Abstract

We report on the leap of Yb-InnoSlab laser technology towards high pulse energies of 54mJ combined with high average power exceeding half a kW. The system features pulse durations of 1.5 picoseconds (ps) at 10kHz repetition rate with excellent beam properties (M2 of 1.1) combined with superb power and pointing stability in the sub-% range. It provides different output ports to facilitate optical synchronization for pumping parametric amplifiers. Tunable, femtosecond seed pulses are derived directly from the ps Yb pump pulses. We investigate the long term stability of this ps driven white light continuum and demonstrate 100-fold pulse compression down to 10fs duration. Ultra-broadband IR spectra centred at 2µm wavelength are subsequently generated via difference frequency generation of selected white light components.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picosecond cryogenic Yb:YAG laser

Kyung-Han Hong, Shu-Wei Huang, Jeffrey Moses, Xing Fu, Chien-Jen Lai, Giovanni Cirmi, Alexander Sell, Eduardo Granados, Phillip Keathley, and Franz X. Kärtner
Opt. Express 19(16) 15538-15548 (2011)

500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser

Michele Puppin, Yunpei Deng, Oliver Prochnow, Jan Ahrens, Thomas Binhammer, Uwe Morgner, Marcel Krenz, Martin Wolf, and Ralph Ernstorfer
Opt. Express 23(2) 1491-1497 (2015)

53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate

Rimantas Budriūnas, Tomas Stanislauskas, Jonas Adamonis, Aidas Aleknavičius, Gediminas Veitas, Darius Gadonas, Stanislovas Balickas, Andrejus Michailovas, and Arūnas Varanavičius
Opt. Express 25(5) 5797-5806 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
    [Crossref]
  2. A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
    [Crossref]
  3. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
    [Crossref]
  4. I. Will and G. Klemz, “Generation of flat-top picosecond pulses by coherent pulse stacking in a multicrystal birefringent filter,” Opt. Express 16(19), 14922–14937 (2008).
    [Crossref] [PubMed]
  5. B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
    [Crossref]
  6. http://cymer.com/euv-light-sources/
  7. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  8. Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
    [Crossref] [PubMed]
  9. B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
    [Crossref] [PubMed]
  10. S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
    [Crossref]
  11. S.-W. Huang, J. Moses, and F. X. Kärtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012).
    [Crossref] [PubMed]
  12. A. Thai, M. Hemmer, P. K. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrier-envelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett. 36(19), 3918–3920 (2011).
    [Crossref] [PubMed]
  13. N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier,” Opt. Lett. 37(20), 4182–4184 (2012).
    [Crossref] [PubMed]
  14. J. Novák, J. T. Green, T. Metzger, T. Mazanec, B. Himmel, M. Horáček, Z. Hubka, R. Boge, R. Antipenkov, F. Batysta, J. A. Naylon, P. Bakule, and B. Rus, “Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm,” Opt. Express 24(6), 5728–5733 (2016).
    [Crossref] [PubMed]
  15. S. Klingebiel, M. Schultze, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, M. Gorjan, D. H. Sutter, K. Michel, H. G. Barros, Z. Major, F. Krausz, and T. Metzger, “220mJ ultrafast thin-disk regenerative amplifier”, in CLEO:2015, OSA Technical Digest (Online) (Optical Society of America, 2015), p. STu4O.2.
  16. J. P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
    [Crossref] [PubMed]
  17. E. Kaksis, G. Andriukaitis, T. Floery, A. Pugzlys, and A. Baltuska, “30-mJ 200-fs cw-pumped Yb:CaF2 regenerative amplifier”, in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), p. STh4J.6.
  18. C.-L. Chang, P. Krogen, K.-H. Hong, L. E. Zapata, J. Moses, A.-L. Calendron, H. Liang, C.-J. Lai, G. J. Stein, P. D. Keathley, G. Laurent, and F. X. Kärtner, “High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier,” Opt. Express 23(8), 10132–10144 (2015).
    [Crossref] [PubMed]
  19. C. Baumgarten, M. Pedicone, H. Bravo, H. Wang, L. Yin, C. S. Menoni, J. J. Rocca, and B. A. Reagan, “1 J, 0.5 kHz repetition rate picosecond laser,” Opt. Lett. 41(14), 3339–3342 (2016).
    [Crossref] [PubMed]
  20. M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
    [Crossref] [PubMed]
  21. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [Crossref] [PubMed]
  22. M. Kellert, M. Pergament, K. Kruse, J. Wang, G. Palmer, G. Priebe, L. Wissmann, U. Wegner, M. Emons, J. Morgenweg, T. Mans, and M. J. Lederer, “5kW burst-mode femtosecond amplifier system for the European XFEL pump-probe laser development”, in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (OSA, 2015), paper CA_3_5.
  23. A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
    [Crossref] [PubMed]
  24. P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17(15), 12230–12245 (2009).
    [Crossref] [PubMed]
  25. M. Rumpel, M. Moeller, C. Moormann, T. Graf, and M. A. Ahmed, “Broadband pulse compression gratings with measured 99.7% diffraction efficiency,” Opt. Lett. 39(2), 323–326 (2014).
    [Crossref] [PubMed]
  26. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
    [Crossref]
  27. A.-L. Calendron, H. Çankaya, G. Cirmi, and F. X. Kärtner, “White-light generation with sub-ps pulses,” Opt. Express 23(11), 13866–13879 (2015).
    [Crossref] [PubMed]
  28. J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
    [Crossref]
  29. R. Riedel, A. Stephanides, M. J. Prandolini, B. Gronloh, B. Jungbluth, T. Mans, and F. Tavella, “Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers,” Opt. Lett. 39(6), 1422–1424 (2014).
    [Crossref] [PubMed]
  30. G. Ernotte, P. Lassonde, F. Légaré, and B. E. Schmidt, “Frequency domain tailoring for intra-pulse frequency mixing,” Opt. Express 24(21), 24225–24231 (2016).
    [Crossref] [PubMed]
  31. P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
    [Crossref]
  32. J. Rothhardt, S. Demmler, S. Hädrich, T. Peschel, J. Limpert, and A. Tünnermann, “Thermal effects in high average power optical parametric amplifiers,” Opt. Lett. 38(5), 763–765 (2013).
    [Crossref] [PubMed]

