Abstract

Transformation optics (TO) has brought forth a renewed interest in gradient-index (GRIN) optics due to its ability to allow arbitrary geometries to electromagnetically mimic the behaviors of more conventional structures via a spatially-inhomogeneous refractive index profile. While quasi-conformal transformation optics (qTO) has seen great success at microwave and RF frequencies, it is inherently limited to single frequency transformations: an immediate shortcoming for designs in the optical regime. Also, achieving desirable solutions from multi-element transformations is difficult for qTO. To overcome these challenges, a multi-component multi-frequency lens transformation procedure based on the wavefront-matching (WFM) design methodology is presented. Finally, the procedure is applied to a number of optical systems to advocate its efficacy as a more general transformation method.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anamorphic fractional Fourier transforms graded index lens designed using transformation optics

Xiao-bo Yang and Jin Hu
Opt. Express 26(21) 27528-27544 (2018)

Transformation-designed optical elements

D. Schurig, J. B. Pendry, and D. R. Smith
Opt. Express 15(22) 14772-14782 (2007)

Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens

Stefano Bonora, Yifan Jian, Pengfei Zhang, Azhar Zam, Edward N. Pugh, Robert J. Zawadzki, and Marinko V. Sarunic
Opt. Express 23(17) 21931-21941 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  2. D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right angle bends,” New J. Phys. 10(11), 115023 (2008).
    [Crossref]
  3. D.-H. Kwon and D. H. Werner, eds., Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (Springer-Verlag, 2014).
  4. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
    [Crossref] [PubMed]
  5. K. L. Morgan, D. E. Brocker, S. D. Campbell, D. H. Werner, and P. L. Werner, “Transformation-optics-inspired anti-reflective coating design for gradient index lenses,” Opt. Lett. 40(11), 2521–2524 (2015).
    [Crossref] [PubMed]
  6. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [Crossref] [PubMed]
  7. D. J. Fischer, C. J. Harkrider, and D. T. Moore, “Design and manufacture of a gradient-index axicon,” Appl. Opt. 39(16), 2687–2694 (2000).
    [Crossref] [PubMed]
  8. A. C. Urness, K. Anderson, C. Ye, W. L. Wilson, and R. R. McLeod, “Arbitrary GRIN component fabrication in optically driven diffusive photopolymers,” Opt. Express 23(1), 264–273 (2015).
    [Crossref] [PubMed]
  9. K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
    [Crossref]
  10. D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
    [Crossref]
  11. R. A. Flynn and G. Beadie, “Athermal achromat lens enabled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
    [Crossref]
  12. S. D. Campbell, D. E. Brocker, D. H. Werner, C. Dupuy, S. K. Park, and P. Harmon, “Three-dimensional gradient-index optics via inkjet-aided additive manufacturing techniques,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2015), pp. 605–606.
  13. E. W. Marchand, Gradient Index Optics (Academic Press, 1978).
  14. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
    [Crossref] [PubMed]
  15. J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
    [Crossref] [PubMed]
  16. J. Nagar, S. D. Campbell, D. E. Brocker, J. A. Easum, and D. H. Werner, “A new GRIN lens design paradigm based on wavefront matching”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1603–1604.
    [Crossref]
  17. S. D. Campbell, J. Nagar, and D. H. Werner, “Optical wavefront matching as a multi-frequency compliment to transformation optics”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1601–1602 (2016).
    [Crossref]
  18. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [Crossref] [PubMed]
  19. B. Fuchs, O. Lafond, S. Rondineau, and M. Himdi, “Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves,” IEEE Trans. Microw. Theory Tech. 54(6), 2292–2300 (2006).
    [Crossref]
  20. J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
    [Crossref] [PubMed]
  21. M. Kidger, Fundamental Optical Design (SPIE, 2002).
  22. D. T. Moore, “Design of singlets with continuously varying indices of refraction,” J. Opt. Soc. Am. 61(7), 886–894 (1971).
    [Crossref]
  23. X. Wang, Q. Wu, J. P. Turpin, and D. H. Werner, “Rigorous analysis of axisymmetric transformation optics lenses embedded in layered media illuminated by obliquely incident plane waves,” Radio Sci. 48(3), 232–247 (2013).
    [Crossref]
  24. S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
    [Crossref]
  25. T. Hashimoto, T. Saida, I. Ogawa, M. Kohtoku, T. Shibata, and H. Takahashi, “Optical circuit design based on a wavefront-matching method,” Opt. Lett. 30(19), 2620–2622 (2005).
    [Crossref] [PubMed]
  26. N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput. 9(2), 159–195 (2001).
    [Crossref] [PubMed]
  27. D. Malacara and Z. Malacara, Handbook of Lens Design (Marcel Dekker, 1994).
  28. C. P. Grover and H. M. van Driel, “Autocorrelation method for measuring the transfer function of optical systems,” Appl. Opt. 19(6), 900–904 (1980).
    [Crossref] [PubMed]
  29. G. E. Farin, Curves and Surfaces for CAGD: A Practical Guide (Morgan Kaufmann, 2002).
  30. “Schott Glass Catalog,” http://www.us.schott.com/d/advanced_optics/ade6e884-76b0-4930-8166-f6e605e4ca10/1.5/schott-optical-glass-pocket-catalog-feb
  31. M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
    [Crossref]
  32. M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
    [Crossref]
  33. J. P. Turpin, D. Brocker, and D. H. Werner, “Optimization of quasi-conformal transformation optics lenses with an arbitrary GRIN-capable ray tracer,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2013), pp. 1898–1899.
    [Crossref]
  34. H. W. Lee, “The Taylor-Hobson f/2 anastigmat,” Trans. Opt. Soc. 25(5), 240–248 (1924).
    [Crossref]
  35. J. G. Baker, “Highly corrected objective having two inner divergent meniscus components between collective elements,” US Patent 2,532,751 (1950).
  36. S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
    [Crossref] [PubMed]
  37. J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
    [Crossref]
  38. W. J. Smith, Modern Optical Engineering (McGraw-Hill Education, 2007).
  39. Z. Feng, L. Huang, G. Jin, and M. Gong, “Designing double freeform optical surfaces for controlling both irradiance and wavefront,” Opt. Express 21(23), 28693–28701 (2013).
    [Crossref] [PubMed]
  40. G. T. Borek and D. R. Brown, “High-performance diffractive optics for beam shaping,” Proc. SPIE 3633, 51–60 (1999).
    [Crossref]
  41. J. Nagar, S. D. Campbell, and D. H. Werner, “Multi-objective optimization for GRIN lens design,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE,2015), pp. 1326–1327.

