Abstract

The crucial factor of laser welding is the laser energy conversion. For a better understanding of the process, the interaction process between the laser beam and keyhole wall was investigated by observing the keyhole wall evaporation during high-power fiber laser welding. The results show that the evaporation vapor, induced by the laser beam, discretely distributed on the keyhole wall. A tiny ‘hollow’ zone was observed at the spot center-action region on the FKW. The evaporation vapor induced by the spot center moved downward along the front keyhole wall (FKW) with a period of about 0.3~0.75 ms, which indicates that the keyhole formation is reminiscent of a periodical laser drilling process on the FKW. The evaporation vapor on the keyhole wall suggest the assumption that the laser energy coupling mode in the keyhole was multiple-reflection, and the keyhole depth was mainly determined by the drilling behavior induced by the first absorption on the FKW.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser

Mingjun Zhang, Genyu Chen, Yu Zhou, and Shichun Li
Opt. Express 21(17) 19997-20004 (2013)

Observation and understanding in laser welding of pure titanium at subatmospheric pressure

Ming Gao, Yousuke Kawahito, and Shogo Kajii
Opt. Express 25(12) 13539-13548 (2017)

Dynamic balance of heat and mass in high power density laser welding

Hongze Wang, Motoki Nakanishi, and Yosuke Kawahito
Opt. Express 26(5) 6392-6399 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
    [Crossref] [PubMed]
  2. M. Sommer, J. Weberpals, S. Muller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” J. Laser Appl. 29(1), 012001 (2017).
    [Crossref]
  3. A. Kaplan, “Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence,” Appl. Phys. Lett. 101(15), 151605 (2012).
    [Crossref]
  4. Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join. 14(4), 288–294 (2009).
    [Crossref]
  5. A. Matsunawa and V. V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys. 30(5), 798–809 (1997).
    [Crossref]
  6. R. S. Matti, T. Ilar, and A. Kaplan, “Analysis of laser remote fusion cutting based on a mathematical model,” J. Appl. Phys. 114(23), 233107 (2012).
    [Crossref]
  7. J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
    [Crossref]
  8. J. L. Zou, S. K. Wu, W. X. Yang, Y. He, and R. S. Xiao, “A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding,” Mater. Des. 89, 785–790 (2016).
    [Crossref]
  9. R. Fabbro and K. Chouf, “‘Keyhole modeling during laser welding,” J. Appl. Phys. 87(9), 4075–4083 (2000).
    [Crossref]
  10. M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, “Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding,” J. Phys. D Appl. Phys. 49(15), 155503 (2016).
    [Crossref]
  11. A. Kaplan, “Fresnel absorption of 1 um- and 10 um-laser beams at the keyhole wall during laser beam welding: comparison between smooth and wavy surfaces,” Appl. Surf. Sci. 258(8), 3354–3363 (2012).
    [Crossref]
  12. I. Eriksson, J. Powell, and A. Kaplan, “Melt behavior on the keyhole front during high speed laser welding,” Opt. Lasers Eng. 51(6), 735–740 (2013).
    [Crossref]
  13. M. Vänskä, F. Abt, R. Weber, A. Salminen, and T. Graf, “Effects of welding parameters onto keyhole geometry for partial penetration laser welding,” Phys. Procedia 41, 199–208 (2013).
    [Crossref]
  14. A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
    [Crossref]
  15. Y. Kawahito, N. Matsumoto, Y. Abe, and S. Katayama, “Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy,” J. Mater. Process. Technol. 211(10), 1563–1568 (2011).
    [Crossref]
  16. R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
    [Crossref]
  17. X. Chen and H. Wang, “A calculation model for the evaporation recoil pressure in laser material processing,” J. Phys. D Appl. Phys. 34(17), 2637–2642 (2001).
    [Crossref]
  18. M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
    [Crossref]
  19. V. V. Semak, W. D. Bragg, B. Damkroger, and S. Kempka, “Transient model for the keyhole during laser welding,” J. Phys. D Appl. Phys. 32(15), L61–L64 (1999).
    [Crossref]
  20. V. V. Semak, R. J. Steele, P. W. Fuerschbach, and B. K. Damkroger, “Role of beam absorption in plasma during laser welding,” J. Phys. D Appl. Phys. 33(10), 1179–1185 (2000).
    [Crossref]
  21. K. Hirano and R. Fabbro, “Possible explanations for different surface quality in laser cutting with 1 and 10 um beams,” J. Laser Appl. 24(1), 012006 (2012).
    [Crossref]
  22. M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, “A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding,” J. Phys. D Appl. Phys. 46(50), 505305 (2013).
    [Crossref]
  23. J. H. Cho and S. J. Na, “Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole,” J. Phys. D Appl. Phys. 39(24), 5372–5378 (2006).
    [Crossref]
  24. W. Tan, N. S. Bailey, and Y. C. Shin, “Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation,” J. Phys. D Appl. Phys. 46(5), 055501 (2013).
    [Crossref]
  25. S. Y. Pang, X. Chen, X. Y. Shao, S. L. Gong, and J. Z. Xiao, “Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity,” Opt. Lasers Eng. 82, 28–40 (2016).
    [Crossref]

