Abstract

We report the fabrication of quantum dot infrared photodetectors (QDIPs) on silicon (Si) substrates by means of metal wafer bonding and an epitaxial lift-off process. According to the photoluminescence (PL) and x-ray diffraction measurements, the QDIP layer was transferred onto the Si substrate without degradation of the crystal quality or residual strain. In addition, from the PL results, we found that an optical cavity was formed because Pt/Au of the bonding material was served as the back mirror and the facet of the GaAs/air was served as the front mirror. The device performance capabilities were directly compared and peak responsivity was enhanced by nearly twofold from 0.038 A/W to 0.067 A/W.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
InGaP/GaAs heterojunction phototransistors transferred to a Si substrate by metal wafer bonding combined with epitaxial lift-off

Min-Su Park, Dae-Myeong Geum, Ji Hoon Kyhm, Jin Dong Song, SangHyeon Kim, and Won Jun Choi
Opt. Express 23(21) 26888-26894 (2015)

InGaAs/InP quantum well infrared photodetector integrated on Si substrate by Mo/Au metal-assisted wafer bonding

Min-Su Park, Mohsen Rezaei, Iman Nia, Robert Brown, Simone Bianconi, Chee Leong Tan, and Hooman Mohseni
Opt. Mater. Express 8(2) 413-419 (2018)

Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer

Katsuaki Tanabe, Denis Guimard, Damien Bordel, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 18(10) 10604-10608 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. Pal and E. Towe, “Characteristics of high-operating-temperature InAs/GaAs quantum-dot infrared detectors,” Appl. Phys. Lett. 88(15), 153109 (2006).
    [Crossref]
  2. S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
    [Crossref]
  3. D. Yelin, D. Oron, S. Thiberge, E. Moses, and Y. Silberberg, “Multiphoton plasmon-resonance microscopy,” Opt. Express 11(12), 1385–1391 (2003).
    [Crossref] [PubMed]
  4. S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
    [Crossref]
  5. Y. Huang, C. Lin, Z. H. Ye, and R. J. Ding, “Reflow flip-chip bonding technology for infrared detectors,” J. Micromech. Microeng. 25(8), 085009 (2015).
    [Crossref]
  6. J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
    [Crossref]
  7. M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
    [Crossref]
  8. Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
    [Crossref]
  9. A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
    [Crossref]
  10. K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
    [Crossref] [PubMed]
  11. J. R. Bickford, D. Qiao, P. K. L. Yu, and S. S. Lau, “Electrical characterization of GaAs metal bonded to Si,” Appl. Phys. Lett. 89(1), 012106 (2006).
    [Crossref]
  12. D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
    [Crossref] [PubMed]
  13. F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 112, 233–240 (2014).
    [Crossref]
  14. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996), Chap 6.
  15. J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
    [Crossref]
  16. C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
    [Crossref]
  17. T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
    [Crossref]
  18. Y. H. Kim, K. Y. Ban, and C. B. Honsberg, “Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells,” Appl. Phys. Lett. 106(22), 222104 (2015).
    [Crossref]
  19. S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
    [Crossref]

2017 (1)

S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

2016 (2)

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

2015 (3)

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. Huang, C. Lin, Z. H. Ye, and R. J. Ding, “Reflow flip-chip bonding technology for infrared detectors,” J. Micromech. Microeng. 25(8), 085009 (2015).
[Crossref]

Y. H. Kim, K. Y. Ban, and C. B. Honsberg, “Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells,” Appl. Phys. Lett. 106(22), 222104 (2015).
[Crossref]

2014 (2)

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 112, 233–240 (2014).
[Crossref]

2013 (2)

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
[Crossref]

2012 (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

2010 (1)

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
[Crossref]

2006 (2)

D. Pal and E. Towe, “Characteristics of high-operating-temperature InAs/GaAs quantum-dot infrared detectors,” Appl. Phys. Lett. 88(15), 153109 (2006).
[Crossref]

J. R. Bickford, D. Qiao, P. K. L. Yu, and S. S. Lau, “Electrical characterization of GaAs metal bonded to Si,” Appl. Phys. Lett. 89(1), 012106 (2006).
[Crossref]

2004 (1)

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

2003 (1)

2002 (1)

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

1997 (1)

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Arakawa, Y.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

Asano, T.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
[Crossref]

Ban, K. Y.

Y. H. Kim, K. Y. Ban, and C. B. Honsberg, “Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells,” Appl. Phys. Lett. 106(22), 222104 (2015).
[Crossref]

Bandara, S.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

Benamara, M.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Bhattacharya, P.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

Bickford, J. R.

J. R. Bickford, D. Qiao, P. K. L. Yu, and S. S. Lau, “Electrical characterization of GaAs metal bonded to Si,” Appl. Phys. Lett. 89(1), 012106 (2006).
[Crossref]

Campbell, J. C.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
[Crossref]

Cardimona, D. A.

