Abstract

We report on the development of a highly sensitive photoacoustic (PA) spectrometer based on a miniaturized all-optical detecting sensor. The sensor has a cell volume of less than 6 μL and relies on a cantilever-based acoustic transducer, which is equipped with an optical fiber interferometric readout. The spectrometer reaches a noise equivalent concentration of 15 ppb (300 ms time constant) for acetylene detection using a 23 mW excitation laser source, which corresponds to a normalized noise equivalent absorption coefficient of 7.7 × 10−10 W cm−1 Hz−1/2. The performance offered by this PA spectrometer is thus comparable to those reported for bulkier PA analyzers. Furthermore, because both the excitation and detection signals are brought to the PA cell via optical fibers, our spectrometer can be used in harsh environments, where electronic devices are prone to failure, and it is specially suitable for multiplexed remote detection applications. We believe that our study paves the way for the development of PA spectrometers that allow in-situ gas detection in space-limited circumstances.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hollow-core fiber Fabry–Perot photothermal gas sensor

Fan Yang, Yanzhen Tan, Wei Jin, Yuechuan Lin, Yun Qi, and Hoi Lut Ho
Opt. Lett. 41(13) 3025-3028 (2016)

Demonstration of a miniature all-optical photoacoustic spectrometer based on ferrule-top technology

Grzegorz Gruca, Kier Heeck, Jan Rector, and Davide Iannuzzi
Opt. Lett. 38(10) 1672-1674 (2013)

Widely-tunable mid-infrared fiber-coupled quartz-enhanced photoacoustic sensor for environmental monitoring

M. Siciliani de Cumis, S. Viciani, S. Borri, P. Patimisco, A. Sampaolo, G. Scamarcio, P. De Natale, F. D’Amato, and V. Spagnolo
Opt. Express 22(23) 28222-28231 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486–490 (2003).
    [Crossref]
  2. J. P. Waclawek, H. Moser, and B. Lendl, “Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide,” Opt. Express 24, 6559–6571 (2016).
    [Crossref] [PubMed]
  3. D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).
  4. J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
    [Crossref]
  5. A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
    [Crossref]
  6. A. Gorelik, A. Ulasevich, A. Kuz’muk, and V. Starovoitov, “A miniature prototype of a resonance photoacoustic cell for gas sensing,” Opt. Spectrosc. 115, 567–573 (2013).
    [Crossref]
  7. M. Köhring, S. Böttger, U. Willer, and W. Schade, “Temperature effects in tuning fork enhanced interferometric photoacoustic spectroscopy,” Opt. Express 21, 20911–20922 (2013).
    [Crossref] [PubMed]
  8. N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B: Lasers Opt. 94, 673–680 (2009).
    [Crossref]
  9. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Qepas spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100, 627–635 (2010).
    [Crossref]
  10. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
    [Crossref] [PubMed]
  11. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Compact portable qepas multi-gas sensor,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2011), pp. 79450R.
  12. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level sf 6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37, 4461–4463 (2012).
    [Crossref] [PubMed]
  13. A. Gorelik and V. Starovoitov, “Small-size resonant photoacoustic cell with reduced window background for laser detection of gases,” Opt. Spectrosc. 107, 830–835 (2009).
    [Crossref]
  14. A. Gorelik and V. Starovoitov, “Application of a miniaturized photoacoustic cell for high-sensitivity laser detection of ammonia in gas media,” https://arXiv:0810.0410 (2008).
  15. J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
    [Crossref]
  16. J. Huber, J. Wöllenstein, S. Kolb, A. Dehé, and F. Jost, “Miniaturized photoacoustic co 2 sensors for consumer applications,” Proc. Sens pp. 688–692 (2015).
  17. J. Huber, A. Ambs, S. Rademacher, and J. Wöllenstein, “A selective, miniaturized, low-cost detection element for a photoacoustic co2 sensor for room climate monitoring,” Procedia Eng. 87, 1168–1171 (2014).
    [Crossref]
  18. E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors 10, 1986–2002 (2010).
    [Crossref] [PubMed]
  19. R. Bauer, G. Stewart, W. Johnstone, E. Boyd, and M. Lengden, “3d-printed miniature gas cell for photoacoustic spectroscopy of trace gases,” Opt. Lett. 39, 4796–4799 (2014).
    [Crossref] [PubMed]
  20. Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38, 434–436 (2013).
    [Crossref] [PubMed]
  21. G. Gruca, K. Heeck, J. Rector, and D. Iannuzzi, “Demonstration of a miniature all-optical photoacoustic spectrometer based on ferrule-top technology,” Opt. Lett. 38, 1672–1674 (2013).
    [Crossref] [PubMed]
  22. Q. Wang, J. Wang, L. Li, and Q. Yu, “An all-optical photoacoustic spectrometer for trace gas detection,” Sens. Actuators, B 153, 214–218 (2011).
    [Crossref]
  23. Z. Wu, L. Zhai, X. He, and Q. Yu, “High-limit detection and accurate analysis of acetylene in transformer oil gases with a tunable laser-based photoacoustic spectrometer,” Optoelectronics, Instrumentation and Data Processing 50, 210–216 (2014).
    [Crossref]
  24. J. Lu, T. Ikehara, Y. Zhang, T. Mihara, and R. Maeda, “Mechanical quality factor of microcantilevers for mass sensing applications,” in “Microelectronics, MEMS, and Nanotechnology,” (International Society for Optics and Photonics, 2007), pp. 68001Y.
  25. V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vib. Spectrosc. 48, 16–21 (2008).
    [Crossref]
  26. W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
    [Crossref]
  27. Declaration of interest: MS and DI are share holders of Optics11.
  28. D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
    [Crossref]
  29. G. Gruca, S. De Man, M. Slaman, J. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Meas. Sci. Technol. 21, 094033 (2010).
    [Crossref]
  30. S. Beekmans and D. Iannuzzi, “A metrological approach for the calibration of force transducers with interferometric readout,” Surf. Topogr. Metrol. Prop. 3, 025004 (2015).
    [Crossref]
  31. H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, and D. Iannuzzi, “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).
    [Crossref] [PubMed]
  32. M. Baudelet, Laser Spectroscopy for Sensing: Fundamentals, Techniques and Applications (Elsevier, 2014).
  33. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
    [Crossref]
  34. L. L. Gordley, B. T. Marshall, and D. A. Chu, “Linepak: Algorithms for modeling spectral transmittance and radiance,” J. Quant. Spectrosc. Radiat. Transfer 52, 563–580 (1994).
    [Crossref]
  35. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
    [Crossref]
  36. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
    [Crossref]
  37. V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B: Lasers Opt. 86, 451–454 (2007).
    [Crossref]
  38. C. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 4, 603–610 (2013).
    [Crossref]
  39. M. Gondal, M. Baig, and M. Shwehdi, “Laser sensor for detection of sf/sub 6/leaks in high power insulated switchgear systems,” IEEE Trans. Dielectr. Electr. Insul. 9, 421–427 (2002).
    [Crossref]
  40. L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
    [Crossref] [PubMed]