2017 (1)

M. Sommer, J. Weberpals, S. Muller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” J. Laser Appl. 29(1), 012001 (2017).
[Crossref]

2016 (3)

J. L. Zou, S. K. Wu, W. X. Yang, Y. He, and R. S. Xiao, “A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding,” Mater. Des. 89, 785–790 (2016).
[Crossref]

M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, “Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding,” J. Phys. D Appl. Phys. 49(15), 155503 (2016).
[Crossref]

S. Y. Pang, X. Chen, X. Y. Shao, S. L. Gong, and J. Z. Xiao, “Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity,” Opt. Lasers Eng. 82, 28–40 (2016).
[Crossref]

2015 (1)

J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
[Crossref]

2013 (7)

M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, “A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding,” J. Phys. D Appl. Phys. 46(50), 505305 (2013).
[Crossref]

W. Tan, N. S. Bailey, and Y. C. Shin, “Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation,” J. Phys. D Appl. Phys. 46(5), 055501 (2013).
[Crossref]

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

I. Eriksson, J. Powell, and A. Kaplan, “Melt behavior on the keyhole front during high speed laser welding,” Opt. Lasers Eng. 51(6), 735–740 (2013).
[Crossref]

M. Vänskä, F. Abt, R. Weber, A. Salminen, and T. Graf, “Effects of welding parameters onto keyhole geometry for partial penetration laser welding,” Phys. Procedia 41, 199–208 (2013).
[Crossref]

A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
[Crossref]

M. Zhang, G. Chen, Y. Zhou, and S. Li, “Direct observation of keyhole characteristics in deep penetration laser welding with a 10 kW fiber laser,” Opt. Express 21(17), 19997–20004 (2013).
[Crossref] [PubMed]

2012 (4)

R. S. Matti, T. Ilar, and A. Kaplan, “Analysis of laser remote fusion cutting based on a mathematical model,” J. Appl. Phys. 114(23), 233107 (2012).
[Crossref]

A. Kaplan, “Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence,” Appl. Phys. Lett. 101(15), 151605 (2012).
[Crossref]

A. Kaplan, “Fresnel absorption of 1 um- and 10 um-laser beams at the keyhole wall during laser beam welding: comparison between smooth and wavy surfaces,” Appl. Surf. Sci. 258(8), 3354–3363 (2012).
[Crossref]

K. Hirano and R. Fabbro, “Possible explanations for different surface quality in laser cutting with 1 and 10 um beams,” J. Laser Appl. 24(1), 012006 (2012).
[Crossref]

2011 (1)

Y. Kawahito, N. Matsumoto, Y. Abe, and S. Katayama, “Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy,” J. Mater. Process. Technol. 211(10), 1563–1568 (2011).
[Crossref]

2009 (1)

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join. 14(4), 288–294 (2009).
[Crossref]

2006 (2)

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

J. H. Cho and S. J. Na, “Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole,” J. Phys. D Appl. Phys. 39(24), 5372–5378 (2006).
[Crossref]

2001 (1)

