 791810 (2011).
  2. R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).
  3. U. Witte, F. Schneider, M. Traub, D. Hoffmann, S. Drovs, T. Brand, and A. Unger, “kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters,” Opt. Express 24(20), 22917–22929 (2016).
  4. R. K. Huang, B. Samson, B. Chann, B. Lochman, and P. Tayebati, “Recent progress on high-brightness kW-class direct diode lasers,” in Proceedings of IEEE Conference on High Power Diode Lasers and Systems (HPD) (IEEE, 2015), pp. 29–30.
  5. M. Hempel, M. Chi, P. M. Petersen, U. Zeimer, and J. W. Tomm, “How does external feedback cause AlGaAs-based diode lasers to degrade,” Appl. Phys. Lett. 102(2), 023502 (2013).
  6. B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).
  7. D. Bonsendorf, S. Schneider, J. Meinschien, and J. W. Tomm, “Reliability of high power laser diodes with external optical feedback,” Proc. SPIE 9733, 973302 (2016).
  8. I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” J. Lightwave Technol. 9(7), 893–899 (1991).
  9. V. Daneu, A. Sanchez, T.Y. Fan, H. K. Choi, G. W. Turner, and C. C. Cook, “Spectral beam combining of a broad-stripe diode laser array in an external cavity,” Opt. Lett. 25(6), 405–407 (2000).
  10. B. Chann, R. K. Huang, L. J. Missaggia, C. T. Harris, Z. L. Liau, A. K. Goyal, J. P. Donnelly, T. Y. Fan, A. Sanchez-Rubio, and G. W. Turner, “Near-diffraction-limited diode laser arrays by wavelength beam combining,” Opt. Lett. 30(16), 2104–2106 (2005).
  11. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).
  12. B. Chann, A. K. Goyal, T. Y. Fan, A. Sanchez-Rubio, B. L. Volodin, and V. S. Ban, “Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating,” Opt. Express 31(9), 1253–1255 (2006).
  13. A. Sevian, O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, and L. Glebov, “Efficient power scaling of laser radiation by spectral beam combining,” Opt. Lett. 33(4), 384–386 (2008).
  14. S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).
  15. M. Haas, A. Killi, C. Tillkorn, S. Ried, M. Ginter, and H. Zimer, “Thin-film filter, wavelength-locked, multi-laser cavity for dense wavelength beam combining of broad-area laser diode bars,” Opt. Lett. 40(17), 3949–3952 (2015).
  16. J. T. Gopinath, B. Chann, T. Y. Fan, and A. Sanchez-Rubio, “1450-nm high-brightness wavelength-beam combined diode laser array,” Opt. Express 16(13), 9405–9410 (2008).
  17. Z. Zhu, L. Gou, M. Jiang, Y. Hui, H. Lei, and Q. Li, “High beam quality in two directions and high efficiency output of a diode laser array by spectral-beam-combining,” Opt. Express 22(15), 17804–17809 (2014).
  18. M. Haas, S. Rauch, S. Nagel, T. Dekorsy, and H. Zimer, “Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers,” IEEE J. Quantum Electron. 53(3), 1–11 (2017).
  19. S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).
  20. M. Lequime, “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250, 302–311 (2004).
  21. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42(34), 6934–6938 (2003).
  22. A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express 19(27), 26725–26732 (2011).
  23. S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, “Beam combining of ytterbium fiber amplifiers (invited),” J. Opt. Soc. Am. B 24(8), 1707–1715 (2007).
  24. N. Stelmakh and M. Vasilyev, “Spatially-resolved self-heterodyne spectroscopy of lateral modes of broad-area laser diodes,” Opt. Express 22(4), 3845–3859 (2014).
  25. P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).
  26. L. C. Malacarne, N. G. C. Astrath, and M. L. Baesso, “Unified theoretical model for calculating laser-induced wavefront distortion in optical materials,” J. Opt. Soc. Am. B 29(7), 1772–1777 (2012).
  27. J. Perchermeier and U. Wittrock, “Precise measurements of the thermo-optical aberrations of an Yb:YAG thin-disk laser,” Opt. Lett. 38(14), 2422–2424 (2013).

