Abstract

Plasmonic focusing was investigated in concentric rings with a central pillar under linearly polarized illumination with a specific incident angle. When changing the incident angle of linearly polarized beam between 6 and 15 degree away from the normal direction, the focal spot size can keep a steady value of 37 nm, smaller than the focal spot with the radially polarized beam at the same excited condition, 45 nm. Combining this with the high-speed near-field photolithography technology, we demonstrated a plasmonic lithography with 16.85 nm linewidth on both organic and inorganic photo-resists in large scale at scanning speeds up to 11.3 m/s. This inclined linearly polarized illumination is easy to realize in a prototype of near-field photolithography system, and it opens a new cost effective approach towards the next generation lithography for nano-manufacturing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency plasmonic probe design for parallel near-field optics applications

Guanghao Rui, Weibin Chen, and Qiwen Zhan
Opt. Express 19(6) 5187-5195 (2011)

Plasmonic focusing in spiral nanostructures under linearly polarized illumination

Jie Li, Chaojie Yang, Huabo Zhao, Feng Lin, and Xing Zhu
Opt. Express 22(14) 16686-16693 (2014)

Sub-one-third wavelength focusing of surface plasmon polaritons excited by linearly polarized light

Jiayuan Wang and Jiasen Zhang
Opt. Express 26(11) 14626-14635 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Okazaki, “Resolution Limits of Optical Lithography,” J. Vac. Sci. Technol. B 9(6), 2829–2833 (1991).
    [Crossref]
  2. N. R. Farrar and T. Yen, “The Future of Optical Lithography,” in Photonic Applications Systems Technologies Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PThC3.
  3. Z. W. Xu, F. Fang, and G. Zeng, Focused Ion Beam Nanofabrication Technology Handbook of Manufacturing Engineering and Technology (Springer, 2015).
  4. D. Z. Pan, L. Liebmann, B. Yu, X. Q. Xu, and Y. B. Lin, “Pushing Multiple Patterning in Sub-10nm: Are We Ready?”, in Design Automation Conference (ACM, 2015), paper 197.
    [Crossref]
  5. Y. W. Chang, R. G. Liu, and S. Y. Fang, “ EUV and e-beam manufacturability: challenges and solutions” in Design Automation Conference (ACM, 2015), paper 198.
    [Crossref]
  6. H. Tsubaki, W. Nihashi, T. Tsuchihashi, K. Yamamoto, and T. Goto, “Negative-tone imaging with EUV exposure toward 13 nm hp”, in SPIE Advanced Lithography Conference (2016), paper 9776.
    [Crossref]
  7. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  8. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
    [Crossref]
  9. Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
    [Crossref] [PubMed]
  10. H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83(18), 3665–3667 (2003).
    [Crossref]
  11. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
    [Crossref] [PubMed]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  13. S. A. Maier, Plasmonics: Fundamentals and Applications. Springer, New York (2007).
  14. J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
    [Crossref] [PubMed]
  15. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [Crossref] [PubMed]
  16. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).
  17. J. Ji, Y. Meng, and J. Zhang, “Optimization of structure parameters of concentric plasmonic lens for 355 nm radially polarized illumination,” J. Nanophotonics 9(1), 093794 (2015).
    [Crossref]
  18. A. Farhang, N. Bigler, and O. J. Martin, “Coupling of multiple LSP and SPP resonances: interactions between an elongated nanoparticle and a thin metallic film,” Opt. Lett. 38(22), 4758–4761 (2013).
    [Crossref] [PubMed]
  19. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
    [Crossref] [PubMed]
  20. G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).
  21. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
    [Crossref] [PubMed]
  22. R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
    [Crossref]
  23. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
    [Crossref] [PubMed]
  24. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
    [Crossref] [PubMed]
  25. J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger andmultiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
    [Crossref]
  26. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
    [Crossref]
  27. L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
    [Crossref]
  28. W. A. C. Bauer, C. Neuber, C. K. Ober, and H. W. Schmidt, “Combinatorial optimization of a molecular glass photoresist system for electron beam lithography,” Adv. Mater. 23(45), 5404–5408 (2011).
    [Crossref] [PubMed]
  29. G. Yang, L. Chen, .J. Xu, S. Wang, and S. Li, Molecular glass photoresists of taking tetraphenyl furan, tetraphenyl pyrrole, tetraphenylthiophene and quinary phenylpyridine as cores China Patent Specification 201210070713.6. 2012–03–16.
  30. F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
    [Crossref] [PubMed]
  31. J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
    [Crossref]

2016 (2)

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger andmultiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

2015 (1)

J. Ji, Y. Meng, and J. Zhang, “Optimization of structure parameters of concentric plasmonic lens for 355 nm radially polarized illumination,” J. Nanophotonics 9(1), 093794 (2015).
[Crossref]

2014 (3)

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

2013 (1)

2011 (2)

W. A. C. Bauer, C. Neuber, C. K. Ober, and H. W. Schmidt, “Combinatorial optimization of a molecular glass photoresist system for electron beam lithography,” Adv. Mater. 23(45), 5404–5408 (2011).
[Crossref] [PubMed]

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

2010 (3)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[Crossref] [PubMed]

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).