X. Chen and H. Wang, “A calculation model for the evaporation recoil pressure in laser material processing,” J. Phys. D Appl. Phys. 34(17), 2637–2642 (2001).
[Crossref]

2000 (2)

R. Fabbro and K. Chouf, “‘Keyhole modeling during laser welding,” J. Appl. Phys. 87(9), 4075–4083 (2000).
[Crossref]

V. V. Semak, R. J. Steele, P. W. Fuerschbach, and B. K. Damkroger, “Role of beam absorption in plasma during laser welding,” J. Phys. D Appl. Phys. 33(10), 1179–1185 (2000).
[Crossref]

1999 (1)

V. V. Semak, W. D. Bragg, B. Damkroger, and S. Kempka, “Transient model for the keyhole during laser welding,” J. Phys. D Appl. Phys. 32(15), L61–L64 (1999).
[Crossref]

1997 (1)

A. Matsunawa and V. V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys. 30(5), 798–809 (1997).
[Crossref]

Abe, Y.

Y. Kawahito, N. Matsumoto, Y. Abe, and S. Katayama, “Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy,” J. Mater. Process. Technol. 211(10), 1563–1568 (2011).
[Crossref]

Abt, F.

A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
[Crossref]

M. Vänskä, F. Abt, R. Weber, A. Salminen, and T. Graf, “Effects of welding parameters onto keyhole geometry for partial penetration laser welding,” Phys. Procedia 41, 199–208 (2013).
[Crossref]

Bailey, N. S.

W. Tan, N. S. Bailey, and Y. C. Shin, “Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation,” J. Phys. D Appl. Phys. 46(5), 055501 (2013).
[Crossref]

Balabane, M.

M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, “Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding,” J. Phys. D Appl. Phys. 49(15), 155503 (2016).
[Crossref]

M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, “A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding,” J. Phys. D Appl. Phys. 46(50), 505305 (2013).
[Crossref]

Berger, P.

M. Sommer, J. Weberpals, S. Muller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” J. Laser Appl. 29(1), 012001 (2017).
[Crossref]

Boley, M.

A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
[Crossref]

Bragg, W. D.

V. V. Semak, W. D. Bragg, B. Damkroger, and S. Kempka, “Transient model for the keyhole during laser welding,” J. Phys. D Appl. Phys. 32(15), L61–L64 (1999).
[Crossref]

Briand, F.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

Carin, M.

M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, “Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding,” J. Phys. D Appl. Phys. 49(15), 155503 (2016).
[Crossref]

M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, “A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding,” J. Phys. D Appl. Phys. 46(50), 505305 (2013).
[Crossref]

Chen, G.

Chen, M.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Chen, X.

S. Y. Pang, X. Chen, X. Y. Shao, S. L. Gong, and J. Z. Xiao, “Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity,” Opt. Lasers Eng. 82, 28–40 (2016).
[Crossref]

X. Chen and H. Wang, “A calculation model for the evaporation recoil pressure in laser material processing,” J. Phys. D Appl. Phys. 34(17), 2637–2642 (2001).
[Crossref]

Cho, J. H.

J. H. Cho and S. J. Na, “Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole,” J. Phys. D Appl. Phys. 39(24), 5372–5378 (2006).
[Crossref]

Chouf, K.

R. Fabbro and K. Chouf, “‘Keyhole modeling during laser welding,” J. Appl. Phys. 87(9), 4075–4083 (2000).
[Crossref]

Coste, F.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

Courtois, M.

M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, “Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding,” J. Phys. D Appl. Phys. 49(15), 155503 (2016).
[Crossref]

M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, “A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding,” J. Phys. D Appl. Phys. 46(50), 505305 (2013).
[Crossref]

Damkroger, B.

V. V. Semak, W. D. Bragg, B. Damkroger, and S. Kempka, “Transient model for the keyhole during laser welding,” J. Phys. D Appl. Phys. 32(15), L61–L64 (1999).
[Crossref]

Damkroger, B. K.

V. V. Semak, R. J. Steele, P. W. Fuerschbach, and B. K. Damkroger, “Role of beam absorption in plasma during laser welding,” J. Phys. D Appl. Phys. 33(10), 1179–1185 (2000).
[Crossref]

Doudet, I.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

Eriksson, I.