2016 (4)

2015 (5)

2014 (4)

B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
[Crossref]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

M. Rumpel, M. Moeller, C. Moormann, T. Graf, and M. A. Ahmed, “Broadband pulse compression gratings with measured 99.7% diffraction efficiency,” Opt. Lett. 39(2), 323–326 (2014).
[Crossref] [PubMed]

R. Riedel, A. Stephanides, M. J. Prandolini, B. Gronloh, B. Jungbluth, T. Mans, and F. Tavella, “Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers,” Opt. Lett. 39(6), 1422–1424 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

2011 (1)

2010 (1)

2009 (2)

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17(15), 12230–12245 (2009).
[Crossref] [PubMed]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

2008 (1)

2006 (1)

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

2005 (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

2003 (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

2002 (2)

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

1996 (1)

Ahmed, M. A.

Antipenkov, R.

Arissian, L.

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

Bakule, P.

Baltuška, A.

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Bates, P. K.

Batysta, F.

Bauer, D.

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Baumgarten, C.

C. Baumgarten, M. Pedicone, H. Bravo, H. Wang, L. Yin, C. S. Menoni, J. J. Rocca, and B. A. Reagan, “1 J, 0.5 kHz repetition rate picosecond laser,” Opt. Lett. 41(14), 3339–3342 (2016).
[Crossref] [PubMed]

B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
[Crossref]

Berrill, M.

B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
[Crossref]

Biegert, J.

Boge, R.

Boivin, M.

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Bravo, H.

Butkus, R.

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

Calendron, A.-L.

Çankaya, H.

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Chalus, O.

Chang, C.-L.