2009 (3)

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express 17(2), 924–932 (2009).
[Crossref] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

2008 (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

2007 (1)

F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
[Crossref] [PubMed]

2006 (2)

J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
[Crossref]

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

2005 (1)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

2004 (1)

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83(18), 3665–3667 (2003).
[Crossref]

1991 (1)

S. Okazaki, “Resolution Limits of Optical Lithography,” J. Vac. Sci. Technol. B 9(6), 2829–2833 (1991).
[Crossref]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

Aizpurua, J.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83(18), 3665–3667 (2003).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bauer, W. A. C.

W. A. C. Bauer, C. Neuber, C. K. Ober, and H. W. Schmidt, “Combinatorial optimization of a molecular glass photoresist system for electron beam lithography,” Adv. Mater. 23(45), 5404–5408 (2011).
[Crossref] [PubMed]

Berkovitch, N.

Bigler, N.

Bogy, D. B.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Brown, D. B.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chang, S. H.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Chang, S. W.

J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
[Crossref]

Chen, L.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Chen, M.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Chen, W.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

Dai, J.

J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83(18), 3665–3667 (2003).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Farhang, A.

Felix, N.

J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
[Crossref]

García de Abajo, F. J.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

Gibbons, F.

F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
[Crossref] [PubMed]

Ginzburg, P.

Goto, T.

H. Tsubaki, W. Nihashi, T. Tsuchihashi, K. Yamamoto, and T. Goto, “Negative-tone imaging with EUV exposure toward 13 nm hp”, in SPIE Advanced Lithography Conference (2016), paper 9776.
[Crossref]

Gray, S. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Hamad, A.

J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
[Crossref]

Hillenbrand, R.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

Hohenau, A.

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83(18), 3665–3667 (2003).
[Crossref]

Hong, M.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Hu, Y.

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

Ji, J.

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger andmultiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

J. Ji, Y. Meng, and J. Zhang, “Optimization of structure parameters of concentric plasmonic lens for 355 nm radially polarized illumination,” J. Nanophotonics 9(1), 093794 (2015).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Käll, M.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Krenn, J. R.

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83(18), 3665–3667 (2003).
[Crossref]

Leitner, A.

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83(18), 3665–3667 (2003).
[Crossref]

Lerman, G. M.

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Levy, U.

Li, S.

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Li, X.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Liu, H.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Lu, Y.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).

Luo, X.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Man, Z.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Manickam, M.

F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
[Crossref] [PubMed]

Martin, O. J.

Meng, Y.

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger andmultiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

J. Ji, Y. Meng, and J. Zhang, “Optimization of structure parameters of concentric plasmonic lens for 355 nm radially polarized illumination,” J. Nanophotonics 9(1), 093794 (2015).
[Crossref]

Min, C.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Ming, H.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

Neuber, C.

W. A. C. Bauer, C. Neuber, C. K. Ober, and H. W. Schmidt, “Combinatorial optimization of a molecular glass photoresist system for electron beam lithography,” Adv. Mater. 23(45), 5404–5408 (2011).
[Crossref] [PubMed]

Nihashi, W.

H. Tsubaki, W. Nihashi, T. Tsuchihashi, K. Yamamoto, and T. Goto, “Negative-tone imaging with EUV exposure toward 13 nm hp”, in SPIE Advanced Lithography Conference (2016), paper 9776.
[Crossref]

Normatov, A.

Ober, C. K.

W. A. C. Bauer, C. Neuber, C. K. Ober, and H. W. Schmidt, “Combinatorial optimization of a molecular glass photoresist system for electron beam lithography,” Adv. Mater. 23(45), 5404–5408 (2011).
[Crossref] [PubMed]

J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
[Crossref]

Okazaki, S.

S. Okazaki, “Resolution Limits of Optical Lithography,” J. Vac. Sci. Technol. B 9(6), 2829–2833 (1991).
[Crossref]

Orenstein, M.

Pakizeh, T.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

Palmer, R. E.

F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
[Crossref] [PubMed]

Pan, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Park, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Peng, R.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Preece, J. A.

F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
[Crossref] [PubMed]

Rho, J.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

Robinson, A. P. G.