I. Eriksson, J. Powell, and A. Kaplan, “Melt behavior on the keyhole front during high speed laser welding,” Opt. Lasers Eng. 51(6), 735–740 (2013).
[Crossref]

Fabbro, R.

K. Hirano and R. Fabbro, “Possible explanations for different surface quality in laser cutting with 1 and 10 um beams,” J. Laser Appl. 24(1), 012006 (2012).
[Crossref]

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

R. Fabbro and K. Chouf, “‘Keyhole modeling during laser welding,” J. Appl. Phys. 87(9), 4075–4083 (2000).
[Crossref]

Fuerschbach, P. W.

V. V. Semak, R. J. Steele, P. W. Fuerschbach, and B. K. Damkroger, “Role of beam absorption in plasma during laser welding,” J. Phys. D Appl. Phys. 33(10), 1179–1185 (2000).
[Crossref]

Gaied, S.

M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, “Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding,” J. Phys. D Appl. Phys. 49(15), 155503 (2016).
[Crossref]

M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, “A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding,” J. Phys. D Appl. Phys. 46(50), 505305 (2013).
[Crossref]

Gong, S. L.

S. Y. Pang, X. Chen, X. Y. Shao, S. L. Gong, and J. Z. Xiao, “Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity,” Opt. Lasers Eng. 82, 28–40 (2016).
[Crossref]

Graf, T.

M. Sommer, J. Weberpals, S. Muller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” J. Laser Appl. 29(1), 012001 (2017).
[Crossref]

M. Vänskä, F. Abt, R. Weber, A. Salminen, and T. Graf, “Effects of welding parameters onto keyhole geometry for partial penetration laser welding,” Phys. Procedia 41, 199–208 (2013).
[Crossref]

A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
[Crossref]

He, Y.

J. L. Zou, S. K. Wu, W. X. Yang, Y. He, and R. S. Xiao, “A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding,” Mater. Des. 89, 785–790 (2016).
[Crossref]

J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
[Crossref]

Heider, A.

A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
[Crossref]

Hirano, K.

K. Hirano and R. Fabbro, “Possible explanations for different surface quality in laser cutting with 1 and 10 um beams,” J. Laser Appl. 24(1), 012006 (2012).
[Crossref]

Ilar, T.

R. S. Matti, T. Ilar, and A. Kaplan, “Analysis of laser remote fusion cutting based on a mathematical model,” J. Appl. Phys. 114(23), 233107 (2012).
[Crossref]

Kaplan, A.

I. Eriksson, J. Powell, and A. Kaplan, “Melt behavior on the keyhole front during high speed laser welding,” Opt. Lasers Eng. 51(6), 735–740 (2013).
[Crossref]

A. Kaplan, “Fresnel absorption of 1 um- and 10 um-laser beams at the keyhole wall during laser beam welding: comparison between smooth and wavy surfaces,” Appl. Surf. Sci. 258(8), 3354–3363 (2012).
[Crossref]

R. S. Matti, T. Ilar, and A. Kaplan, “Analysis of laser remote fusion cutting based on a mathematical model,” J. Appl. Phys. 114(23), 233107 (2012).
[Crossref]

A. Kaplan, “Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence,” Appl. Phys. Lett. 101(15), 151605 (2012).
[Crossref]

Katayama, S.

Y. Kawahito, N. Matsumoto, Y. Abe, and S. Katayama, “Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy,” J. Mater. Process. Technol. 211(10), 1563–1568 (2011).
[Crossref]

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join. 14(4), 288–294 (2009).
[Crossref]

Kawahito, Y.

Y. Kawahito, N. Matsumoto, Y. Abe, and S. Katayama, “Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy,” J. Mater. Process. Technol. 211(10), 1563–1568 (2011).
[Crossref]

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join. 14(4), 288–294 (2009).
[Crossref]

Kempka, S.

V. V. Semak, W. D. Bragg, B. Damkroger, and S. Kempka, “Transient model for the keyhole during laser welding,” J. Phys. D Appl. Phys. 32(15), L61–L64 (1999).
[Crossref]

Lan, D.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Le Masson, P.