2016 (3)

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, and D. Iannuzzi, “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).
[Crossref] [PubMed]

J. P. Waclawek, H. Moser, and B. Lendl, “Compact quantum cascade laser based quartz-enhanced photoacoustic spectroscopy sensor system for detection of carbon disulfide,” Opt. Express 24, 6559–6571 (2016).
[Crossref] [PubMed]

2015 (4)

S. Beekmans and D. Iannuzzi, “A metrological approach for the calibration of force transducers with interferometric readout,” Surf. Topogr. Metrol. Prop. 3, 025004 (2015).
[Crossref]

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

2014 (4)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref] [PubMed]

Z. Wu, L. Zhai, X. He, and Q. Yu, “High-limit detection and accurate analysis of acetylene in transformer oil gases with a tunable laser-based photoacoustic spectrometer,” Optoelectronics, Instrumentation and Data Processing 50, 210–216 (2014).
[Crossref]

J. Huber, A. Ambs, S. Rademacher, and J. Wöllenstein, “A selective, miniaturized, low-cost detection element for a photoacoustic co2 sensor for room climate monitoring,” Procedia Eng. 87, 1168–1171 (2014).
[Crossref]

R. Bauer, G. Stewart, W. Johnstone, E. Boyd, and M. Lengden, “3d-printed miniature gas cell for photoacoustic spectroscopy of trace gases,” Opt. Lett. 39, 4796–4799 (2014).
[Crossref] [PubMed]

2013 (7)

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38, 434–436 (2013).
[Crossref] [PubMed]

G. Gruca, K. Heeck, J. Rector, and D. Iannuzzi, “Demonstration of a miniature all-optical photoacoustic spectrometer based on ferrule-top technology,” Opt. Lett. 38, 1672–1674 (2013).
[Crossref] [PubMed]

M. Köhring, S. Böttger, U. Willer, and W. Schade, “Temperature effects in tuning fork enhanced interferometric photoacoustic spectroscopy,” Opt. Express 21, 20911–20922 (2013).
[Crossref] [PubMed]

C. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 4, 603–610 (2013).
[Crossref]

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

A. Gorelik, A. Ulasevich, A. Kuz’muk, and V. Starovoitov, “A miniature prototype of a resonance photoacoustic cell for gas sensing,” Opt. Spectrosc. 115, 567–573 (2013).
[Crossref]

2012 (2)

2011 (1)

Q. Wang, J. Wang, L. Li, and Q. Yu, “An all-optical photoacoustic spectrometer for trace gas detection,” Sens. Actuators, B 153, 214–218 (2011).
[Crossref]

2010 (4)

G. Gruca, S. De Man, M. Slaman, J. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Meas. Sci. Technol. 21, 094033 (2010).
[Crossref]

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Qepas spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100, 627–635 (2010).
[Crossref]

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors 10, 1986–2002 (2010).
[Crossref] [PubMed]

2009 (2)

A. Gorelik and V. Starovoitov, “Small-size resonant photoacoustic cell with reduced window background for laser detection of gases,” Opt. Spectrosc. 107, 830–835 (2009).
[Crossref]

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B: Lasers Opt. 94, 673–680 (2009).
[Crossref]

2008 (1)

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vib. Spectrosc. 48, 16–21 (2008).
[Crossref]

2007 (3)

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B: Lasers Opt. 86, 451–454 (2007).
[Crossref]

2003 (1)

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486–490 (2003).
[Crossref]

2002 (1)

M. Gondal, M. Baig, and M. Shwehdi, “Laser sensor for detection of sf/sub 6/leaks in high power insulated switchgear systems,” IEEE Trans. Dielectr. Electr. Insul. 9, 421–427 (2002).
[Crossref]

1994 (1)

L. L. Gordley, B. T. Marshall, and D. A. Chu, “Linepak: Algorithms for modeling spectral transmittance and radiance,” J. Quant. Spectrosc. Radiat. Transfer 52, 563–580 (1994).
[Crossref]

Ambs, A.

J. Huber, A. Ambs, S. Rademacher, and J. Wöllenstein, “A selective, miniaturized, low-cost detection element for a photoacoustic co2 sensor for room climate monitoring,” Procedia Eng. 87, 1168–1171 (2014).
[Crossref]

Babikov, Y.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Baig, M.

M. Gondal, M. Baig, and M. Shwehdi, “Laser sensor for detection of sf/sub 6/leaks in high power insulated switchgear systems,” IEEE Trans. Dielectr. Electr. Insul. 9, 421–427 (2002).
[Crossref]

Barbe, A.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Baudelet, M.

M. Baudelet, Laser Spectroscopy for Sensing: Fundamentals, Techniques and Applications (Elsevier, 2014).

Bauer, R.

Beekmans, S.

S. Beekmans and D. Iannuzzi, “A metrological approach for the calibration of force transducers with interferometric readout,” Surf. Topogr. Metrol. Prop. 3, 025004 (2015).
[Crossref]

Bender, J.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors 10, 1986–2002 (2010).
[Crossref] [PubMed]

Benner, D. C.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Berenschot, J.

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Bernacki, B. E.

Bernath, P. F.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Birk, M.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Bizzocchi, L.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Borri, S.

Böttger, S.

Boudon, V.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Boyd, E.

Brown, L. R.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38, 434–436 (2013).
[Crossref] [PubMed]

Chu, D. A.

L. L. Gordley, B. T. Marshall, and D. A. Chu, “Linepak: Algorithms for modeling spectral transmittance and radiance,” J. Quant. Spectrosc. Radiat. Transfer 52, 563–580 (1994).
[Crossref]

Coutard, J.-G.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Cristescu, S. M.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

De Man, S.

G. Gruca, S. De Man, M. Slaman, J. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Meas. Sci. Technol. 21, 094033 (2010).
[Crossref]

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Dehé, A.

J. Huber, J. Wöllenstein, S. Kolb, A. Dehé, and F. Jost, “Miniaturized photoacoustic co 2 sensors for consumer applications,” Proc. Sens pp. 688–692 (2015).

Dong, L.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Qepas spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100, 627–635 (2010).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Compact portable qepas multi-gas sensor,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2011), pp. 79450R.

Dumitras, D.

D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).

Dutu, D.

D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).

Elwenspoek, M.

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Firago, V.