2017 (1)

M. Haas, S. Rauch, S. Nagel, T. Dekorsy, and H. Zimer, “Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers,” IEEE J. Quantum Electron. 53(3), 1–11 (2017).

2016 (2)

U. Witte, F. Schneider, M. Traub, D. Hoffmann, S. Drovs, T. Brand, and A. Unger, “kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters,” Opt. Express 24(20), 22917–22929 (2016).

D. Bonsendorf, S. Schneider, J. Meinschien, and J. W. Tomm, “Reliability of high power laser diodes with external optical feedback,” Proc. SPIE 9733, 973302 (2016).

2015 (3)

B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).

M. Haas, A. Killi, C. Tillkorn, S. Ried, M. Ginter, and H. Zimer, “Thin-film filter, wavelength-locked, multi-laser cavity for dense wavelength beam combining of broad-area laser diode bars,” Opt. Lett. 40(17), 3949–3952 (2015).

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

2014 (2)

2013 (3)

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).

M. Hempel, M. Chi, P. M. Petersen, U. Zeimer, and J. W. Tomm, “How does external feedback cause AlGaAs-based diode lasers to degrade,” Appl. Phys. Lett. 102(2), 023502 (2013).

J. Perchermeier and U. Wittrock, “Precise measurements of the thermo-optical aberrations of an Yb:YAG thin-disk laser,” Opt. Lett. 38(14), 2422–2424 (2013).

2012 (3)

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).

L. C. Malacarne, N. G. C. Astrath, and M. L. Baesso, “Unified theoretical model for calculating laser-induced wavefront distortion in optical materials,” J. Opt. Soc. Am. B 29(7), 1772–1777 (2012).

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

2011 (2)

R. K. Huang, B. Chann, and J. D. Glenn, “Ultra-high brightness, wavelength-stabilized, kW-class fiber coupled diode laser,” Proc. SPIE 7918, 791810 (2011).

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express 19(27), 26725–26732 (2011).

2008 (2)

2007 (1)

2006 (1)

B. Chann, A. K. Goyal, T. Y. Fan, A. Sanchez-Rubio, B. L. Volodin, and V. S. Ban, “Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating,” Opt. Express 31(9), 1253–1255 (2006).

2005 (1)

2004 (2)

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).

M. Lequime, “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250, 302–311 (2004).

2003 (1)

2000 (1)

1991 (1)

I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” J. Lightwave Technol. 9(7), 893–899 (1991).

An, H.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

Andrusyak, O.

Astrath, N. G. C.

Augst, S. J.

Baesso, M. L.

Ban, V. S.

B. Chann, A. K. Goyal, T. Y. Fan, A. Sanchez-Rubio, B. L. Volodin, and V. S. Ban, “Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating,” Opt. Express 31(9), 1253–1255 (2006).

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).

Barnowski, T.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

Biesenbach, J.

B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).

Böldicke, S.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).

Bonsendorf, D.

D. Bonsendorf, S. Schneider, J. Meinschien, and J. W. Tomm, “Reliability of high power laser diodes with external optical feedback,” Proc. SPIE 9733, 973302 (2016).

Boucke, K.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

Brand, T.

Burgess, J.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

Capasso, F.

Chann, B.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

R. K. Huang, B. Chann, and J. D. Glenn, “Ultra-high brightness, wavelength-stabilized, kW-class fiber coupled diode laser,” Proc. SPIE 7918, 791810 (2011).

J. T. Gopinath, B. Chann, T. Y. Fan, and A. Sanchez-Rubio, “1450-nm high-brightness wavelength-beam combined diode laser array,” Opt. Express 16(13), 9405–9410 (2008).

B. Chann, A. K. Goyal, T. Y. Fan, A. Sanchez-Rubio, B. L. Volodin, and V. S. Ban, “Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating,” Opt. Express 31(9), 1253–1255 (2006).

B. Chann, R. K. Huang, L. J. Missaggia, C. T. Harris, Z. L. Liau, A. K. Goyal, J. P. Donnelly, T. Y. Fan, A. Sanchez-Rubio, and G. W. Turner, “Near-diffraction-limited diode laser arrays by wavelength beam combining,” Opt. Lett. 30(16), 2104–2106 (2005).