M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, “Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding,” J. Phys. D Appl. Phys. 49(15), 155503 (2016).
[Crossref]

Li, S.

Masson, P. L.

M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, “A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding,” J. Phys. D Appl. Phys. 46(50), 505305 (2013).
[Crossref]

Matsumoto, N.

Y. Kawahito, N. Matsumoto, Y. Abe, and S. Katayama, “Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy,” J. Mater. Process. Technol. 211(10), 1563–1568 (2011).
[Crossref]

Matsunawa, A.

A. Matsunawa and V. V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys. 30(5), 798–809 (1997).
[Crossref]

Matti, R. S.

R. S. Matti, T. Ilar, and A. Kaplan, “Analysis of laser remote fusion cutting based on a mathematical model,” J. Appl. Phys. 114(23), 233107 (2012).
[Crossref]

Mizutani, M.

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join. 14(4), 288–294 (2009).
[Crossref]

Muller, S.

M. Sommer, J. Weberpals, S. Muller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” J. Laser Appl. 29(1), 012001 (2017).
[Crossref]

Na, S. J.

J. H. Cho and S. J. Na, “Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole,” J. Phys. D Appl. Phys. 39(24), 5372–5378 (2006).
[Crossref]

Pang, S. Y.

S. Y. Pang, X. Chen, X. Y. Shao, S. L. Gong, and J. Z. Xiao, “Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity,” Opt. Lasers Eng. 82, 28–40 (2016).
[Crossref]

Powell, J.

I. Eriksson, J. Powell, and A. Kaplan, “Melt behavior on the keyhole front during high speed laser welding,” Opt. Lasers Eng. 51(6), 735–740 (2013).
[Crossref]

Salminen, A.

M. Vänskä, F. Abt, R. Weber, A. Salminen, and T. Graf, “Effects of welding parameters onto keyhole geometry for partial penetration laser welding,” Phys. Procedia 41, 199–208 (2013).
[Crossref]

Semak, V. V.

V. V. Semak, R. J. Steele, P. W. Fuerschbach, and B. K. Damkroger, “Role of beam absorption in plasma during laser welding,” J. Phys. D Appl. Phys. 33(10), 1179–1185 (2000).
[Crossref]

V. V. Semak, W. D. Bragg, B. Damkroger, and S. Kempka, “Transient model for the keyhole during laser welding,” J. Phys. D Appl. Phys. 32(15), L61–L64 (1999).
[Crossref]

A. Matsunawa and V. V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys. 30(5), 798–809 (1997).
[Crossref]

Shao, X. Y.

S. Y. Pang, X. Chen, X. Y. Shao, S. L. Gong, and J. Z. Xiao, “Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity,” Opt. Lasers Eng. 82, 28–40 (2016).
[Crossref]

Shin, Y. C.

W. Tan, N. S. Bailey, and Y. C. Shin, “Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation,” J. Phys. D Appl. Phys. 46(5), 055501 (2013).
[Crossref]

Slimani, S.

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

Sollinger, J.

A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
[Crossref]

Sommer, M.

M. Sommer, J. Weberpals, S. Muller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” J. Laser Appl. 29(1), 012001 (2017).
[Crossref]

Steele, R. J.

V. V. Semak, R. J. Steele, P. W. Fuerschbach, and B. K. Damkroger, “Role of beam absorption in plasma during laser welding,” J. Phys. D Appl. Phys. 33(10), 1179–1185 (2000).
[Crossref]

Tan, W.

W. Tan, N. S. Bailey, and Y. C. Shin, “Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation,” J. Phys. D Appl. Phys. 46(5), 055501 (2013).
[Crossref]

Vänskä, M.

M. Vänskä, F. Abt, R. Weber, A. Salminen, and T. Graf, “Effects of welding parameters onto keyhole geometry for partial penetration laser welding,” Phys. Procedia 41, 199–208 (2013).
[Crossref]

Wang, H.