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

Chakrabarti, S.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

Chen, S.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Choi, W. J.

S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Dietz, N.

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Ding, R. J.

Y. Huang, C. Lin, Z. H. Ye, and R. J. Ding, “Reflow flip-chip bonding technology for infrared detectors,” J. Micromech. Microeng. 25(8), 085009 (2015).
[Crossref]

Fuchs, B.

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

Geum, D. M.

S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Gunapala, S.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

Hirose, M.

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Honsberg, C. B.

Y. H. Kim, K. Y. Ban, and C. B. Honsberg, “Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells,” Appl. Phys. Lett. 106(22), 222104 (2015).
[Crossref]

Horng, R. H.

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 112, 233–240 (2014).
[Crossref]

Hu, C.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
[Crossref]

Huang, Y.

Y. Huang, C. Lin, Z. H. Ye, and R. J. Ding, “Reflow flip-chip bonding technology for infrared detectors,” J. Micromech. Microeng. 25(8), 085009 (2015).
[Crossref]

Jain, V.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Jang, Q.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Kao, Y. C.

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 112, 233–240 (2014).
[Crossref]

Kennerly, S. W.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

Kim, C. Z.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Kim, H. S.

S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

Kim, J. O.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Kim, S.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Kim, S. H.

S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Kim, Y. H.

Y. H. Kim, K. Y. Ban, and C. B. Honsberg, “Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells,” Appl. Phys. Lett. 106(22), 222104 (2015).
[Crossref]

Krishna, S.

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

Krishna, S. S.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Lao, Y. F.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Lau, S. S.

J. R. Bickford, D. Qiao, P. K. L. Yu, and S. S. Lau, “Electrical characterization of GaAs metal bonded to Si,” Appl. Phys. Lett. 89(1), 012106 (2006).
[Crossref]

Lee, E. H.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Lim, J. Y.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Lin, C.

Y. Huang, C. Lin, Z. H. Ye, and R. J. Ding, “Reflow flip-chip bonding technology for infrared detectors,” J. Micromech. Microeng. 25(8), 085009 (2015).
[Crossref]

Lin, S. D.

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
[Crossref]

Liu, H.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Liu, H. C.

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Liu, M.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
[Crossref]

Madhukar, A.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
[Crossref]

Maeda, J. I.

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Maidaniuk, Y.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Masselink, W. T.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Mazur, Y. I.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Miyazaki, S.

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Morath, C.

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

Moses, E.

Oron, D.

Ou, S. L.

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 112, 233–240 (2014).
[Crossref]

Pal, D.

D. Pal and E. Towe, “Characteristics of high-operating-temperature InAs/GaAs quantum-dot infrared detectors,” Appl. Phys. Lett. 88(15), 153109 (2006).
[Crossref]

Park, M. S.

S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Perera, A. G. U.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Pettersson, H.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Qiao, D.

J. R. Bickford, D. Qiao, P. K. L. Yu, and S. S. Lau, “Electrical characterization of GaAs metal bonded to Si,” Appl. Phys. Lett. 89(1), 012106 (2006).
[Crossref]

Rafol, S. B.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

Raghavan, S.

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

Rotella, P.

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

Sablon, K. A.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Salamo, G. J.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Sandy, T. S.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Sasaki, Y.

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Semtsiv, M. P.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Shibahara, K.

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Silberberg, Y.

Song, J. D.

S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Stiff-Roberts, A. D.

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

Stintz, A.

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

Tanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

Tang, M.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Thiberge, S.

Tian, Z. B.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Towe, E.

D. Pal and E. Towe, “Characteristics of high-operating-temperature InAs/GaAs quantum-dot infrared detectors,” Appl. Phys. Lett. 88(15), 153109 (2006).
[Crossref]

Wang, C. C.

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
[Crossref]

Wang, Q.

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

Wang, T. M.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

Wolde, S.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

Wu, F. L.

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 112, 233–240 (2014).
[Crossref]

Wu, J.

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Yang, H. D.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Ye, Z. H.

Y. Huang, C. Lin, Z. H. Ye, and R. J. Ding, “Reflow flip-chip bonding technology for infrared detectors,” J. Micromech. Microeng. 25(8), 085009 (2015).
[Crossref]

Yelin, D.

Yokoyama, S.

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Yoon, E.

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Yu, P. K. L.

J. R. Bickford, D. Qiao, P. K. L. Yu, and S. S. Lau, “Electrical characterization of GaAs metal bonded to Si,” Appl. Phys. Lett. 89(1), 012106 (2006).
[Crossref]

Zhang, Y.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
[Crossref]

Zhang, Y. H.

