Abstract

Excitation of collective plasmonic modes and their effect on optical behavior are experimentally and theoretically studied in 1D arrays of gold nanostrips in comparison with continuous gold films with periodically modulated profile. In strips, the angular dependence of the reflectivity demonstrates a peak at the resonance condition as opposed to a dip observed in continuous sine wave gratings. In addition, an extremely narrow feature in the reflection is observed in strips and tentatively ascribed to the bright Wood-Rayleigh anomaly. Theoretical calculations based on the combined transfer-matrix coupled-wave analysis and coordinate transformation method are shown to fit the experimental angular and spectral behavior of the plasmonic resonances. The effects are also discussed in terms of a simple equivalent circuit model.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-sensitive plasmonic sensing based on gold nanostrip arrays

T. Ronurpraful, N. Jerop, and N. Noginova
Opt. Lett. 44(17) 4199-4202 (2019)

Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects

Andrey G. Nikitin, Andrei V. Kabashin, and Hervé Dallaporta
Opt. Express 20(25) 27941-27952 (2012)

Narrowband plasmonic excitation on gold hole-array nanostructures observed using spectroscopic ellipsometer

G. X. Li, Z. L. Wang, S. M. Chen, and K. W. Cheah
Opt. Express 19(7) 6348-6353 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. S. V. Jenkins, T. J. Muldoon, and J. Chen, “Plasmonic nanostructures for biomedical and sensing applications,” in Metallic Nanostructures, Y. Xiong, X. Lu, eds. (Springer, 2015).
  3. S. K. Cushing and N. Wu, “Progress and perspectives of plasmon-enhanced solar energy conversion,” J. Phys. Chem. Lett. 7(4), 666–675 (2016).
    [Crossref] [PubMed]
  4. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
    [Crossref]
  5. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
    [Crossref] [PubMed]
  6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988), Introduction.
  7. S. Maier, (2007), Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. A. C. R. Pipino and G. C. Schatz, “Surface-profile dependence of photon-plasmon-polariton coupling at a corrugated silver surface,” J. Opt. Soc. Am. B 11(10), 2036–2045 (1994).
    [Crossref]
  9. R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on SPP resonances recorded in different diffracted orders,” J. Mod. Opt. 46, 2157–2186 (1999).
    [Crossref]
  10. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasrnon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
    [Crossref]
  11. R. Marani, M. Grande, V. Petruzzelli, and A. D’Orazio, “Plasmonic bandgaps in 1D arrays of slits on metal layers excited by out-of-plane sources,” Int. J. Opt. 2012, 146396 (2012).
    [Crossref]
  12. J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
    [Crossref]
  13. A. Hajiaboli, M. Kahrizi, and V.-V. Truong, “Optical behavior of thick gold and silver films with periodic circular nanohole arrays,” J. Phys. D Appl. Phys. 45(48), 485105 (2012).
    [Crossref]
  14. J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express 15(26), 18119–18129 (2007).
    [Crossref] [PubMed]
  15. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17(4), 2334–2340 (2009).
    [Crossref] [PubMed]
  16. B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
    [Crossref]
  17. B. Thackray, V. G. Kravets, F. Schedin, R. Jalil, and A. N. Grigorenko, “Resistive coupling of localized plasmon resonances in metallic nanostripes through a graphene layer,” J. Opt. 15(11), 114002 (2013).
    [Crossref]
  18. W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
    [Crossref]
  19. H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
    [Crossref]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  21. He-Ne lasers specifications, https://www.thorlabs.com .
  22. J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11(4), 235–241 (1980).
    [Crossref]
  23. D. Keene and M. Durach, “Hyperbolic resonances of metasurface cavities,” Opt. Express 23(14), 18577–18588 (2015).
    [Crossref] [PubMed]
  24. J. Jung, T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Theoretical analysis and experimental demonstration of resonant light scattering from metal nanostrips on quartz,” J. Opt. Soc. Am. B 26(1), 121–124 (2009).
    [Crossref]
  25. N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
    [Crossref]
  26. C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “The reflectivity,” in Principles of Microwave Circuits (IET, 1948).

