Abstract

We generate over 60 mW of pulses with wavelengths from 6 to 11 micrometers by difference frequency mixing between erbium and thulium fiber amplifiers in orientation-patterned GaP with a photon conversion efficiency of 0.2. By stabilizing the repetition rate of the shared oscillator and adding a frequency shifter to one arm, the output becomes a frequency comb with tunable carrier envelope offset.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Midinfrared frequency comb from self-stable degenerate GaAs optical parametric oscillator

Kevin F. Lee, C. Mohr, J. Jiang, Peter G. Schunemann, K. L. Vodopyanov, and M. E. Fermann
Opt. Express 23(20) 26596-26603 (2015)

Dual-comb mid-infrared spectroscopy with free-running oscillators and absolute optical calibration from a radio-frequency reference

O. Kara, Z. Zhang, T. Gardiner, and D. T. Reid
Opt. Express 25(14) 16072-16082 (2017)

Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator

N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M.E. Fermann
Opt. Express 23(19) 24342-24350 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
    [Crossref]
  2. E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared chemical nano-imaging: Accessing structure, coupling, and dynamics on molecular length scales,” J. Phys. Chem. Lett. 6, 1275–1284 (2015).
    [Crossref] [PubMed]
  3. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, and P. A. Budni, “Advances in nonlinear optical crystals for mid-infrared coherent sources,” J. Opt. Soc. Am. B 33, D36–D43 (2016).
    [Crossref]
  4. O. H. Heckl, B. J. Bjork, G. Winkler, P. B. Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41, 5405–5408 (2016).
    [Crossref] [PubMed]
  5. N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24, 3095–3102 (2016).
    [Crossref] [PubMed]
  6. J. W. Nicholson, A. Desantolo, W. Kaenders, and A. Zach, “Self-frequency-shifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier,” Opt. Express 24, 23396–23402 (2016).
    [Crossref] [PubMed]
  7. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13, 7424–7431 (2005).
    [Crossref] [PubMed]
  8. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37, 554–556 (2012).
    [Crossref] [PubMed]
  9. K. F. Lee, C. J. Hensley, P. G. Schunemann, and M. E. Fermann, “Difference frequency generation in orientation-patterned gallium phosphide,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STu1Q.3.
  10. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  11. A. Gambetta, N. Coluccelli, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, and M. Marangoni, “Milliwatt-level frequency combs in the 8–14 µm range via difference frequency generation from an Er:fiber oscillator,” Opt. Lett. 38, 1155–1157 (2013).
    [Crossref] [PubMed]
  12. D. Sánchez, M. Hemmer, M. Baudisch, K. Zawilski, P. Schunemann, H. Hoogland, R. Holzwarth, and J. Biegert, “Broadband mid-ir frequency comb with CdSiP2 and AgGaS2 from an Er, Tm:Ho fiber laser,” Opt. Lett. 39, 6883–6886 (2014).
    [Crossref]
  13. F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
    [Crossref] [PubMed]
  14. K. F. Lee, J. Jiang, C. Mohr, J. Bethge, M. E. Fermann, N. Leindecker, K. L. Vodopyanov, P. G. Schunemann, and I. Hartl, “Carrier envelope offset frequency of a doubly resonant, nondegenerate, mid-infrared GaAs optical parametric oscillator,” Opt. Lett. 38, 1191–1193 (2013).
    [Crossref] [PubMed]

2016 (4)

2015 (3)

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared chemical nano-imaging: Accessing structure, coupling, and dynamics on molecular length scales,” J. Phys. Chem. Lett. 6, 1275–1284 (2015).
[Crossref] [PubMed]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23, 26814–26824 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (1)

2005 (1)

Baudisch, M.

Bethge, J.

Biegert, J.

Bjork, B. J.

O. H. Heckl, B. J. Bjork, G. Winkler, P. B. Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41, 5405–5408 (2016).
[Crossref] [PubMed]

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Brida, D.

Budni, P. A.

Bui, T. Q.

Cassinerio, M.

Changala, P. B.

Coddington, I.

Coluccelli, N.

Creeden, D. J.

Cruz, F. C.

Demirbas, U.

Desantolo, A.

Diddams, S. A.

Fehrenbacher, D.

Fermann, M.

Fermann, M. E.

Fleisher, A. J.

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Foltynowicz, A.

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Galzerano, G.