X. Chen and H. Wang, “A calculation model for the evaporation recoil pressure in laser material processing,” J. Phys. D Appl. Phys. 34(17), 2637–2642 (2001).
[Crossref]

Wang, Y.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Weber, R.

M. Vänskä, F. Abt, R. Weber, A. Salminen, and T. Graf, “Effects of welding parameters onto keyhole geometry for partial penetration laser welding,” Phys. Procedia 41, 199–208 (2013).
[Crossref]

A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
[Crossref]

Weberpals, J.

M. Sommer, J. Weberpals, S. Muller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” J. Laser Appl. 29(1), 012001 (2017).
[Crossref]

Wu, S. K.

J. L. Zou, S. K. Wu, W. X. Yang, Y. He, and R. S. Xiao, “A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding,” Mater. Des. 89, 785–790 (2016).
[Crossref]

J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
[Crossref]

Xiao, J. Z.

S. Y. Pang, X. Chen, X. Y. Shao, S. L. Gong, and J. Z. Xiao, “Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity,” Opt. Lasers Eng. 82, 28–40 (2016).
[Crossref]

Xiao, R. S.

J. L. Zou, S. K. Wu, W. X. Yang, Y. He, and R. S. Xiao, “A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding,” Mater. Des. 89, 785–790 (2016).
[Crossref]

J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
[Crossref]

Xu, J. J.

J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
[Crossref]

Yang, W. X.

J. L. Zou, S. K. Wu, W. X. Yang, Y. He, and R. S. Xiao, “A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding,” Mater. Des. 89, 785–790 (2016).
[Crossref]

J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
[Crossref]

Yu, G.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Zhang, M.

Zheng, Z.

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Zhou, Y.

Zou, J. L.

J. L. Zou, S. K. Wu, W. X. Yang, Y. He, and R. S. Xiao, “A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding,” Mater. Des. 89, 785–790 (2016).
[Crossref]

J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
[Crossref]

Appl. Phys. Lett. (2)

A. Kaplan, “Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence,” Appl. Phys. Lett. 101(15), 151605 (2012).
[Crossref]

M. Chen, Y. Wang, G. Yu, D. Lan, and Z. Zheng, “In situ optical observations of keyhole dynamics during laser drilling,” Appl. Phys. Lett. 103(19), 194102 (2013).
[Crossref]

Appl. Surf. Sci. (1)

A. Kaplan, “Fresnel absorption of 1 um- and 10 um-laser beams at the keyhole wall during laser beam welding: comparison between smooth and wavy surfaces,” Appl. Surf. Sci. 258(8), 3354–3363 (2012).
[Crossref]

J. Appl. Phys. (2)

R. Fabbro and K. Chouf, “‘Keyhole modeling during laser welding,” J. Appl. Phys. 87(9), 4075–4083 (2000).
[Crossref]

R. S. Matti, T. Ilar, and A. Kaplan, “Analysis of laser remote fusion cutting based on a mathematical model,” J. Appl. Phys. 114(23), 233107 (2012).
[Crossref]

J. Laser Appl. (2)

M. Sommer, J. Weberpals, S. Muller, P. Berger, and T. Graf, “Advantages of laser beam oscillation for remote welding of aluminum closely above the deep-penetration welding threshold,” J. Laser Appl. 29(1), 012001 (2017).
[Crossref]

K. Hirano and R. Fabbro, “Possible explanations for different surface quality in laser cutting with 1 and 10 um beams,” J. Laser Appl. 24(1), 012006 (2012).
[Crossref]

J. Mater. Process. Technol. (1)

Y. Kawahito, N. Matsumoto, Y. Abe, and S. Katayama, “Relationship of laser absorption to keyhole behavior in high power fiber laser welding of stainless steel and aluminum alloy,” J. Mater. Process. Technol. 211(10), 1563–1568 (2011).
[Crossref]

J. Phys. D Appl. Phys. (9)

R. Fabbro, S. Slimani, I. Doudet, F. Coste, and F. Briand, “Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for Nd–Yag CW laser welding,” J. Phys. D Appl. Phys. 39(2), 394–400 (2006).
[Crossref]