2016 (2)

S. K. Cushing and N. Wu, “Progress and perspectives of plasmon-enhanced solar energy conversion,” J. Phys. Chem. Lett. 7(4), 666–675 (2016).
[Crossref] [PubMed]

N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
[Crossref]

2015 (1)

2014 (1)

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
[Crossref]

2013 (1)

B. Thackray, V. G. Kravets, F. Schedin, R. Jalil, and A. N. Grigorenko, “Resistive coupling of localized plasmon resonances in metallic nanostripes through a graphene layer,” J. Opt. 15(11), 114002 (2013).
[Crossref]

2012 (3)

A. Hajiaboli, M. Kahrizi, and V.-V. Truong, “Optical behavior of thick gold and silver films with periodic circular nanohole arrays,” J. Phys. D Appl. Phys. 45(48), 485105 (2012).
[Crossref]

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

R. Marani, M. Grande, V. Petruzzelli, and A. D’Orazio, “Plasmonic bandgaps in 1D arrays of slits on metal layers excited by out-of-plane sources,” Int. J. Opt. 2012, 146396 (2012).
[Crossref]

2010 (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

2009 (3)

2007 (1)

2005 (2)

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

2003 (1)

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

1999 (1)

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on SPP resonances recorded in different diffracted orders,” J. Mod. Opt. 46, 2157–2186 (1999).
[Crossref]

1994 (1)

1982 (1)

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasrnon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[Crossref]

1980 (1)

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11(4), 235–241 (1980).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aguirre, C. M.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Auton, G.

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Beermann, J.

Boltasseva, A.

Bozhevolnyi, S. I.

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brueck, S. R. J.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chandezon, J.

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11(4), 235–241 (1980).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cui, S.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Cushing, S. K.

S. K. Cushing and N. Wu, “Progress and perspectives of plasmon-enhanced solar energy conversion,” J. Phys. Chem. Lett. 7(4), 666–675 (2016).
[Crossref] [PubMed]

D’Orazio, A.

R. Marani, M. Grande, V. Petruzzelli, and A. D’Orazio, “Plasmonic bandgaps in 1D arrays of slits on metal layers excited by out-of-plane sources,” Int. J. Opt. 2012, 146396 (2012).
[Crossref]

Durach, M.

N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
[Crossref]

D. Keene and M. Durach, “Hyperbolic resonances of metasurface cavities,” Opt. Express 23(14), 18577–18588 (2015).
[Crossref] [PubMed]

Fan, W.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Gao, H.

Giessen, H.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Gippius, N. A.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Grande, M.

R. Marani, M. Grande, V. Petruzzelli, and A. D’Orazio, “Plasmonic bandgaps in 1D arrays of slits on metal layers excited by out-of-plane sources,” Int. J. Opt. 2012, 146396 (2012).
[Crossref]

Gray, S. K.

Grigorenko, A. N.

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
[Crossref]

B. Thackray, V. G. Kravets, F. Schedin, R. Jalil, and A. N. Grigorenko, “Resistive coupling of localized plasmon resonances in metallic nanostripes through a graphene layer,” J. Opt. 15(11), 114002 (2013).
[Crossref]

Guo, H. C.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Hajiaboli, A.

A. Hajiaboli, M. Kahrizi, and V.-V. Truong, “Optical behavior of thick gold and silver films with periodic circular nanohole arrays,” J. Phys. D Appl. Phys. 45(48), 485105 (2012).
[Crossref]

Halas, N. J.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Henzie, J.

Hibbins, A. P.

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on SPP resonances recorded in different diffracted orders,” J. Mod. Opt. 46, 2157–2186 (1999).
[Crossref]

Hu, E. L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Hussain, R.

N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
[Crossref]

Jalil, R.

B. Thackray, V. G. Kravets, F. Schedin, R. Jalil, and A. N. Grigorenko, “Resistive coupling of localized plasmon resonances in metallic nanostripes through a graphene layer,” J. Opt. 15(11), 114002 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Jung, J.

Kahrizi, M.

A. Hajiaboli, M. Kahrizi, and V.-V. Truong, “Optical behavior of thick gold and silver films with periodic circular nanohole arrays,” J. Phys. D Appl. Phys. 45(48), 485105 (2012).
[Crossref]

Keene, D.

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Kravets, V. G.