Cirmi, G.

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Demmler, S.

Du, K.

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Dubietis, A.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

Eikema, K. S. E.

S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
[Crossref]

Ernotte, G.

G. Ernotte, P. Lassonde, F. Légaré, and B. E. Schmidt, “Frequency domain tailoring for intra-pulse frequency mixing,” Opt. Express 24(21), 24225–24231 (2016).
[Crossref] [PubMed]

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

Fuji, T.

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Galinis, J.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Gillner, A.

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Graf, T.

Gražuleviciute, I.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Green, J. T.

Gronloh, B.

Hädrich, S.

Hemmer, M.

Himmel, B.

Hoffmann, D.

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Hoffmann, H. D.

Hong, K.-H.

Horácek, M.

Huang, S.-W.

Hubka, Z.

Ibrahim, H.

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Inagaki, M.

Ishii, N.

Itatani, J.

Jukna, V.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Jungbluth, B.

Kanai, T.

Kaneshima, K.

Kärtner, F. X.

Keathley, P. D.

Keblyte, E.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Kienel, M.

Killi, A.

Kitano, K.

Klemz, G.

Klenke, A.

Kobayashi, T.

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kovalenko, V. S.

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Krogen, P.

Lai, C.-J.

Larameé, A.

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

Laramée, A.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Lassonde, P.

Lassónde, P.

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

Laurent, G.

Lebrun, G.

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Légaré, F.

G. Ernotte, P. Lassonde, F. Légaré, and B. E. Schmidt, “Frequency domain tailoring for intra-pulse frequency mixing,” Opt. Express 24(21), 24225–24231 (2016).
[Crossref] [PubMed]

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Liang, H.

Limpert, J.

Loescher, A.

Mans, T.

Masuzawa, T.

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Mazanec, T.

Meijer, J.

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Menoni, C. S.

Metzger, T.

Moeller, M.

Moormann, C.

Mori, Y.

Moses, J.

Müller, M.

Nakajima, S.

Naylon, J. A.

Negel, J. P.

Novák, J.

Ostendorf, A.

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Ozaki, T.

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Pedicone, M.

Peschel, T.

Piskarskas, A. P.

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

Poitras, F.

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Poprawe, R.

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17(15), 12230–12245 (2009).
[Crossref] [PubMed]

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Prandolini, M. J.

Reagan, B. A.

C. Baumgarten, M. Pedicone, H. Bravo, H. Wang, L. Yin, C. S. Menoni, J. J. Rocca, and B. A. Reagan, “1 J, 0.5 kHz repetition rate picosecond laser,” Opt. Lett. 41(14), 3339–3342 (2016).
[Crossref] [PubMed]

B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
[Crossref]

Riedel, R.

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Rocca, J. J.

C. Baumgarten, M. Pedicone, H. Bravo, H. Wang, L. Yin, C. S. Menoni, J. J. Rocca, and B. A. Reagan, “1 J, 0.5 kHz repetition rate picosecond laser,” Opt. Lett. 41(14), 3339–3342 (2016).
[Crossref] [PubMed]

B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
[Crossref]

Rotarius, G.

Rothhardt, J.

Rumpel, M.

Rus, B.

Russbueldt, P.

Sasaki, T.

Schmidt, B. E.

G. Ernotte, P. Lassonde, F. Légaré, and B. E. Schmidt, “Frequency domain tailoring for intra-pulse frequency mixing,” Opt. Express 24(21), 24225–24231 (2016).
[Crossref] [PubMed]

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Schulz, W.

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Stein, G. J.

Stephanides, A.

Sutter, D.

Tamošauskas, G.

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Tavella, F.

Thai, A.

Thiré, N.

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Tünnermann, A.

Voss, A.

Wang, H.

Watanabe, S.

Weitenberg, J.

Wernsing, K. A.

B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
[Crossref]

Will, I.

Witte, S.

S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
[Crossref]

Woolston, M.

B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
[Crossref]

Yap, Y. K.

Yin, L.