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

Fisher, A.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors 10, 1986–2002 (2010).
[Crossref] [PubMed]

Fonsen, J.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vib. Spectrosc. 48, 16–21 (2008).
[Crossref]

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B: Lasers Opt. 86, 451–454 (2007).
[Crossref]

Gadgil, V.

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Gidon, S.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Gliére, A.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Glière, A.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

Gondal, M.

M. Gondal, M. Baig, and M. Shwehdi, “Laser sensor for detection of sf/sub 6/leaks in high power insulated switchgear systems,” IEEE Trans. Dielectr. Electr. Insul. 9, 421–427 (2002).
[Crossref]

Gordley, L. L.

L. L. Gordley, B. T. Marshall, and D. A. Chu, “Linepak: Algorithms for modeling spectral transmittance and radiance,” J. Quant. Spectrosc. Radiat. Transfer 52, 563–580 (1994).
[Crossref]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Gorelik, A.

A. Gorelik, A. Ulasevich, A. Kuz’muk, and V. Starovoitov, “A miniature prototype of a resonance photoacoustic cell for gas sensing,” Opt. Spectrosc. 115, 567–573 (2013).
[Crossref]

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

A. Gorelik and V. Starovoitov, “Small-size resonant photoacoustic cell with reduced window background for laser detection of gases,” Opt. Spectrosc. 107, 830–835 (2009).
[Crossref]

A. Gorelik and V. Starovoitov, “Application of a miniaturized photoacoustic cell for high-sensitivity laser detection of ammonia in gas media,” https://arXiv:0810.0410 (2008).

Gruca, G.

G. Gruca, K. Heeck, J. Rector, and D. Iannuzzi, “Demonstration of a miniature all-optical photoacoustic spectrometer based on ferrule-top technology,” Opt. Lett. 38, 1672–1674 (2013).
[Crossref] [PubMed]

G. Gruca, S. De Man, M. Slaman, J. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Meas. Sci. Technol. 21, 094033 (2010).
[Crossref]

Gupta, K. J.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Hall, M. A.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Harren, F. J.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

He, X.

Z. Wu, L. Zhai, X. He, and Q. Yu, “High-limit detection and accurate analysis of acetylene in transformer oil gases with a tunable laser-based photoacoustic spectrometer,” Optoelectronics, Instrumentation and Data Processing 50, 210–216 (2014).
[Crossref]

Hebelstrup, K. H.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Heeck, K.

G. Gruca, K. Heeck, J. Rector, and D. Iannuzzi, “Demonstration of a miniature all-optical photoacoustic spectrometer based on ferrule-top technology,” Opt. Lett. 38, 1672–1674 (2013).
[Crossref] [PubMed]

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Hirschmann, C.

C. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 4, 603–610 (2013).
[Crossref]

Ho, H. L.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38, 434–436 (2013).
[Crossref] [PubMed]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
[Crossref]

Holthoff, E.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors 10, 1986–2002 (2010).
[Crossref] [PubMed]

Huber, J.

J. Huber, A. Ambs, S. Rademacher, and J. Wöllenstein, “A selective, miniaturized, low-cost detection element for a photoacoustic co2 sensor for room climate monitoring,” Procedia Eng. 87, 1168–1171 (2014).
[Crossref]

J. Huber, J. Wöllenstein, S. Kolb, A. Dehé, and F. Jost, “Miniaturized photoacoustic co 2 sensors for consumer applications,” Proc. Sens pp. 688–692 (2015).

Iannuzzi, D.

H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, and D. Iannuzzi, “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).
[Crossref] [PubMed]

S. Beekmans and D. Iannuzzi, “A metrological approach for the calibration of force transducers with interferometric readout,” Surf. Topogr. Metrol. Prop. 3, 025004 (2015).
[Crossref]

G. Gruca, K. Heeck, J. Rector, and D. Iannuzzi, “Demonstration of a miniature all-optical photoacoustic spectrometer based on ferrule-top technology,” Opt. Lett. 38, 1672–1674 (2013).
[Crossref] [PubMed]

G. Gruca, S. De Man, M. Slaman, J. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Meas. Sci. Technol. 21, 094033 (2010).
[Crossref]

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Ikehara, T.

J. Lu, T. Ikehara, Y. Zhang, T. Mihara, and R. Maeda, “Mechanical quality factor of microcantilevers for mass sensing applications,” in “Microelectronics, MEMS, and Nanotechnology,” (International Society for Optics and Photonics, 2007), pp. 68001Y.

Jin, W.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

Y. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Opt. Lett. 38, 434–436 (2013).
[Crossref] [PubMed]

Johnstone, W.