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
[Crossref]

B. Thackray, V. G. Kravets, F. Schedin, R. Jalil, and A. N. Grigorenko, “Resistive coupling of localized plasmon resonances in metallic nanostripes through a graphene layer,” J. Opt. 15(11), 114002 (2013).
[Crossref]

Lee, A.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Lee, M. H.

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

LePain, M.

N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
[Crossref]

Liu, T.-L.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Malloy, K. J.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Marani, R.

R. Marani, M. Grande, V. Petruzzelli, and A. D’Orazio, “Plasmonic bandgaps in 1D arrays of slits on metal layers excited by out-of-plane sources,” Int. J. Opt. 2012, 146396 (2012).
[Crossref]

Mashhadi, S.

N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
[Crossref]

Maystre, D.

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11(4), 235–241 (1980).
[Crossref]

McMahon, J. M.

Moran, C. E.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Nau, D.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Noginova, N.

N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
[Crossref]

Odom, T. W.

Petruzzelli, V.

R. Marani, M. Grande, V. Petruzzelli, and A. D’Orazio, “Plasmonic bandgaps in 1D arrays of slits on metal layers excited by out-of-plane sources,” Int. J. Opt. 2012, 146396 (2012).
[Crossref]

Pipino, A. C. R.

Radke, A.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Raoult, G.

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11(4), 235–241 (1980).
[Crossref]

Rono, V.

N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
[Crossref]

Russell, K. J.

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Sambles, J. R.

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on SPP resonances recorded in different diffracted orders,” J. Mod. Opt. 46, 2157–2186 (1999).
[Crossref]

Sanda, P. N.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasrnon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[Crossref]

Schatz, G. C.

Schedin, F.

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
[Crossref]

B. Thackray, V. G. Kravets, F. Schedin, R. Jalil, and A. N. Grigorenko, “Resistive coupling of localized plasmon resonances in metallic nanostripes through a graphene layer,” J. Opt. 15(11), 114002 (2013).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sheng, P.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasrnon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[Crossref]

Søndergaard, T.

Steele, J. M.

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

Stepleman, R. S.

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasrnon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[Crossref]

Stodolka, J.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Thackray, B.

B. Thackray, V. G. Kravets, F. Schedin, R. Jalil, and A. N. Grigorenko, “Resistive coupling of localized plasmon resonances in metallic nanostripes through a graphene layer,” J. Opt. 15(11), 114002 (2013).
[Crossref]

Thackray, B. D.

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
[Crossref]

Thomas, P. A.

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
[Crossref]

Tikhodeev, S. G.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Truong, V.-V.

A. Hajiaboli, M. Kahrizi, and V.-V. Truong, “Optical behavior of thick gold and silver films with periodic circular nanohole arrays,” J. Phys. D Appl. Phys. 45(48), 485105 (2012).
[Crossref]

Watts, R. A.

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on SPP resonances recorded in different diffracted orders,” J. Mod. Opt. 46, 2157–2186 (1999).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Wu, N.

S. K. Cushing and N. Wu, “Progress and perspectives of plasmon-enhanced solar energy conversion,” J. Phys. Chem. Lett. 7(4), 666–675 (2016).
[Crossref] [PubMed]

Yang, X. L.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Zhang, S.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Zhang, X. P.

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

ACS Photonics (1)

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photonics 1(11), 1116–1126 (2014).
[Crossref]

Appl. Phys. B (1)

H. C. Guo, D. Nau, A. Radke, X. P. Zhang, J. Stodolka, X. L. Yang, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Large-area metallic photonic crystal fabrication with interference lithography and dry etching,” Appl. Phys. B 81(2-3), 271–275 (2005).
[Crossref]

Int. J. Opt. (1)

R. Marani, M. Grande, V. Petruzzelli, and A. D’Orazio, “Plasmonic bandgaps in 1D arrays of slits on metal layers excited by out-of-plane sources,” Int. J. Opt. 2012, 146396 (2012).
[Crossref]

J. Mod. Opt. (1)

R. A. Watts, A. P. Hibbins, and J. R. Sambles, “The influence of grating profile on SPP resonances recorded in different diffracted orders,” J. Mod. Opt. 46, 2157–2186 (1999).
[Crossref]