Gambetta, A.

Gatti, D.

Giorgetta, F. R.

Hartl, I.

Heckl, O. H.

Hemmer, M.

Hensley, C. J.

K. F. Lee, C. J. Hensley, P. G. Schunemann, and M. E. Fermann, “Difference frequency generation in orientation-patterned gallium phosphide,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STu1Q.3.

Holzwarth, R.

Hoogland, H.

Imeshev, G.

Jiang, J.

Johnson, T.

Kaenders, W.

Klose, A.

Krauss, G.

Kumkar, S.

Kuse, N.

Laporta, P.

Lee, C.-C.

Lee, K. F.

Leindecker, N.

Leitenstorfer, A.

Marangoni, M.

Maser, D. L.

Maslowski, P.

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Mohr, C.

Muller, E. A.

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared chemical nano-imaging: Accessing structure, coupling, and dynamics on molecular length scales,” J. Phys. Chem. Lett. 6, 1275–1284 (2015).
[Crossref] [PubMed]

Nicholson, J. W.

Petrov, V.

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Pollard, B.

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared chemical nano-imaging: Accessing structure, coupling, and dynamics on molecular length scales,” J. Phys. Chem. Lett. 6, 1275–1284 (2015).
[Crossref] [PubMed]

Pomeranz, L. A.

Porat, G.

Raschke, M. B.

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared chemical nano-imaging: Accessing structure, coupling, and dynamics on molecular length scales,” J. Phys. Chem. Lett. 6, 1275–1284 (2015).
[Crossref] [PubMed]

Sánchez, D.

Schibli, T. R.

Schunemann, P.

Schunemann, P. G.

Spaun, B.

Vodopyanov, K. L.

Winkler, G.

Wunram, M.

Ycas, G.

Ye, J.

O. H. Heckl, B. J. Bjork, G. Winkler, P. B. Changala, B. Spaun, G. Porat, T. Q. Bui, K. F. Lee, J. Jiang, M. E. Fermann, P. G. Schunemann, and J. Ye, “Three-photon absorption in optical parametric oscillators based on OP-GaAs,” Opt. Lett. 41, 5405–5408 (2016).
[Crossref] [PubMed]

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Zach, A.

Zawilski, K.

Zawilski, K. T.

Appl. Phys. B (1)

A. Foltynowicz, P. Maslowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Lett. (1)

E. A. Muller, B. Pollard, and M. B. Raschke, “Infrared chemical nano-imaging: Accessing structure, coupling, and dynamics on molecular length scales,” J. Phys. Chem. Lett. 6, 1275–1284 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (5)

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (1)

K. F. Lee, C. J. Hensley, P. G. Schunemann, and M. E. Fermann, “Difference frequency generation in orientation-patterned gallium phosphide,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2016), p. STu1Q.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of midinfrared difference frequency generation comb system. One erbium oscillator seeds both pump and signal seed arms, using supercontinuum (SC) generation to reach thulium wavelengths in the signal seed arm. Orientation-patterned gallium phosphide provides high efficiency conversion to the 6 to 11 µm range. The time delay is stabilized by monitoring nonlinear parasites. A large delay interferometer verifies the frequency comb stability.
Fig. 2
Fig. 2 Midinfrared spectra and their average powers for different quasi-phase matching periods of OP-GaP, with 69 mW output at 7.4 µm.
Fig. 3
Fig. 3 Oscilloscope traces while sweeping the pump and signal seed pulse delay. From top to bottom, relative midinfrared output power, photodiode signals of two nonlinear parasites, and the error signal from their difference, having a broad linear region near maximum DFG.
Fig. 4
Fig. 4 Temporal stability of the midinfrared output power, with a standard deviation of 0.4% over 100 minutes. The regular variations are from room temperature changes.
Fig. 5
Fig. 5 Intensity interference fringes as each pulse is interfered with its previous pulse. Four different optical frequency shifts are applied to the signal seed pulses, shown by curve colour, stepping up then back down in frequency. The grouped colours and shifted phases show that the midinfrared output is a frequency comb with tunable carrier envelope offset frequency.
Fig. 6
Fig. 6 Interferogram phases converted to CEO frequency relative to one interferogram in the temporal and frequency domains. The phase shifts match the frequency shifts applied to the signal seed before difference frequency generation, as marked by the circles.

Metrics