Jost, F.

J. Huber, J. Wöllenstein, S. Kolb, A. Dehé, and F. Jost, “Miniaturized photoacoustic co 2 sensors for consumer applications,” Proc. Sens pp. 688–692 (2015).

Kauppinen, J.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vib. Spectrosc. 48, 16–21 (2008).
[Crossref]

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B: Lasers Opt. 86, 451–454 (2007).
[Crossref]

Kazak, N.

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

Keiski, R.

C. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 4, 603–610 (2013).
[Crossref]

Koenderink, G. H.

H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, and D. Iannuzzi, “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).
[Crossref] [PubMed]

Köhring, M.

Kolb, S.

J. Huber, J. Wöllenstein, S. Kolb, A. Dehé, and F. Jost, “Miniaturized photoacoustic co 2 sensors for consumer applications,” Proc. Sens pp. 688–692 (2015).

Koskinen, V.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vib. Spectrosc. 48, 16–21 (2008).
[Crossref]

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B: Lasers Opt. 86, 451–454 (2007).
[Crossref]

Kosterev, A. A.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Qepas spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100, 627–635 (2010).
[Crossref]

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B: Lasers Opt. 94, 673–680 (2009).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Compact portable qepas multi-gas sensor,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2011), pp. 79450R.

Kriesel, J.

Kurniawan, N. A.

H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, and D. Iannuzzi, “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).
[Crossref] [PubMed]

Kuz’muk, A.

A. Gorelik, A. Ulasevich, A. Kuz’muk, and V. Starovoitov, “A miniature prototype of a resonance photoacoustic cell for gas sensing,” Opt. Spectrosc. 115, 567–573 (2013).
[Crossref]

Lartigue, O.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Lehtinen, J.

C. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 4, 603–610 (2013).
[Crossref]

Lendl, B.

Lengden, M.

Li, L.

Q. Wang, J. Wang, L. Li, and Q. Yu, “An all-optical photoacoustic spectrometer for trace gas detection,” Sens. Actuators, B 153, 214–218 (2011).
[Crossref]

Lin, C.

W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
[Crossref]

Lu, J.

J. Lu, T. Ikehara, Y. Zhang, T. Mihara, and R. Maeda, “Mechanical quality factor of microcantilevers for mass sensing applications,” in “Microelectronics, MEMS, and Nanotechnology,” (International Society for Optics and Photonics, 2007), pp. 68001Y.

Ma, J.

Maeda, R.

J. Lu, T. Ikehara, Y. Zhang, T. Mihara, and R. Maeda, “Mechanical quality factor of microcantilevers for mass sensing applications,” in “Microelectronics, MEMS, and Nanotechnology,” (International Society for Optics and Photonics, 2007), pp. 68001Y.

Magureanu, A.

D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).

Mandon, J.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Marshall, B. T.

L. L. Gordley, B. T. Marshall, and D. A. Chu, “Linepak: Algorithms for modeling spectral transmittance and radiance,” J. Quant. Spectrosc. Radiat. Transfer 52, 563–580 (1994).
[Crossref]

Matei, C.

D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).

Mihara, T.

J. Lu, T. Ikehara, Y. Zhang, T. Mihara, and R. Maeda, “Mechanical quality factor of microcantilevers for mass sensing applications,” in “Microelectronics, MEMS, and Nanotechnology,” (International Society for Optics and Photonics, 2007), pp. 68001Y.

Minkoff, S. E.

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B: Lasers Opt. 94, 673–680 (2009).
[Crossref]

Moser, H.

Moshkov, I. E.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Mur, L. A.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Nicoletti, S.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Nikonovich, F.

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

Nong, J.

W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
[Crossref]

Novikova, G. V.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Ojala, S.

C. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 4, 603–610 (2013).
[Crossref]

Parvitte, B.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Patimisco, P.

Pellegrino, P.

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors 10, 1986–2002 (2010).
[Crossref] [PubMed]

Persijn, S.

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Petra, N.

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B: Lasers Opt. 94, 673–680 (2009).
[Crossref]

Petrus, M.

D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).

Popa, C.

D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).

Rademacher, S.

J. Huber, A. Ambs, S. Rademacher, and J. Wöllenstein, “A selective, miniaturized, low-cost detection element for a photoacoustic co2 sensor for room climate monitoring,” Procedia Eng. 87, 1168–1171 (2014).
[Crossref]

Rector, J.