J. Opt. (2)

B. Thackray, V. G. Kravets, F. Schedin, R. Jalil, and A. N. Grigorenko, “Resistive coupling of localized plasmon resonances in metallic nanostripes through a graphene layer,” J. Opt. 15(11), 114002 (2013).
[Crossref]

J. Chandezon, G. Raoult, and D. Maystre, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11(4), 235–241 (1980).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Lett. (1)

S. K. Cushing and N. Wu, “Progress and perspectives of plasmon-enhanced solar energy conversion,” J. Phys. Chem. Lett. 7(4), 666–675 (2016).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. Hajiaboli, M. Kahrizi, and V.-V. Truong, “Optical behavior of thick gold and silver films with periodic circular nanohole arrays,” J. Phys. D Appl. Phys. 45(48), 485105 (2012).
[Crossref]

J. Vac. Sci. Technol. B (1)

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. B 23(6), 2700–2704 (2005).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

New J. Phys. (1)

N. Noginova, M. LePain, V. Rono, S. Mashhadi, R. Hussain, and M. Durach, “Plasmonic pressure in profile-modulated and rough surfaces,” New J. Phys. 18(9), 093036 (2016).
[Crossref]

Opt. Express (3)

Phys. Rev. B (3)

J. M. Steele, C. E. Moran, A. Lee, C. M. Aguirre, and N. J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B 68(20), 205103 (2003).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square-wave gratings: Application to diffraction and surface-plasrnon calculations,” Phys. Rev. B 26(6), 2907–2916 (1982).
[Crossref]

Phys. Rev. Lett. (1)

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[Crossref] [PubMed]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988), Introduction.

S. Maier, (2007), Plasmonics: Fundamentals and Applications (Springer, 2007).

S. V. Jenkins, T. J. Muldoon, and J. Chen, “Plasmonic nanostructures for biomedical and sensing applications,” in Metallic Nanostructures, Y. Xiong, X. Lu, eds. (Springer, 2015).

He-Ne lasers specifications, https://www.thorlabs.com .

C. G. Montgomery, R. H. Dicke, and E. M. Purcell, “The reflectivity,” in Principles of Microwave Circuits (IET, 1948).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of (a) strips array, (b) sine-wave grating, (c) SEM image of the strips array.
Fig. 2
Fig. 2 (a) Setup for angular reflectivity measurement; Reflectivity vs angle of incidence in (b) gratings with dg = 463 nm (red) and 350 nm (blue), and (c) strips; (d) Narrow feature in the reflectivity in more detail: experiment (points), fitting with Lorentzian line with 2 δ=0.03° (solid trace).
Fig. 3
Fig. 3 (a) Schematic of the setup in spectral measurements; total reflection spectra for (b) gratings and (c) strips; (d) Q-factor and (e) dispersion relationship for the grating and strips as indicated. Solid curve is the theoretical prediction for a flat gold-air interface.
Fig. 4
Fig. 4 (a) and (b) Reflectivity in gratings: (a) R as the function of incidence angle and photon frequency at 40 nm depth modulation; (b) spectral profiles normalized to that in gold at various modulation depths (curves are shifted vertically). (c) and (d) Reflectivity in strips: (c) R as the function of θ   and ω at hs = 100 nm; (d) spectral profiles of R at different strip heights, (e), and (f) snap shot of magnetic fields at the resonance conditions indicated with arrows.
Fig. 5
Fig. 5 (a) Equivalent circuit; (b) spectral profiles calculated at Q = 90, R2 = 0, and various M2/L1R0 = 0.0015 n2, where n = 1, 2, 3, 4 as indicated; (c) and (d) calculations at Q = 40, M2/L1R0 = 0.0375 and R2/R0 = 0, 0.05, 0.3, 0.5 and 1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k spp k 0 =ξ= ε m ε d ε m + ε d ,
k spp =nG+ k x ,
sin θ spp =  λ d  ξ,
ω c ε d =| k 0  sin θG |, 
| Γ | 2 = | Z 0 Z Z 0 +Z | 2
Z=iω L o + ω M 1 2 L 1 i ω 2 ω 0 2 ω 2 + iω ω 0 Q + R 2 ,

Metrics