Zapata, L. E.

Ann. Manuf. Technol. (1)

J. Meijer, K. Du, A. Gillner, D. Hoffmann, V. S. Kovalenko, T. Masuzawa, A. Ostendorf, R. Poprawe, and W. Schulz, “Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons,” Ann. Manuf. Technol. 51(2), 531–550 (2002).
[Crossref]

Appl. Phys. B (1)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

P. Lassónde, N. Thiré, L. Arissian, G. Ernotte, F. Poitras, T. Ozaki, A. Larameé, M. Boivin, H. Ibrahim, F. Légaré, and B. E. Schmidt, “High gain frequency domain optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 21(5), 8700410 (2015).
[Crossref]

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” IEEE J. Sel. Top. Quantum Electron. 18(1), 296–307 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Nat. Commun. (1)

B. E. Schmidt, N. Thiré, M. Boivin, A. Laramée, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, and F. Légaré, “Frequency domain optical parametric amplification,” Nat. Commun. 5, 3643 (2014).
[Crossref] [PubMed]

Opt. Express (7)

I. Will and G. Klemz, “Generation of flat-top picosecond pulses by coherent pulse stacking in a multicrystal birefringent filter,” Opt. Express 16(19), 14922–14937 (2008).
[Crossref] [PubMed]

P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “400W Yb:YAG Innoslab fs-amplifier,” Opt. Express 17(15), 12230–12245 (2009).
[Crossref] [PubMed]

G. Ernotte, P. Lassonde, F. Légaré, and B. E. Schmidt, “Frequency domain tailoring for intra-pulse frequency mixing,” Opt. Express 24(21), 24225–24231 (2016).
[Crossref] [PubMed]

C.-L. Chang, P. Krogen, K.-H. Hong, L. E. Zapata, J. Moses, A.-L. Calendron, H. Liang, C.-J. Lai, G. J. Stein, P. D. Keathley, G. Laurent, and F. X. Kärtner, “High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier,” Opt. Express 23(8), 10132–10144 (2015).
[Crossref] [PubMed]

A.-L. Calendron, H. Çankaya, G. Cirmi, and F. X. Kärtner, “White-light generation with sub-ps pulses,” Opt. Express 23(11), 13866–13879 (2015).
[Crossref] [PubMed]

J. P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. A. Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
[Crossref] [PubMed]

J. Novák, J. T. Green, T. Metzger, T. Mazanec, B. Himmel, M. Horáček, Z. Hubka, R. Boge, R. Antipenkov, F. Batysta, J. A. Naylon, P. Bakule, and B. Rus, “Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm,” Opt. Express 24(6), 5728–5733 (2016).
[Crossref] [PubMed]

Opt. Lett. (10)

C. Baumgarten, M. Pedicone, H. Bravo, H. Wang, L. Yin, C. S. Menoni, J. J. Rocca, and B. A. Reagan, “1 J, 0.5 kHz repetition rate picosecond laser,” Opt. Lett. 41(14), 3339–3342 (2016).
[Crossref] [PubMed]

M. Kienel, M. Müller, A. Klenke, J. Limpert, and A. Tünnermann, “12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition,” Opt. Lett. 41(14), 3343–3346 (2016).
[Crossref] [PubMed]

Y. K. Yap, M. Inagaki, S. Nakajima, Y. Mori, and T. Sasaki, “High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10,” Opt. Lett. 21(17), 1348–1350 (1996).
[Crossref] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[Crossref] [PubMed]

A. Thai, M. Hemmer, P. K. Bates, O. Chalus, and J. Biegert, “Sub-250-mrad, passively carrier-envelope-phase-stable mid-infrared OPCPA source at high repetition rate,” Opt. Lett. 36(19), 3918–3920 (2011).
[Crossref] [PubMed]

S.-W. Huang, J. Moses, and F. X. Kärtner, “Broadband noncollinear optical parametric amplification without angularly dispersed idler,” Opt. Lett. 37(14), 2796–2798 (2012).
[Crossref] [PubMed]

