Abstract

We demonstrate numerically the ability for directionally releasing the stored ultrashort light pulse from a microcavity by means of two-pulse nonlinear interaction in a cascading Bragg grating structure. The setting is built by a chirped grating segment which is linked through a uniform segment, including a tunable microcavity located at the junction between the two components. Our simulations show that stable trapping of an ultrashort light pulse can be achieved in the setting. The stored light pulse in a microcavity can be possibly released, by nonlinearly interacting with the lateral incident control pulse. Importantly, by breaking the symmetry of potential cavity, the stably trapped light pulse can be successfully released from the microcavity to the expected direction. Owing to the induced optical nonlinearity, the released ultrashort light pulses could preserve their shapes, propagating in a form of Bragg grating solitons through the uniform component, which is in contrast to the extensively studied light pulse trappings in photonic crystal cavities which operate at the linear regime.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stopping, storing, and releasing light in quantum-well Bragg structures

Z. S. Yang, N. H. Kwong, R. Binder, and Arthur L. Smirl
J. Opt. Soc. Am. B 22(10) 2144-2156 (2005)

Tunable storage of optical pulses in a tailored Bragg-grating structure

Shenhe Fu, Yongyao Li, Yikun Liu, Jianying Zhou, and Boris A. Malomed
J. Opt. Soc. Am. B 32(4) 534-539 (2015)