G. Gruca, K. Heeck, J. Rector, and D. Iannuzzi, “Demonstration of a miniature all-optical photoacoustic spectrometer based on ferrule-top technology,” Opt. Lett. 38, 1672–1674 (2013).
[Crossref] [PubMed]

G. Gruca, S. De Man, M. Slaman, J. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Meas. Sci. Technol. 21, 094033 (2010).
[Crossref]

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Roth, K.

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vib. Spectrosc. 48, 16–21 (2008).
[Crossref]

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B: Lasers Opt. 86, 451–454 (2007).
[Crossref]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

Rouxel, J.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Sanders, R.

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Scamarcio, G.

Schade, W.

Schreuders, H.

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Shwehdi, M.

M. Gondal, M. Baig, and M. Shwehdi, “Laser sensor for detection of sf/sub 6/leaks in high power insulated switchgear systems,” IEEE Trans. Dielectr. Electr. Insul. 9, 421–427 (2002).
[Crossref]

Sigrist, M. W.

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486–490 (2003).
[Crossref]

Slaman, M.

G. Gruca, S. De Man, M. Slaman, J. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Meas. Sci. Technol. 21, 094033 (2010).
[Crossref]

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

Spagnolo, V.

Starovoitov, V.

A. Gorelik, A. Ulasevich, A. Kuz’muk, and V. Starovoitov, “A miniature prototype of a resonance photoacoustic cell for gas sensing,” Opt. Spectrosc. 115, 567–573 (2013).
[Crossref]

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

A. Gorelik and V. Starovoitov, “Small-size resonant photoacoustic cell with reduced window background for laser detection of gases,” Opt. Spectrosc. 107, 830–835 (2009).
[Crossref]

A. Gorelik and V. Starovoitov, “Application of a miniaturized photoacoustic cell for high-sensitivity laser detection of ammonia in gas media,” https://arXiv:0810.0410 (2008).

Stewart, G.

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
[Crossref]

Thomazy, D.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Qepas spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100, 627–635 (2010).
[Crossref]

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B: Lasers Opt. 94, 673–680 (2009).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Compact portable qepas multi-gas sensor,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2011), pp. 79450R.

Tian, L.

W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
[Crossref]

Tittel, F. K.

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Qepas spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100, 627–635 (2010).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Compact portable qepas multi-gas sensor,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2011), pp. 79450R.

Ulasevich, A.

A. Gorelik, A. Ulasevich, A. Kuz’muk, and V. Starovoitov, “A miniature prototype of a resonance photoacoustic cell for gas sensing,” Opt. Spectrosc. 115, 567–573 (2013).
[Crossref]

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

Uotila, J.

C. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 4, 603–610 (2013).
[Crossref]

Vallon, R.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

van Hoorn, H.

H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, and D. Iannuzzi, “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).
[Crossref] [PubMed]

Waclawek, J. P.

Wang, J.

Q. Wang, J. Wang, L. Li, and Q. Yu, “An all-optical photoacoustic spectrometer for trace gas detection,” Sens. Actuators, B 153, 214–218 (2011).
[Crossref]

Wang, Q.

Q. Wang, J. Wang, L. Li, and Q. Yu, “An all-optical photoacoustic spectrometer for trace gas detection,” Sens. Actuators, B 153, 214–218 (2011).
[Crossref]

Wei, W.

W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
[Crossref]

Willer, U.

Wöllenstein, J.

J. Huber, A. Ambs, S. Rademacher, and J. Wöllenstein, “A selective, miniaturized, low-cost detection element for a photoacoustic co2 sensor for room climate monitoring,” Procedia Eng. 87, 1168–1171 (2014).
[Crossref]

J. Huber, J. Wöllenstein, S. Kolb, A. Dehé, and F. Jost, “Miniaturized photoacoustic co 2 sensors for consumer applications,” Proc. Sens pp. 688–692 (2015).

Wu, Z.

Z. Wu, L. Zhai, X. He, and Q. Yu, “High-limit detection and accurate analysis of acetylene in transformer oil gases with a tunable laser-based photoacoustic spectrometer,” Optoelectronics, Instrumentation and Data Processing 50, 210–216 (2014).
[Crossref]

Xu, Z.

W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
[Crossref]

Yang, F.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

Yu, Q.

Z. Wu, L. Zhai, X. He, and Q. Yu, “High-limit detection and accurate analysis of acetylene in transformer oil gases with a tunable laser-based photoacoustic spectrometer,” Optoelectronics, Instrumentation and Data Processing 50, 210–216 (2014).
[Crossref]

Q. Wang, J. Wang, L. Li, and Q. Yu, “An all-optical photoacoustic spectrometer for trace gas detection,” Sens. Actuators, B 153, 214–218 (2011).
[Crossref]

Zakharich, M.