R. K. Huang, B. Samson, B. Chann, B. Lochman, and P. Tayebati, “Recent progress on high-brightness kW-class direct diode lasers,” in Proceedings of IEEE Conference on High Power Diode Lasers and Systems (HPD) (IEEE, 2015), pp. 29–30.

Chi, M.

M. Hempel, M. Chi, P. M. Petersen, U. Zeimer, and J. W. Tomm, “How does external feedback cause AlGaAs-based diode lasers to degrade,” Appl. Phys. Lett. 102(2), 023502 (2013).

Choi, H. K.

Ciapurin, I.

Clausnitzer, T.

Cook, C. C.

Crump, P.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).

Daneu, V.

Dekorsy, T.

M. Haas, S. Rauch, S. Nagel, T. Dekorsy, and H. Zimer, “Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers,” IEEE J. Quantum Electron. 53(3), 1–11 (2017).

Diehl, L.

Dolgy, S. V.

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).

Donnelly, J. P.

Downs, E.

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).

Drovs, S.

Ekhteraei, H.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).

Erbert, G.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).

Fan, T. Y.

Fan, T.Y.

Fritsche, H.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).

Fuchs, H.-J.

Ginter, M.

Glebov, L.

Glenn, J. D.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

R. K. Huang, B. Chann, and J. D. Glenn, “Ultra-high brightness, wavelength-stabilized, kW-class fiber coupled diode laser,” Proc. SPIE 7918, 791810 (2011).

Gopinath, J. T.

Gou, L.

Goyal, A. K.

Gries, W.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).

Haas, M.

M. Haas, S. Rauch, S. Nagel, T. Dekorsy, and H. Zimer, “Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers,” IEEE J. Quantum Electron. 53(3), 1–11 (2017).

M. Haas, A. Killi, C. Tillkorn, S. Ried, M. Ginter, and H. Zimer, “Thin-film filter, wavelength-locked, multi-laser cavity for dense wavelength beam combining of broad-area laser diode bars,” Opt. Lett. 40(17), 3949–3952 (2015).

Harris, C. T.

Heinemann, S.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).

Hempel, M.

B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).

M. Hempel, M. Chi, P. M. Petersen, U. Zeimer, and J. W. Tomm, “How does external feedback cause AlGaAs-based diode lasers to degrade,” Appl. Phys. Lett. 102(2), 023502 (2013).

Hoffmann, D.

Huang, R. K.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

R. K. Huang, B. Chann, and J. D. Glenn, “Ultra-high brightness, wavelength-stabilized, kW-class fiber coupled diode laser,” Proc. SPIE 7918, 791810 (2011).

B. Chann, R. K. Huang, L. J. Missaggia, C. T. Harris, Z. L. Liau, A. K. Goyal, J. P. Donnelly, T. Y. Fan, A. Sanchez-Rubio, and G. W. Turner, “Near-diffraction-limited diode laser arrays by wavelength beam combining,” Opt. Lett. 30(16), 2104–2106 (2005).

R. K. Huang, B. Samson, B. Chann, B. Lochman, and P. Tayebati, “Recent progress on high-brightness kW-class direct diode lasers,” in Proceedings of IEEE Conference on High Power Diode Lasers and Systems (HPD) (IEEE, 2015), pp. 29–30.

Hui, Y.

Jiang, J.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

Jiang, M.

Jupé, M.

Kaiman, M.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

Killi, A.

Kissel, H.

B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).

Kley, E.-B.

Kruschke, B.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).

Lee, B. G.

Lei, H.

Leonhäuser, B.

B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).

Lequime, M.

M. Lequime, “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250, 302–311 (2004).

Li, Q.

Liau, Z. L.

Limpert, J.

Lochman, B.

R. K. Huang, B. Samson, B. Chann, B. Lochman, and P. Tayebati, “Recent progress on high-brightness kW-class direct diode lasers,” in Proceedings of IEEE Conference on High Power Diode Lasers and Systems (HPD) (IEEE, 2015), pp. 29–30.