Buffering and trapping ultrashort optical pulses in concatenated Bragg gratings

Shenhe Fu, Yikun Liu, Yongyao Li, Liyan Song, Juntao Li, Boris A. Malomed, and Jianying Zhou
Opt. Lett. 38(23) 5047-5050 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  2. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref] [PubMed]
  3. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
    [Crossref] [PubMed]
  4. A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81, 3647–3650 (1998).
    [Crossref]
  5. W. N. Xiao, J. Y. Zhou, and J. P. Prineas, “Storage of ultrashort optical pulses in a resonantly absorbing Bragg reflector,” Opt. Express 11, 3277–3283 (2003).
    [Crossref] [PubMed]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [Crossref] [PubMed]
  7. W. Xue, S. Sales, J. Gapmany, and J. Mork, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers,” Opt. lett. 34, 929–931 (2009).
    [Crossref] [PubMed]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301200–202, (2003).
    [Crossref] [PubMed]
  9. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
    [Crossref]
  10. O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2,” Opt. Express 21, 8821–8830 (2013).
    [Crossref] [PubMed]
  11. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
    [Crossref]
  12. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
    [Crossref]
  13. Y. A. Vlasov, M. P. Oboyle, H. F. Hamann, and S. J. Mcnab, “Active control of slow light on a chip with photonic crystals waveguides,” Nature 438, 65–69 (2005).
    [Crossref] [PubMed]
  14. J. Li, L. O’Faolain, S. A. Schulz, and T. F. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
    [Crossref]
  15. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, and T. Asano, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
    [Crossref] [PubMed]
  16. J. Upham, Y. Fujita, Y. Kawamoto, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 21, 3809–3817 (2013).
    [Crossref] [PubMed]
  17. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavites,” Nat. Photonics 1, 449–458 (2007).
    [Crossref]
  18. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989).
    [Crossref] [PubMed]
  19. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
    [Crossref] [PubMed]
  20. R. E. Slusher, B. J. Eggleton, T. A. Strasser, and C. M. de Sterke, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, 465–475 (1998).
    [Crossref] [PubMed]
  21. J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
    [Crossref]
  22. D. R. Neill, J. Atai, and B. Malomed, “Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity,” J. Opt. A 10, 085105 (2008).
    [Crossref]
  23. S. Fu, Y. Liu, Y. Li, L. Song, J. Li, B. Malomed, and J. Zhou, “Buffering and trapping ultrashort optical pulses in concatenated Bragg gratings,” Opt. Lett. 38, 5047–5050 (2013).
    [Crossref] [PubMed]
  24. L. Song, S. Fu, Y. Liu, J. Zhou, V. G. Chigrinov, and I. C. Khoo, “Direct femtosecond pulse compression with miniature-sized Bragg cholesteric liquid crystal,” Opt. Lett. 38, 5040–5042 (2013).
    [Crossref] [PubMed]
  25. S. Fu, Y. Li, Y. Liu, J. Zhou, and B. Malomed, “Tunable storage of optical pulses in a tailored Bragg-grating structure,” J. Opt. Soc. Am. B 32, 534–539 (2015).
    [Crossref]
  26. Y Liu, Y. Wu, C. Chen, J. Zhou, T. Lin, and I. C. Khoo, “Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals,” Opt. Express 24, 10458–10465 (2016).
    [Crossref] [PubMed]
  27. Z. Deng, H. Lin, H. Li, S. Fu, Y. Liu, Y. Xiang, and Y. Li, “Femtosecond soliton diode on heterojunction Bragggrating structure,” Appl. Phys. Lett. 109, 121101 (2016).
    [Crossref]
  28. H. Li, Z. Deng, J. Huang, S. Fu, and Y. Li, “Slow-light all-optical soliton diode based on tailored Bragg-grating structure,” Opt. Lett. 40, 2572–2575 (2015).
    [Crossref] [PubMed]
  29. L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993).
    [Crossref]
  30. C. M. de Sterke and J. E. Sipe, “Gap solitons,” Prog. Opt. 33, 203–260 (1994).
    [Crossref]
  31. B. J. Eggleton and C. M. de Sterke, “Bragg solitons in the nonlinear Schrödinger limit: experiment and theory,” J. Opt. Soc. Am. B 16, 587–599 (1999).
    [Crossref]
  32. I. V. Kabakova, B. Corcoran, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton, “All-optical self-switching in optimized phase-shifted fiber Bragg grating,” Opt. Express 17, 5083–5088 (2009).
    [Crossref] [PubMed]
  33. I. V. Kabakova, C. M. de Sterke, and B. J. Eggleton, “Bistable switching and reshaping of optical pulses in a Bragg grating cavity,” J. Opt. Soc. Am. B 27, 2648–2653 (2010).
    [Crossref]
  34. W. C. K. Mak, B. Malomed, and P. L. Chu, “Interaction of a soliton with a local defect in a fiber Bragg grating,” J. Opt. Soc. Am. B 20, 725–735 (2003).
    [Crossref]
  35. Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–915 (1989).
    [Crossref]
  36. N. M. Litchinitser and B. J. Eggleton, “Interaction of Bragg solitons in fiber gratings,” J. Opt. Soc. Am. B 16, 18–23 (1999).
    [Crossref]
  37. J. Atai, “Interaction of Bragg grating solitons in a cubic-quintic medium,” J. Opt. B 6, S117–S181 (2004).
    [Crossref]
  38. J. Zhou, H. Shao, J. Zhao, X. Yu, and K. S. Wong, “Storage and release of femtosecond laser pulses in a resonant photonic crystal,” Opt. lett. 30, 1560–1562 (2005).
    [Crossref] [PubMed]
  39. S. Dasanayaka and J. Atai, “Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium,” Phys. Rev. E 84, 026613 (2011).
    [Crossref]
  40. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
    [Crossref] [PubMed]
  41. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
    [Crossref]

2016 (2)

Y Liu, Y. Wu, C. Chen, J. Zhou, T. Lin, and I. C. Khoo, “Ultrafast pulse compression, stretching-and-recompression using cholesteric liquid crystals,” Opt. Express 24, 10458–10465 (2016).
[Crossref] [PubMed]

Z. Deng, H. Lin, H. Li, S. Fu, Y. Liu, Y. Xiang, and Y. Li, “Femtosecond soliton diode on heterojunction Bragggrating structure,” Appl. Phys. Lett. 109, 121101 (2016).
[Crossref]

2015 (2)

2013 (4)

2012 (2)

J. Li, L. O’Faolain, S. A. Schulz, and T. F. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[Crossref]

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[Crossref]

2011 (1)

S. Dasanayaka and J. Atai, “Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium,” Phys. Rev. E 84, 026613 (2011).
[Crossref]