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

Zéninari, V.

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Zhai, L.

Z. Wu, L. Zhai, X. He, and Q. Yu, “High-limit detection and accurate analysis of acetylene in transformer oil gases with a tunable laser-based photoacoustic spectrometer,” Optoelectronics, Instrumentation and Data Processing 50, 210–216 (2014).
[Crossref]

Zhang, Y.

J. Lu, T. Ikehara, Y. Zhang, T. Mihara, and R. Maeda, “Mechanical quality factor of microcantilevers for mass sensing applications,” in “Microelectronics, MEMS, and Nanotechnology,” (International Society for Optics and Photonics, 2007), pp. 68001Y.

Zhu, Y.

W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
[Crossref]

Zweck, J.

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B: Lasers Opt. 94, 673–680 (2009).
[Crossref]

AoB plants (1)

L. A. Mur, J. Mandon, S. Persijn, S. M. Cristescu, I. E. Moshkov, G. V. Novikova, M. A. Hall, F. J. Harren, K. H. Hebelstrup, and K. J. Gupta, “Nitric oxide in plants: an assessment of the current state of knowledge,” AoB plants 5, pls052 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

C. Hirschmann, J. Lehtinen, J. Uotila, S. Ojala, and R. Keiski, “Sub-ppb detection of formaldehyde with cantilever enhanced photoacoustic spectroscopy using quantum cascade laser source,” Appl. Phys. B 4, 603–610 (2013).
[Crossref]

Appl. Phys. B: Lasers Opt. (4)

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B: Lasers Opt. 86, 451–454 (2007).
[Crossref]

A. Gorelik, A. Ulasevich, F. Nikonovich, M. Zakharich, V. Firago, N. Kazak, and V. Starovoitov, “Miniaturized resonant photoacoustic cell of inclined geometry for trace-gas detection,” Appl. Phys. B: Lasers Opt. 100, 283–289 (2010).
[Crossref]

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, “Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor,” Appl. Phys. B: Lasers Opt. 94, 673–680 (2009).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Qepas spectrophones: design, optimization, and performance,” Appl. Phys. B: Lasers Opt. 100, 627–635 (2010).
[Crossref]

IEEE Trans. Dielectr. Electr. Insul. (1)

M. Gondal, M. Baig, and M. Shwehdi, “Laser sensor for detection of sf/sub 6/leaks in high power insulated switchgear systems,” IEEE Trans. Dielectr. Electr. Insul. 9, 421–427 (2002).
[Crossref]

Int. J. Thermophys. (1)

W. Wei, Y. Zhu, C. Lin, L. Tian, Z. Xu, and J. Nong, “All-optical cantilever-enhanced photoacoustic spectroscopy in the open environment,” Int. J. Thermophys. 36, 1116–1122 (2015).
[Crossref]

J. Optoelectron. Adv. Mater. (1)

D. Dumitras, D. Dutu, C. Matei, A. Magureanu, M. Petrus, and C. Popa, “Laser photoacoustic spectroscopy: principles, instrumentation, and characterization,” J. Optoelectron. Adv. Mater. 9, 3655 (2007).

J. Quant. Spectrosc. Radiat. Transfer (2)

L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, and et al., “The hitran2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).
[Crossref]

L. L. Gordley, B. T. Marshall, and D. A. Chu, “Linepak: Algorithms for modeling spectral transmittance and radiance,” J. Quant. Spectrosc. Radiat. Transfer 52, 563–580 (1994).
[Crossref]

Meas. Sci. Technol. (3)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24, 012004 (2012).
[Crossref]

D. Iannuzzi, K. Heeck, M. Slaman, S. De Man, J. Rector, H. Schreuders, J. Berenschot, V. Gadgil, R. Sanders, M. Elwenspoek, and et al., “Fibre-top cantilevers: design, fabrication and applications,” Meas. Sci. Technol. 18, 3247 (2007).
[Crossref]

G. Gruca, S. De Man, M. Slaman, J. Rector, and D. Iannuzzi, “Ferrule-top micromachined devices: design, fabrication, performance,” Meas. Sci. Technol. 21, 094033 (2010).
[Crossref]

Nat. Commun. (1)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Spectrosc. (2)

A. Gorelik, A. Ulasevich, A. Kuz’muk, and V. Starovoitov, “A miniature prototype of a resonance photoacoustic cell for gas sensing,” Opt. Spectrosc. 115, 567–573 (2013).
[Crossref]