Malacarne, L. C.

Meinschien, J.

D. Bonsendorf, S. Schneider, J. Meinschien, and J. W. Tomm, “Reliability of high power laser diodes with external optical feedback,” Proc. SPIE 9733, 973302 (2016).

Melnik, E. D.

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).

Missaggia, L. J.

Nagel, S.

M. Haas, S. Rauch, S. Nagel, T. Dekorsy, and H. Zimer, “Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers,” IEEE J. Quantum Electron. 53(3), 1–11 (2017).

Negoita, V.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

Overman, R.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

Perchermeier, J.

Petersen, P. M.

M. Hempel, M. Chi, P. M. Petersen, U. Zeimer, and J. W. Tomm, “How does external feedback cause AlGaAs-based diode lasers to degrade,” Appl. Phys. Lett. 102(2), 023502 (2013).

Pfluegl, C.

Ranka, J. K.

Rauch, S.

M. Haas, S. Rauch, S. Nagel, T. Dekorsy, and H. Zimer, “Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers,” IEEE J. Quantum Electron. 53(3), 1–11 (2017).

Ried, S.

Ristau, D.

Roff, R.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

Samson, B.

R. K. Huang, B. Samson, B. Chann, B. Lochman, and P. Tayebati, “Recent progress on high-brightness kW-class direct diode lasers,” in Proceedings of IEEE Conference on High Power Diode Lasers and Systems (HPD) (IEEE, 2015), pp. 29–30.

Sanchez, A.

Sanchez-Rubio, A.

Schmidt, T.

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).

Schneider, F.

Schneider, S.

D. Bonsendorf, S. Schneider, J. Meinschien, and J. W. Tomm, “Reliability of high power laser diodes with external optical feedback,” Proc. SPIE 9733, 973302 (2016).

Schultz, C. M.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).

Sevian, A.

Shatrovoy, O.

Shaw, J.

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).

Smirnov, V.

Spencer, M.

Stelmakh, N.

Tayebati, P.

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

R. K. Huang, B. Samson, B. Chann, B. Lochman, and P. Tayebati, “Recent progress on high-brightness kW-class direct diode lasers,” in Proceedings of IEEE Conference on High Power Diode Lasers and Systems (HPD) (IEEE, 2015), pp. 29–30.

Tillkorn, C.

Tomm, J. W.

D. Bonsendorf, S. Schneider, J. Meinschien, and J. W. Tomm, “Reliability of high power laser diodes with external optical feedback,” Proc. SPIE 9733, 973302 (2016).

B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).

M. Hempel, M. Chi, P. M. Petersen, U. Zeimer, and J. W. Tomm, “How does external feedback cause AlGaAs-based diode lasers to degrade,” Appl. Phys. Lett. 102(2), 023502 (2013).

Traub, M.

Treusch, G.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

Tünnermann, A.

Turner, G. W.

Unger, A.

U. Witte, F. Schneider, M. Traub, D. Hoffmann, S. Drovs, T. Brand, and A. Unger, “kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters,” Opt. Express 24(20), 22917–22929 (2016).

B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).

Vasilyev, M.

Venus, G.

Vethake, T.

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

Volodin, B. L.

B. Chann, A. K. Goyal, T. Y. Fan, A. Sanchez-Rubio, B. L. Volodin, and V. S. Ban, “Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating,” Opt. Express 31(9), 1253–1255 (2006).

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).

Wenzel, H.

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).

White, I. H.

I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” J. Lightwave Technol. 9(7), 893–899 (1991).

Witte, U.

Wittrock, U.

Zeimer, U.

M. Hempel, M. Chi, P. M. Petersen, U. Zeimer, and J. W. Tomm, “How does external feedback cause AlGaAs-based diode lasers to degrade,” Appl. Phys. Lett. 102(2), 023502 (2013).

Zellmer, H.

Zhu, Z.

Zimer, H.

M. Haas, S. Rauch, S. Nagel, T. Dekorsy, and H. Zimer, “Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers,” IEEE J. Quantum Electron. 53(3), 1–11 (2017).