2010 (1)

2009 (2)

2008 (2)

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[Crossref]

D. R. Neill, J. Atai, and B. Malomed, “Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity,” J. Opt. A 10, 085105 (2008).
[Crossref]

2007 (2)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, and T. Asano, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavites,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

2006 (1)

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

2005 (2)

Y. A. Vlasov, M. P. Oboyle, H. F. Hamann, and S. J. Mcnab, “Active control of slow light on a chip with photonic crystals waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

J. Zhou, H. Shao, J. Zhao, X. Yu, and K. S. Wong, “Storage and release of femtosecond laser pulses in a resonant photonic crystal,” Opt. lett. 30, 1560–1562 (2005).
[Crossref] [PubMed]

2004 (1)

J. Atai, “Interaction of Bragg grating solitons in a cubic-quintic medium,” J. Opt. B 6, S117–S181 (2004).
[Crossref]

2003 (5)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301200–202, (2003).
[Crossref] [PubMed]

W. N. Xiao, J. Y. Zhou, and J. P. Prineas, “Storage of ultrashort optical pulses in a resonantly absorbing Bragg reflector,” Opt. Express 11, 3277–3283 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

W. C. K. Mak, B. Malomed, and P. L. Chu, “Interaction of a soliton with a local defect in a fiber Bragg grating,” J. Opt. Soc. Am. B 20, 725–735 (2003).
[Crossref]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
[Crossref] [PubMed]

1999 (4)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

B. J. Eggleton and C. M. de Sterke, “Bragg solitons in the nonlinear Schrödinger limit: experiment and theory,” J. Opt. Soc. Am. B 16, 587–599 (1999).
[Crossref]

N. M. Litchinitser and B. J. Eggleton, “Interaction of Bragg solitons in fiber gratings,” J. Opt. Soc. Am. B 16, 18–23 (1999).
[Crossref]

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[Crossref] [PubMed]

1998 (2)

R. E. Slusher, B. J. Eggleton, T. A. Strasser, and C. M. de Sterke, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, 465–475 (1998).
[Crossref] [PubMed]

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81, 3647–3650 (1998).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

1996 (1)

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

1994 (1)

C. M. de Sterke and J. E. Sipe, “Gap solitons,” Prog. Opt. 33, 203–260 (1994).
[Crossref]

1993 (1)

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993).
[Crossref]

1989 (2)

Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–915 (1989).
[Crossref]

D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989).
[Crossref] [PubMed]

Asano, T.

J. Upham, Y. Fujita, Y. Kawamoto, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express 21, 3809–3817 (2013).
[Crossref] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, and T. Asano, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavites,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

Atai, J.

S. Dasanayaka and J. Atai, “Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium,” Phys. Rev. E 84, 026613 (2011).
[Crossref]

D. R. Neill, J. Atai, and B. Malomed, “Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity,” J. Opt. A 10, 085105 (2008).
[Crossref]

J. Atai, “Interaction of Bragg grating solitons in a cubic-quintic medium,” J. Opt. B 6, S117–S181 (2004).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301200–202, (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Bolger, J. A.

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301200–202, (2003).
[Crossref] [PubMed]

Chen, C.

Chigrinov, V. G.

Christodoulides, D. N.

D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989).
[Crossref] [PubMed]

Chu, P. L.

Corcoran, B.

Dasanayaka, S.

S. Dasanayaka and J. Atai, “Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium,” Phys. Rev. E 84, 026613 (2011).
[Crossref]

de Sterke, C. M.

Deng, Z.

Z. Deng, H. Lin, H. Li, S. Fu, Y. Liu, Y. Xiang, and Y. Li, “Femtosecond soliton diode on heterojunction Bragggrating structure,” Appl. Phys. Lett. 109, 121101 (2016).
[Crossref]

H. Li, Z. Deng, J. Huang, S. Fu, and Y. Li, “Slow-light all-optical soliton diode based on tailored Bragg-grating structure,” Opt. Lett. 40, 2572–2575 (2015).
[Crossref] [PubMed]

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Eggleton, B. J.