X. Chen and H. Wang, “A calculation model for the evaporation recoil pressure in laser material processing,” J. Phys. D Appl. Phys. 34(17), 2637–2642 (2001).
[Crossref]

M. Courtois, M. Carin, P. Le Masson, S. Gaied, and M. Balabane, “Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding,” J. Phys. D Appl. Phys. 49(15), 155503 (2016).
[Crossref]

A. Matsunawa and V. V. Semak, “The simulation of front keyhole wall dynamics during laser welding,” J. Phys. D Appl. Phys. 30(5), 798–809 (1997).
[Crossref]

M. Courtois, M. Carin, P. L. Masson, S. Gaied, and M. Balabane, “A new approach to compute multi-reflections of laser beam in a keyhole for heat transfer and fluid flow modelling in laser welding,” J. Phys. D Appl. Phys. 46(50), 505305 (2013).
[Crossref]

J. H. Cho and S. J. Na, “Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole,” J. Phys. D Appl. Phys. 39(24), 5372–5378 (2006).
[Crossref]

W. Tan, N. S. Bailey, and Y. C. Shin, “Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation,” J. Phys. D Appl. Phys. 46(5), 055501 (2013).
[Crossref]

V. V. Semak, W. D. Bragg, B. Damkroger, and S. Kempka, “Transient model for the keyhole during laser welding,” J. Phys. D Appl. Phys. 32(15), L61–L64 (1999).
[Crossref]

V. V. Semak, R. J. Steele, P. W. Fuerschbach, and B. K. Damkroger, “Role of beam absorption in plasma during laser welding,” J. Phys. D Appl. Phys. 33(10), 1179–1185 (2000).
[Crossref]

Mater. Des. (1)

J. L. Zou, S. K. Wu, W. X. Yang, Y. He, and R. S. Xiao, “A novel method for observing the micro-morphology of keyhole wall during high-power fiber laser welding,” Mater. Des. 89, 785–790 (2016).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (2)

I. Eriksson, J. Powell, and A. Kaplan, “Melt behavior on the keyhole front during high speed laser welding,” Opt. Lasers Eng. 51(6), 735–740 (2013).
[Crossref]

S. Y. Pang, X. Chen, X. Y. Shao, S. L. Gong, and J. Z. Xiao, “Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity,” Opt. Lasers Eng. 82, 28–40 (2016).
[Crossref]

Phys. Procedia (2)

M. Vänskä, F. Abt, R. Weber, A. Salminen, and T. Graf, “Effects of welding parameters onto keyhole geometry for partial penetration laser welding,” Phys. Procedia 41, 199–208 (2013).
[Crossref]

A. Heider, J. Sollinger, F. Abt, M. Boley, R. Weber, and T. Graf, “High-speed X-Ray analysis of spatter formation in laser welding of copper,” Phys. Procedia 41, 112–118 (2013).
[Crossref]

Sci. Technol. Weld. Join. (2)

Y. Kawahito, M. Mizutani, and S. Katayama, “High quality welding of stainless steel with 10 kW high power fibre laser,” Sci. Technol. Weld. Join. 14(4), 288–294 (2009).
[Crossref]

J. L. Zou, S. K. Wu, Y. He, W. X. Yang, J. J. Xu, and R. S. Xiao, “Distinct morphology of the keyhole wall during high-power fiber laser deep penetration welding,” Sci. Technol. Weld. Join. 20(8), 655–658 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 Morphology of keyhole (2000 f/s, v = 2 m/min).
Fig. 3
Fig. 3 (a) Typical continuous side morphology of keyhole (8000 f/s, v = 2 m/min), (b) Relationship between the interaction period and welding speed, (c) Typical morphology of keyhole for different welding speeds (8000 f/s).
Fig. 4
Fig. 4 (a) Morphology of the front keyhole wall, (b) Side wall morphology of the keyhole longitudinal cutting, (c) Three-dimensional schematic diagram of the keyhole and laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I m =A(α) I i I Q I v
v d = { a ρ m r l ρ s { 2 ρ m [ ( A(α) I i κ a u( T v T m ) ) v T L v σ r l ] } 1/2 } 1/2 cos(α)

Metrics