A. Gorelik and V. Starovoitov, “Small-size resonant photoacoustic cell with reduced window background for laser detection of gases,” Opt. Spectrosc. 107, 830–835 (2009).
[Crossref]

Optoelectronics, Instrumentation and Data Processing (1)

Z. Wu, L. Zhai, X. He, and Q. Yu, “High-limit detection and accurate analysis of acetylene in transformer oil gases with a tunable laser-based photoacoustic spectrometer,” Optoelectronics, Instrumentation and Data Processing 50, 210–216 (2014).
[Crossref]

Procedia Eng. (2)

J. Huber, A. Ambs, S. Rademacher, and J. Wöllenstein, “A selective, miniaturized, low-cost detection element for a photoacoustic co2 sensor for room climate monitoring,” Procedia Eng. 87, 1168–1171 (2014).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Gliére, “Development of a miniaturized differential photoacoustic gas sensor,” Procedia Eng. 120, 396–399 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

M. W. Sigrist, “Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary),” Rev. Sci. Instrum. 74, 486–490 (2003).
[Crossref]

Sens. Actuators, B (2)

Q. Wang, J. Wang, L. Li, and Q. Yu, “An all-optical photoacoustic spectrometer for trace gas detection,” Sens. Actuators, B 153, 214–218 (2011).
[Crossref]

J. Rouxel, J.-G. Coutard, S. Gidon, O. Lartigue, S. Nicoletti, B. Parvitte, R. Vallon, V. Zéninari, and A. Glière, “Miniaturized differential helmholtz resonators for photoacoustic trace gas detection,” Sens. Actuators, B 236, 1104–1110 (2016).
[Crossref]

Sensors (2)

E. Holthoff, J. Bender, P. Pellegrino, and A. Fisher, “Quantum cascade laser-based photoacoustic spectroscopy for trace vapor detection and molecular discrimination,” Sensors 10, 1986–2002 (2010).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors 14, 6165–6206 (2014).
[Crossref] [PubMed]

Soft Matter (1)

H. van Hoorn, N. A. Kurniawan, G. H. Koenderink, and D. Iannuzzi, “Local dynamic mechanical analysis for heterogeneous soft matter using ferrule-top indentation,” Soft Matter 12, 3066–3073 (2016).
[Crossref] [PubMed]

Surf. Topogr. Metrol. Prop. (1)

S. Beekmans and D. Iannuzzi, “A metrological approach for the calibration of force transducers with interferometric readout,” Surf. Topogr. Metrol. Prop. 3, 025004 (2015).
[Crossref]

Vib. Spectrosc. (1)

V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vib. Spectrosc. 48, 16–21 (2008).
[Crossref]

Other (6)

M. Baudelet, Laser Spectroscopy for Sensing: Fundamentals, Techniques and Applications (Elsevier, 2014).

J. Lu, T. Ikehara, Y. Zhang, T. Mihara, and R. Maeda, “Mechanical quality factor of microcantilevers for mass sensing applications,” in “Microelectronics, MEMS, and Nanotechnology,” (International Society for Optics and Photonics, 2007), pp. 68001Y.

Declaration of interest: MS and DI are share holders of Optics11.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “Compact portable qepas multi-gas sensor,” in “SPIE OPTO,” (International Society for Optics and Photonics, 2011), pp. 79450R.

J. Huber, J. Wöllenstein, S. Kolb, A. Dehé, and F. Jost, “Miniaturized photoacoustic co 2 sensors for consumer applications,” Proc. Sens pp. 688–692 (2015).

A. Gorelik and V. Starovoitov, “Application of a miniaturized photoacoustic cell for high-sensitivity laser detection of ammonia in gas media,” https://arXiv:0810.0410 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the PA sensor. Insets: Enlarged sketch and microscopic views of the micro mirror alignment against the PA cell outlet and the readout fiber. All drawings are to scale.

Fig. 2
Fig. 2

A schematic view of the experimental setup.

Fig. 3
Fig. 3

Lock-in output signal as a function of central wavelength of excitation laser. Inset: Noise sample collected when the excitation laser wavelength was tuned away from the P(9) absorption line.

Fig. 4
Fig. 4

Peak-to-peak signal amplitude as a function of gas concentration for concentrations that go from 50 ppm to 5000 ppm. Inset: peak-to-peal signal amplitude, in log-log scale, over much larger concentration range.

Tables (1)

Tables Icon

Table 1 Parameters used for NNEA calculation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NNEA = α P SNR Δ f

Metrics