M. Haas, A. Killi, C. Tillkorn, S. Ried, M. Ginter, and H. Zimer, “Thin-film filter, wavelength-locked, multi-laser cavity for dense wavelength beam combining of broad-area laser diode bars,” Opt. Lett. 40(17), 3949–3952 (2015).

Zöllner, K.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Hempel, M. Chi, P. M. Petersen, U. Zeimer, and J. W. Tomm, “How does external feedback cause AlGaAs-based diode lasers to degrade,” Appl. Phys. Lett. 102(2), 023502 (2013).

IEEE J. Quantum Electron. (1)

M. Haas, S. Rauch, S. Nagel, T. Dekorsy, and H. Zimer, “Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers,” IEEE J. Quantum Electron. 53(3), 1–11 (2017).

J. Lightwave Technol. (1)

I. H. White, “A multichannel grating cavity laser for wavelength division multiplexing applications,” J. Lightwave Technol. 9(7), 893–899 (1991).

J. Opt. Soc. Am. B (2)

Opt. Express (7)

N. Stelmakh and M. Vasilyev, “Spatially-resolved self-heterodyne spectroscopy of lateral modes of broad-area laser diodes,” Opt. Express 22(4), 3845–3859 (2014).

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express 19(27), 26725–26732 (2011).

U. Witte, F. Schneider, M. Traub, D. Hoffmann, S. Drovs, T. Brand, and A. Unger, “kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters,” Opt. Express 24(20), 22917–22929 (2016).

J. T. Gopinath, B. Chann, T. Y. Fan, and A. Sanchez-Rubio, “1450-nm high-brightness wavelength-beam combined diode laser array,” Opt. Express 16(13), 9405–9410 (2008).

Z. Zhu, L. Gou, M. Jiang, Y. Hui, H. Lei, and Q. Li, “High beam quality in two directions and high efficiency output of a diode laser array by spectral-beam-combining,” Opt. Express 22(15), 17804–17809 (2014).

B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Express 29(16), 1891–1893 (2004).

B. Chann, A. K. Goyal, T. Y. Fan, A. Sanchez-Rubio, B. L. Volodin, and V. S. Ban, “Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating,” Opt. Express 31(9), 1253–1255 (2006).

Opt. Lett. (5)

Proc. SPIE (7)

B. Leonhäuser, H. Kissel, J. W. Tomm, M. Hempel, A. Unger, and J. Biesenbach, “High-power diode lasers under external optical feedback,” Proc. SPIE 9348, 93480M (2015).

D. Bonsendorf, S. Schneider, J. Meinschien, and J. W. Tomm, “Reliability of high power laser diodes with external optical feedback,” Proc. SPIE 9733, 973302 (2016).

R. K. Huang, B. Chann, and J. D. Glenn, “Ultra-high brightness, wavelength-stabilized, kW-class fiber coupled diode laser,” Proc. SPIE 7918, 791810 (2011).

R. K. Huang, B. Chann, J. Burgess, M. Kaiman, R. Overman, J. D. Glenn, and P. Tayebati, “Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers,” Proc. SPIE 8241, 824102 (2012).

S. Heinemann, H. Fritsche, B. Kruschke, T. Schmidt, and W. Gries, “Compact high brightness diode laser emitting 500 W from a 100 μm fiber,” Proc. SPIE 8605, 86050Q (2013).

S. Heinemann, H. An, T. Barnowski, J. Jiang, V. Negoita, R. Roff, T. Vethake, K. Boucke, and G. Treusch, “Packaging of high power bars for optical pumping and direct applications,” Proc. SPIE 9348, 934807 (2015).

M. Lequime, “Tunable thin film filters: review and perspectives,” Proc. SPIE 5250, 302–311 (2004).

Semicond. Sci. Technol. (1)

P. Crump, S. Böldicke, C. M. Schultz, H. Ekhteraei, H. Wenzel, and G. Erbert, “Experimental and theoretical analysis of the dominant lateral waveguiding mechanism in 975 nm high power broad area diode lasers,” Semicond. Sci. Technol. 27, 045001 (2012).