F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
[Crossref] [PubMed]

Rui, G.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).

Rydh, A.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Schatz, G. C.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Schmidt, H. W.

W. A. C. Bauer, C. Neuber, C. K. Ober, and H. W. Schmidt, “Combinatorial optimization of a molecular glass photoresist system for electron beam lithography,” Adv. Mater. 23(45), 5404–5408 (2011).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sepulveda, B.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

Shen, J.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Shi, W.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, C.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Sun, L.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger andmultiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Tai, R.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Tsubaki, H.

H. Tsubaki, W. Nihashi, T. Tsuchihashi, K. Yamamoto, and T. Goto, “Negative-tone imaging with EUV exposure toward 13 nm hp”, in SPIE Advanced Lithography Conference (2016), paper 9776.
[Crossref]

Tsuchihashi, T.

H. Tsubaki, W. Nihashi, T. Tsuchihashi, K. Yamamoto, and T. Goto, “Negative-tone imaging with EUV exposure toward 13 nm hp”, in SPIE Advanced Lithography Conference (2016), paper 9776.
[Crossref]

Ulin-Avila, E.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

Urbach, H. P.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Wang, C.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Wang, J.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger andmultiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Wang, L.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Wang, P.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).

Wang, S.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Wang, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wu, X.

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger andmultiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Wu, Y.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Xiong, S.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

Xiong, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

Xu, J.

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Yamamoto, K.

H. Tsubaki, W. Nihashi, T. Tsuchihashi, K. Yamamoto, and T. Goto, “Negative-tone imaging with EUV exposure toward 13 nm hp”, in SPIE Advanced Lithography Conference (2016), paper 9776.
[Crossref]

Yanai, A.

Yang, D.

J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
[Crossref]

Yang, G.

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Yang, S.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

Yuan, G.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Yuan, H.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Yuan, X.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Zaid, H. M.

F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
[Crossref] [PubMed]

Zeng, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

Zhan, Q.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

Zhang, J.

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

J. Ji, Y. Meng, and J. Zhang, “Optimization of structure parameters of concentric plasmonic lens for 355 nm radially polarized illumination,” J. Nanophotonics 9(1), 093794 (2015).
[Crossref]

Zhang, X.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Zhao, H.

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Zhao, Z.

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

Zhu, S.

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

W. A. C. Bauer, C. Neuber, C. K. Ober, and H. W. Schmidt, “Combinatorial optimization of a molecular glass photoresist system for electron beam lithography,” Adv. Mater. 23(45), 5404–5408 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S. H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, “Surface plasmons at single nanoholes in Au films,” Appl. Phys. Lett. 85(3), 467–469 (2004).
[Crossref]

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83(18), 3665–3667 (2003).
[Crossref]

Chem. Mater. (1)

J. Dai, S. W. Chang, A. Hamad, D. Yang, N. Felix, and C. K. Ober, “Molecular Glass Resists for High-Resolution Patterning,” Chem. Mater. 18(15), 3404–3411 (2006).
[Crossref]

J. Nanophotonics (1)

J. Ji, Y. Meng, and J. Zhang, “Optimization of structure parameters of concentric plasmonic lens for 355 nm radially polarized illumination,” J. Nanophotonics 9(1), 093794 (2015).
[Crossref]

J. Opt. (1)

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 220–221 (2010).

J. Phys. Chem. C (1)

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. García de Abajo, “Nanohole Plasmons in Optically Thin Gold Films,” J. Phys. Chem. C 111(3), 1207–1212 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Okazaki, “Resolution Limits of Optical Lithography,” J. Vac. Sci. Technol. B 9(6), 2829–2833 (1991).
[Crossref]

Nano Lett. (4)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005).
[Crossref] [PubMed]

Y. Zhang, J. Wang, J. Shen, Z. Man, W. Shi, C. Min, G. Yuan, S. Zhu, H. P. Urbach, and X. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single au nanowire on a metallic surface,” Nano Lett. 14(11), 6430–6436 (2014).
[Crossref] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[Crossref] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett. 9(5), 2139–2143 (2009).
[Crossref] [PubMed]

Nanotechnology (1)

J. Ji, Y. Hu, Y. Meng, J. Zhang, J. Xu, S. Li, and G. Yang, “The steady flying of a plasmonic flying head over a photoresist-coated surface in a near-field photolithography system,” Nanotechnology 27(18), 185303 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Plasmonics (2)

R. Peng, X. Li, Z. Zhao, C. Wang, M. Hong, and X. Luo, “Super-Resolution Long-Depth Focusing by Radially Polarized Light Irradiation Through Plasmonic Lens in Optical Meso-field,” Plasmonics 9(1), 55–60 (2014).
[Crossref]