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

ACS Photonics (1)

J. Wu, Q. Jang, S. Chen, M. Tang, Y. I. Mazur, Y. Maidaniuk, M. Benamara, M. P. Semtsiv, W. T. Masselink, K. A. Sablon, G. J. Salamo, and H. Liu, “Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates,” ACS Photonics 3(5), 749–753 (2016).
[Crossref]

Appl. Phys. Lett. (6)

Y. F. Lao, S. Wolde, A. G. U. Perera, Y. H. Zhang, T. M. Wang, H. C. Liu, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency,” Appl. Phys. Lett. 103(24), 241115 (2013).
[Crossref]

D. Pal and E. Towe, “Characteristics of high-operating-temperature InAs/GaAs quantum-dot infrared detectors,” Appl. Phys. Lett. 88(15), 153109 (2006).
[Crossref]

S. Raghavan, P. Rotella, A. Stintz, B. Fuchs, S. Krishna, C. Morath, D. A. Cardimona, and S. W. Kennerly, “High-responsivity, normal-incidence long-wave infrared (λ ∼ 7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector,” Appl. Phys. Lett. 81(8), 1369–1371 (2002).
[Crossref]

J. R. Bickford, D. Qiao, P. K. L. Yu, and S. S. Lau, “Electrical characterization of GaAs metal bonded to Si,” Appl. Phys. Lett. 89(1), 012106 (2006).
[Crossref]

Y. H. Kim, K. Y. Ban, and C. B. Honsberg, “Multi-stacked InAs/GaAs quantum dots grown with different growth modes for quantum dot solar cells,” Appl. Phys. Lett. 106(22), 222104 (2015).
[Crossref]

S. H. Kim, D. M. Geum, M. S. Park, H. S. Kim, J. D. Song, and W. J. Choi, “Fabrication of high-quality GaAs-based photodetector arrays on Si,” Appl. Phys. Lett. 110(15), 153505 (2017).
[Crossref]

Electron. Lett. (1)

M. S. Park, V. Jain, E. H. Lee, S. H. Kim, H. Pettersson, Q. Wang, J. D. Song, and W. J. Choi, “InAs/GaAs p-i-p quantum dots-in-a-well infrared photodetectors operating beyond 200 K,” Electron. Lett. 50(23), 1731–1733 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetectors in mid-infrared wavelength regime (3-5 μm),” IEEE J. Quantum Electron. 46(10), 1484–1494 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Chakrabarti, A. D. Stiff-Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, “High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity,” IEEE Photonics Technol. Lett. 16(5), 1361–1363 (2004).
[Crossref]

Infrared Phys. Technol. (1)

A. G. U. Perera, Y. F. Lao, S. Wolde, Y. H. Zhang, T. M. Wang, J. O. Kim, T. S. Sandy, Z. B. Tian, and S. S. Krishna, “InAs/GaAs quantum dot and dots-in-well infrared photodetectors based on p-type valence-band intersublevel transitions,” Infrared Phys. Technol. 70, 15–19 (2015).
[Crossref]

J. Appl. Phys. (1)

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113(21), 213108 (2013).
[Crossref]

J. Micromech. Microeng. (1)

Y. Huang, C. Lin, Z. H. Ye, and R. J. Ding, “Reflow flip-chip bonding technology for infrared detectors,” J. Micromech. Microeng. 25(8), 085009 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. I. Maeda, Y. Sasaki, N. Dietz, K. Shibahara, S. Yokoyama, S. Miyazaki, and M. Hirose, “High-rate GaAs epitaxial lift-off technique for optoelectronic integrated circuits,” Jpn. J. Appl. Phys. 36(3), 1554–1557 (1997).
[Crossref]

Opt. Express (1)

Sci. Rep. (2)

K. Tanabe, K. Watanabe, and Y. Arakawa, “III-V/Si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref] [PubMed]

D. M. Geum, M. S. Park, J. Y. Lim, H. D. Yang, J. D. Song, C. Z. Kim, E. Yoon, S. Kim, and W. J. Choi, “Ultra-high-throughput production of III-V/Si wafer for electronic and photonic applications,” Sci. Rep. 6(1), 20610 (2016).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

F. L. Wu, S. L. Ou, R. H. Horng, and Y. C. Kao, “Improvement in separation rate of epitaxial lift-off by hydrophilic solvent for GaAs solar cell applications,” Sol. Energy Mater. Sol. Cells 112, 233–240 (2014).
[Crossref]

Other (1)

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996), Chap 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The fabrication flow of the QDIP on Si substrate using MWB and ELO
Fig. 2
Fig. 2 The PL spectra of the QDIP before and after MWB and ELO process. Also drawn are the calculated transmission, as well as the calculated emission spectra
Fig. 3
Fig. 3 The HRXRD near the GaAs (004) reflection peak of the QDIP before and after MWB and ELO
Fig. 4
Fig. 4 The spectral responsivity of the as-grown QDIP and the B-QDIP. The inset of Fig. 4 depicts the dark J-V curves measured at 77 K.
Fig. 5
Fig. 5 The peak detectivity as a function of bias of the as-grown QDIP and the B-QDIP.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D * =  R i A d Δf i n

Metrics