Other (1)

R. K. Huang, B. Samson, B. Chann, B. Lochman, and P. Tayebati, “Recent progress on high-brightness kW-class direct diode lasers,” in Proceedings of IEEE Conference on High Power Diode Lasers and Systems (HPD) (IEEE, 2015), pp. 29–30.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Setup of the laser diode module. The inset shows a ray tracing simulation of the intensity distribution of the collimated output beams at the front of the laser diode module.
Fig. 2
Fig. 2 (a) Output power characteristic of an individual free-running 954-nm diode bar of the laser diode module. (b) Spectral shift of an individual free-running 954-nm bar and locking-range measurement.
Fig. 3
Fig. 3 Schematic setup of the TFF multi-laser cavity and the grating combiner. The imaging in the vertical SA direction is explained in the text and not shown here.
Fig. 4
Fig. 4 Spectral beam combining of the TFF wavelength-locked cavity output. (a) Linear dispersion-matching by use of a telescope. Left axis, measured (symbols) and calculated (lines) relative angle with respect to the TFF AOI θ0 and Littrow angle θL(λc) of the combiner grating at the central wavelength λc of the stabilized spectrum vs. wavelength. Right axis, dispersion ratio of the TFF to the combiner grating vs. wavelength. (b) Calculated beam pointing angles Δθk,n of the diffracted emitter sub-beams, with reference to the Littrow angle θL(λc) vs. wavelength for different magnifications M of the telescope.
Fig. 5
Fig. 5 (a) Far-field intensity distribution ICB of the combined beam for two different magnifications M of the dispersion-matching telescope. (b) Simulations of the beam quality deterioration factor Δ as a function of the magnification M of the dispersion-matching telescope for different groove spacings Λ of the grating.
Fig. 6
Fig. 6 Spectrum of the output beams of the TFF multi-laser cavity at a diode current of 40 A. The extract in the lower right part shows the spectrum of three bars of the laser diode module at a diode current of 40 and 180 A, respectively.
Fig. 7
Fig. 7 (a) Left axis, optical output power vs. diode current for the free-running laser diode module, the wavelength-stabilized cavity output and the combined output beam. Right axis, corresponding e-o conversion efficiencies vs. diode current. (b) FA- and SA-BPP of the combined cavity output vs. diode current. (c) Intensity distribution and extracted beam profiles along the FA- and SA direction of the combined output beam at a diode current of 140 A in the focal plane of a spherical lens with 300-mm focal length.
Fig. 8
Fig. 8 (a) FA-BPP vs. diode current for the combined cavity output of the laser diode module and selected individual bars. (b) Smile measurements of the corresponding laser diode bars.
Fig. 9
Fig. 9 (a) Experimental configurations A and B for the investigation of the influence of thermo-optical effects in the TFF on the FA-BPP. (b) Left axis, FA-BPP vs. diode current for the combined cavity output of an individual bar of the laser diode module vs. diode current for the experimental configurations A and B. Right axis, corresponding peak temperature of the TFF vs. diode current.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

θ k , n = θ 0 β k , n = θ 0 tan 1 ( x k , n / f TL ) .
x k , n = ( 11 2 k ) p b + ( n 12 ) p e .
λ k , n = λ TFF 1 ( sin θ k , n / n eff ) 2 ,
Δ λ = 2 tan 1 ( Δ x 2 f TL ) D TFF 1 ( θ k , n = θ 0 ) ,
D TFF = | d θ d λ | λ k , n | = n eff λ TFF ( n eff 2 sin 2 θ k , n ) 1 / 2 sin θ k , n cos θ k , n
Δ θ k , n = sin 1 { λ k , n Λ sin [ θ L ( λ c ) β k , n * ( M ) ] } θ L ( λ c ) ,
I CB ( θ ; 2 θ CB ) = k n I k , n ( θ Δ θ k , n ; 2 θ G ) .
2 θ G = 2 θ FA , em f FAC f TL M = : 2 θ G , em Δ linewidth .
Δ linewidth = 1 + ( D G δ λ 2 θ G , em ) 2 ,
D G = | d θ d λ | λ k , n = λ c | = 1 Λ cos [ θ L ( λ c ) ]
Δ = θ CB θ G , em .

Metrics