J. Ji, Y. Meng, L. Sun, X. Wu, and J. Wang, “Strong focusing of plasmonic lens with nanofinger andmultiple concentric rings under radially polarized illumination,” Plasmonics 11(1), 23–27 (2016).
[Crossref]

Sci. China Chem. (1)

L. Chen, J. Xu, H. Yuan, S. Yang, L. Wang, Y. Wu, H. Zhao, M. Chen, H. Liu, S. Li, R. Tai, S. Wang, and G. Yang, “Outgassing analysis of molecular glass photoresists under EUV irradiation,” Sci. China Chem. 57(12), 1746–1750 (2014).
[Crossref]

Sci. Rep. (1)

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1(11), 116–120 (2011).

Small (1)

F. Gibbons, H. M. Zaid, M. Manickam, J. A. Preece, R. E. Palmer, and A. P. G. Robinson, “A chemically amplified fullerene-derivative molecular electron-beam resist,” Small 3(12), 2076–2080 (2007).
[Crossref] [PubMed]

Other (7)

G. Yang, L. Chen, .J. Xu, S. Wang, and S. Li, Molecular glass photoresists of taking tetraphenyl furan, tetraphenyl pyrrole, tetraphenylthiophene and quinary phenylpyridine as cores China Patent Specification 201210070713.6. 2012–03–16.

S. A. Maier, Plasmonics: Fundamentals and Applications. Springer, New York (2007).

N. R. Farrar and T. Yen, “The Future of Optical Lithography,” in Photonic Applications Systems Technologies Conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper PThC3.

Z. W. Xu, F. Fang, and G. Zeng, Focused Ion Beam Nanofabrication Technology Handbook of Manufacturing Engineering and Technology (Springer, 2015).

D. Z. Pan, L. Liebmann, B. Yu, X. Q. Xu, and Y. B. Lin, “Pushing Multiple Patterning in Sub-10nm: Are We Ready?”, in Design Automation Conference (ACM, 2015), paper 197.
[Crossref]

Y. W. Chang, R. G. Liu, and S. Y. Fang, “ EUV and e-beam manufacturability: challenges and solutions” in Design Automation Conference (ACM, 2015), paper 198.
[Crossref]

H. Tsubaki, W. Nihashi, T. Tsuchihashi, K. Yamamoto, and T. Goto, “Negative-tone imaging with EUV exposure toward 13 nm hp”, in SPIE Advanced Lithography Conference (2016), paper 9776.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Near-field photolithography schematic. (a) Schematic shows the plasmonic lens focusing 355nm laser beam onto the rotating substrate to concentrate SPPs into sub-50 nm spots, which is only produced in the near field of plasmonic lens. Hence, a distance control system is needed to maintain the gap between the substrate and the lens. (b) Cross-section of the plasmonic head flying 30 nm above the rotating substrate which is coated with photoresist.
Fig. 2
Fig. 2 The structure of the concentric rings with a central pillar (a), and the plasmonic lens is illuminated by linearly polarized beam with incident angle (b).
Fig. 3
Fig. 3 The focusing effect illustrated by radially polarized beam and linearly polarized beam without or with incident angle under TM mode. Figure (a) and (b) are the effect excited by radially polarized beam. Figure (c) and (d) are the effect excited by linearly polarized beam without incident angle. Figure (e) and (f) are the incident angle is equal to 1°. Figure (g) and (h) are the incident angle is equal to 8°.
Fig. 4
Fig. 4 The focal size simulation result with continuous variation of incident angle.
Fig. 5
Fig. 5 The focusing effect illustrated by linearly polarized beam with incident angle under TE mode. (a)-(d) correspond to incident angle are 1°, 3°, 5°, and 8°respectively.
Fig. 6
Fig. 6 High-throughput near-field photolithography using plasmonic lens arrays.
Fig. 7
Fig. 7 Plasmonic lens array was fabricated on the bottom surface of plasmonic flying head.
Fig. 8
Fig. 8 Effect of sensitivity difference on photographic properties.
Fig. 9
Fig. 9 The patterning results of near-field photolithography. (a) SEM image of a pattern with 16.85nm linewidth on the TeOx inorganic photoresist by continuous-wave laser. (b) SEM image of a pattern with 50.71 nm half pitch resolution on the TeOx inorganic photoresist by150 MHz pulsed laser. (c) AFM image of a pattern with 28 nm linewidth on the FPT-8Boc organic photoresist by continuous-wave laser. (d) AFM image of a pattern with 75 nm half pitch resolution on the FPT-8Boc organic photoresist by150 MHz pulsed laser. (e) AFM image of patterning of the large arrays with 37nm linewidth and 1μm gap.

Metrics