N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier,” Opt. Lett. 37(20), 4182–4184 (2012).
[Crossref] [PubMed]

J. Rothhardt, S. Demmler, S. Hädrich, T. Peschel, J. Limpert, and A. Tünnermann, “Thermal effects in high average power optical parametric amplifiers,” Opt. Lett. 38(5), 763–765 (2013).
[Crossref] [PubMed]

M. Rumpel, M. Moeller, C. Moormann, T. Graf, and M. A. Ahmed, “Broadband pulse compression gratings with measured 99.7% diffraction efficiency,” Opt. Lett. 39(2), 323–326 (2014).
[Crossref] [PubMed]

R. Riedel, A. Stephanides, M. J. Prandolini, B. Gronloh, B. Jungbluth, T. Mans, and F. Tavella, “Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers,” Opt. Lett. 39(6), 1422–1424 (2014).
[Crossref] [PubMed]

Phys. Rev. A (2)

B. A. Reagan, M. Berrill, K. A. Wernsing, C. Baumgarten, M. Woolston, and J. J. Rocca, “High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths,” Phys. Rev. A 89(5), 053820 (2014).
[Crossref]

J. Galinis, G. Tamošauskas, I. Gražulevičiūtė, E. Keblytė, V. Jukna, and A. Dubietis, “Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses,” Phys. Rev. A 92(3), 033857 (2015).
[Crossref]

Phys. Rev. Lett. (1)

A. Baltuška, T. Fuji, and T. Kobayashi, “Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers,” Phys. Rev. Lett. 88(13), 133901 (2002).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1–18 (2003).
[Crossref]

Other (4)

http://cymer.com/euv-light-sources/

E. Kaksis, G. Andriukaitis, T. Floery, A. Pugzlys, and A. Baltuska, “30-mJ 200-fs cw-pumped Yb:CaF2 regenerative amplifier”, in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), p. STh4J.6.

M. Kellert, M. Pergament, K. Kruse, J. Wang, G. Palmer, G. Priebe, L. Wissmann, U. Wegner, M. Emons, J. Morgenweg, T. Mans, and M. J. Lederer, “5kW burst-mode femtosecond amplifier system for the European XFEL pump-probe laser development”, in 2015 European Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (OSA, 2015), paper CA_3_5.

S. Klingebiel, M. Schultze, C. Y. Teisset, R. Bessing, M. Haefner, S. Prinz, M. Gorjan, D. H. Sutter, K. Michel, H. G. Barros, Z. Major, F. Krausz, and T. Metzger, “220mJ ultrafast thin-disk regenerative amplifier”, in CLEO:2015, OSA Technical Digest (Online) (Optical Society of America, 2015), p. STu4O.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic diagram of the Yb-InnoSlab platform providing three different exit ports at different power levels, all derived from the same oscillator pulse to minimize temporal jitter. The total optical path between exit 1 to exit 3 is only about 16m. BS: beam splitter, FBG: fiber Bragg grating, comp: compressor, Amp: amplifier.
Fig. 2
Fig. 2 Characterization of exit 3 in (a-c) and exit 1 in (d-f).(a) 1.5ps, close to transform limited pulses can be reached after compression 540W output. (b) The power stability after compression at 540W measured over 8h of operation is excellent with an RMS value of only 0.25%. (c) A round beam profile (inset) with an excellent M2 value of 1.1 is obtained. (d) 1ps, 5µJ pulses are obtained after compression on exit 1. (e) The power stability measured over 1h shows a standard deviation of 0.3%. (f) This power stability is maintained upon white light generation in YAG. It was characterized over 3h of operation. More details are given in the text.
Fig. 3
Fig. 3 WL compression and DFG. (a) Spectral parts around 700nm and 600nm are compressed to 10fs (blue curve) and 14fs (red curve), respectively, with a simple grating setup. (b) Spectral components around 620nm are mixed with light at 900nm to yield the DFG output in centered at 1.95µm.

Metrics