Fu, S.

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavites,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

Fujita, Y.

Gapmany, J.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. P. Oboyle, H. F. Hamann, and S. J. Mcnab, “Active control of slow light on a chip with photonic crystals waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Herrera, O. D.

Huang, J.

Joseph, R. I.

D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989).
[Crossref] [PubMed]

Kabakova, I. V.

Kawamoto, Y.

Khoo, I. C.

Kieu, K.

Kivshar, Y. S.

Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–915 (1989).
[Crossref]

Kozhekin, A. E.

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81, 3647–3650 (1998).
[Crossref]

Krauss, T. F.

J. Li, L. O’Faolain, S. A. Schulz, and T. F. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[Crossref]

Krug, P. A.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

Kurizki, G.

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81, 3647–3650 (1998).
[Crossref]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301200–202, (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Li, H.

Z. Deng, H. Lin, H. Li, S. Fu, Y. Liu, Y. Xiang, and Y. Li, “Femtosecond soliton diode on heterojunction Bragggrating structure,” Appl. Phys. Lett. 109, 121101 (2016).
[Crossref]

H. Li, Z. Deng, J. Huang, S. Fu, and Y. Li, “Slow-light all-optical soliton diode based on tailored Bragg-grating structure,” Opt. Lett. 40, 2572–2575 (2015).
[Crossref] [PubMed]

Li, J.

S. Fu, Y. Liu, Y. Li, L. Song, J. Li, B. Malomed, and J. Zhou, “Buffering and trapping ultrashort optical pulses in concatenated Bragg gratings,” Opt. Lett. 38, 5047–5050 (2013).
[Crossref] [PubMed]

J. Li, L. O’Faolain, S. A. Schulz, and T. F. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[Crossref]

Li, Y.

Lin, H.

Z. Deng, H. Lin, H. Li, S. Fu, Y. Liu, Y. Xiang, and Y. Li, “Femtosecond soliton diode on heterojunction Bragggrating structure,” Appl. Phys. Lett. 109, 121101 (2016).
[Crossref]

Lin, T.

Litchinitser, N. M.

Littler, I. C. M.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Liu, Y

Liu, Y.

Mak, W. C. K.

Malomed, B.

Malomed, B. A.

Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–915 (1989).
[Crossref]

Mcnab, S. J.

Y. A. Vlasov, M. P. Oboyle, H. F. Hamann, and S. J. Mcnab, “Active control of slow light on a chip with photonic crystals waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Mok, J. T.

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Mork, J.

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, and T. Asano, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

Neill, D. R.

D. R. Neill, J. Atai, and B. Malomed, “Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity,” J. Opt. A 10, 085105 (2008).
[Crossref]

Noda, S.

Norwood, R. A.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
[Crossref] [PubMed]

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[Crossref]

O’Faolain, L.

J. Li, L. O’Faolain, S. A. Schulz, and T. F. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[Crossref]

Oboyle, M. P.

Y. A. Vlasov, M. P. Oboyle, H. F. Hamann, and S. J. Mcnab, “Active control of slow light on a chip with photonic crystals waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Peyghambarian, N.

Poladian, L.

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993).
[Crossref]

Prineas, J. P.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

Sales, S.

Schneebeli, L.

Schulz, S. A.

J. Li, L. O’Faolain, S. A. Schulz, and T. F. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[Crossref]

Segev, M.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[Crossref] [PubMed]

Shao, H.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
[Crossref] [PubMed]

Sipe, J. E.

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

C. M. de Sterke and J. E. Sipe, “Gap solitons,” Prog. Opt. 33, 203–260 (1994).
[Crossref]

Slusher, R. E.

R. E. Slusher, B. J. Eggleton, T. A. Strasser, and C. M. de Sterke, “Nonlinear pulse reflections from chirped fiber gratings,” Opt. Express 3, 465–475 (1998).
[Crossref] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

Song, B. S.

Song, L.

Stegeman, G. I.

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[Crossref] [PubMed]

Strasser, T. A.

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, and T. Asano, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
[Crossref] [PubMed]

Tanaka, Y.

Thévenaz, L.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[Crossref]

Upham, J.

Vlasov, Y. A.

Y. A. Vlasov, M. P. Oboyle, H. F. Hamann, and S. J. Mcnab, “Active control of slow light on a chip with photonic crystals waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[Crossref]

Wong, K. S.

Wu, Y.

Xiang, Y.

Z. Deng, H. Lin, H. Li, S. Fu, Y. Liu, Y. Xiang, and Y. Li, “Femtosecond soliton diode on heterojunction Bragggrating structure,” Appl. Phys. Lett. 109, 121101 (2016).
[Crossref]

Xiao, W. N.

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[Crossref]

Xue, W.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
[Crossref] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
[Crossref] [PubMed]

Yu, X.

Zhao, J.

Zhou, J.

Zhou, J. Y.

Appl. Phys. Lett. (2)

Z. Deng, H. Lin, H. Li, S. Fu, Y. Liu, Y. Xiang, and Y. Li, “Femtosecond soliton diode on heterojunction Bragggrating structure,” Appl. Phys. Lett. 109, 121101 (2016).
[Crossref]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett. 82, 2954–2956 (2003).
[Crossref]

J. Opt. A (1)

D. R. Neill, J. Atai, and B. Malomed, “Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity,” J. Opt. A 10, 085105 (2008).
[Crossref]

J. Opt. B (1)

J. Atai, “Interaction of Bragg grating solitons in a cubic-quintic medium,” J. Opt. B 6, S117–S181 (2004).
[Crossref]

J. Opt. Soc. Am. B (5)

Laser Photon. Rev. (1)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[Crossref]

Nat. Mater. (1)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, and T. Asano, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavites,” Nat. Photonics 1, 449–458 (2007).
[Crossref]

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008).
[Crossref]

Nat. Phys. (1)

J. T. Mok, C. M. de Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006).
[Crossref]

Nature (3)

Y. A. Vlasov, M. P. Oboyle, H. F. Hamann, and S. J. Mcnab, “Active control of slow light on a chip with photonic crystals waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref] [PubMed]

Opt. Express (6)

Opt. lett. (2)

Photon. Nanostr. Fundam. Appl. (1)

J. Li, L. O’Faolain, S. A. Schulz, and T. F. Krauss, “Low loss propagation in slow light photonic crystal waveguides at group indices up to 60,” Photon. Nanostr. Fundam. Appl. 10, 589–593 (2012).
[Crossref]

Phys. Rev. E (2)

L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E 48, 4758–4767 (1993).
[Crossref]

S. Dasanayaka and J. Atai, “Interactions of solitons in Bragg gratings with dispersive reflectivity in a cubic-quintic medium,” Phys. Rev. E 84, 026613 (2011).
[Crossref]

Phys. Rev. Lett. (5)

D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989).
[Crossref] [PubMed]

B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs,” Phys. Rev. Lett. 87, 25390 (2001).
[Crossref] [PubMed]

A. E. Kozhekin, G. Kurizki, and B. Malomed, “Standing and moving gap solitons in resonantly absorbing gratings,” Phys. Rev. Lett. 81, 3647–3650 (1998).
[Crossref]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
[Crossref]

Prog. Opt. (1)

C. M. de Sterke and J. E. Sipe, “Gap solitons,” Prog. Opt. 33, 203–260 (1994).
[Crossref]

Rev. Mod. Phys. (1)

Y. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763–915 (1989).
[Crossref]

Science (2)

G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301200–202, (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) A schematic of the system without a cavity. The setting is built by a linearly chirped Bragg grating segment (on the left-hand side), which is linked through a uniform grating segment (on the right-hand side of the setting). (b) A microcavity is introduced at the junction between the chirped and uniform Bragg grating segments. For clear illustration, the size of the cavity is magnified. (c) The setting’s effective potential which is proportional to −δc (z). The figure shows three different cases of potential curves: case 1, C1 = C2; case 2, C1 > C2; and case 3, C1 < C2.
Fig. 2
Fig. 2 Typical examples for pulse nonlinear interaction between the stored pulse and the control pulses in a symmetry microcavity (C1 = C2), with the cavity width fixed to zc = 50 μm. The stored light pulse can be released forward (a), or backward (b), or remain being trapped in the potential cavity (c), with the control pulse intensity setting as IC = 1.88 GW/cm2 (a), IC = 2.39 GW/cm2 (b), and IC = 2.72 GW/cm2 (c), respectively. In figures (a–c), the incident time of the control pulse is set as tc = 1.54 ns. (d–f) show similar results by tuning the injected time tC, with a fixed control pulse intensity IC = 2.14 GW/cm2: (d) tC = 0.5 ns; (e) tC = 0.9 ns; and (f) tC = 1.9 ns. The color bar units are GW/cm2.
Fig. 3
Fig. 3 (a) The relationship between function of status (FOS) and the control pulse intensity IC; while (b) shows the relationship between FOS and the incident time tC of the control pulse. Other parameters of the setting used here are kept the same as that shown in Fig. 2.
Fig. 4
Fig. 4 Typical examples for pulse forward releasing in an asymmetry microcavity, with Δδ = 3 cm−1 (C1 > C2). The cavity width remains unchanged. (a–c) The stored light pulse can be released forward from the cavity with different IC, and tC = 1.54 ns: (a) IC = 1.62 GW/cm2; (b) IC = 2.20 GW/cm2; and (c) IC = 2.72 GW/cm2. (d–f) Successful pulse forward releasing from the cavity can be also achieved with different cases of injected time tC and a fixed IC = 2.07 GW/cm2: (d) tC = 0.7 ns; (e) tC = 1.2 ns; and (f) tC = 2.1 ns. The color bar units are GW/cm2.
Fig. 5
Fig. 5 (a) The relationship between FOS and the control pulse intensity IC; while (b) shows the relationship between FOS and the incident time tC of the control pulse. Other related parameters about the setting are kept the same as that shown in Fig. 4.
Fig. 6
Fig. 6 (a) The propagating group velocity VG of the released pulse from cavity, as a function of the control pulse intensity IC; while (b) the propagating group velocity VG of the released pulse, as a function of tC. Here VG is a ratio of the speed c of light in vacuum. The parameters used here for simulations are kept the same with that shown in Fig. 4.
Fig. 7
Fig. 7 Examples for pulse backward releasing from an asymmetry microcavity, with Δδ = −2 cm−1 (C1 < C2), and ε = 0.06. The cavity width remains unchanged. (a, b) The stored light pulse can be released backward from the cavity with different IC, and tC = 1.54 ns: (a) IC = 1.23 GW/cm2; (b) IC = 2.26 GW/cm2. (d, e) Successful pulse backward releasing from the cavity can also be achieved with different cases of injected time tC and a fixed IC = 1.62 GW/cm2: (d) tC = 0.8 ns; and (e) tC = 1.2 ns. (c, f) The relationship between FOS and (c) IC, and (f) tC. The color bar units of figures (a, b, d and e) are GW/cm2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n ( z ) = { n 0 [ 1 + 2 Δ n cos ( 2 π z ( 1 + C 1 z ) / Λ 0 ) ] 0 z L c n 0 [ 1 + 2 Δ n cos ( 2 π z ( 1 + C 2 L c ) / Λ 0 ) ] L c z L ,
i E + z + i 1 v g E + t + δ ( z ) E + + κ E + γ ( | E + | 2 + 2 | E | 2 ) E + = 0 ,
i E z + i 1 v g E t + δ ( z ) E + κ E + + γ ( | E | 2 + 2 | E + | 2 ) E = 0 ,
δ ( z ) = { δ 0 2 π C 1 z / Λ 0 0 z L c δ 0 2 π C 2 L c / Λ 0 L c z L ,
Δ δ = 2 π L c ( C 1 C 2 ) / Λ 0 .
δ c ( z ) = δ ( z ) × { 1 + ε sech [ ( z L c ) 2 / z c 2 ] } ,
FOS ( I C , t C ) = { 1 , 0 , 1 .

Metrics