2016 (6)

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

R. A. Flynn and G. Beadie, “Athermal achromat lens enabled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
[Crossref]

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (3)

Z. Feng, L. Huang, G. Jin, and M. Gong, “Designing double freeform optical surfaces for controlling both irradiance and wavefront,” Opt. Express 21(23), 28693–28701 (2013).
[Crossref] [PubMed]

X. Wang, Q. Wu, J. P. Turpin, and D. H. Werner, “Rigorous analysis of axisymmetric transformation optics lenses embedded in layered media illuminated by obliquely incident plane waves,” Radio Sci. 48(3), 232–247 (2013).
[Crossref]

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

2011 (2)

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

2010 (1)

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

2008 (2)

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right angle bends,” New J. Phys. 10(11), 115023 (2008).
[Crossref]

2006 (3)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

B. Fuchs, O. Lafond, S. Rondineau, and M. Himdi, “Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves,” IEEE Trans. Microw. Theory Tech. 54(6), 2292–2300 (2006).
[Crossref]

2005 (1)

2001 (1)

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput. 9(2), 159–195 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

G. T. Borek and D. R. Brown, “High-performance diffractive optics for beam shaping,” Proc. SPIE 3633, 51–60 (1999).
[Crossref]

1980 (1)

1971 (1)

1924 (1)

H. W. Lee, “The Taylor-Hobson f/2 anastigmat,” Trans. Opt. Soc. 25(5), 240–248 (1924).
[Crossref]

Aiken, S.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Anderson, K.

Bayraktar, Z.

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

Bayya, S. S.

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

Beadie, G.

R. A. Flynn and G. Beadie, “Athermal achromat lens enabled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
[Crossref]

Borek, G. T.

G. T. Borek and D. R. Brown, “High-performance diffractive optics for beam shaping,” Proc. SPIE 3633, 51–60 (1999).
[Crossref]

Brocker, D.

J. P. Turpin, D. Brocker, and D. H. Werner, “Optimization of quasi-conformal transformation optics lenses with an arbitrary GRIN-capable ray tracer,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2013), pp. 1898–1899.
[Crossref]

Brocker, D. E.

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
[Crossref] [PubMed]

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

K. L. Morgan, D. E. Brocker, S. D. Campbell, D. H. Werner, and P. L. Werner, “Transformation-optics-inspired anti-reflective coating design for gradient index lenses,” Opt. Lett. 40(11), 2521–2524 (2015).
[Crossref] [PubMed]

J. Nagar, S. D. Campbell, D. E. Brocker, J. A. Easum, and D. H. Werner, “A new GRIN lens design paradigm based on wavefront matching”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1603–1604.
[Crossref]

S. D. Campbell, D. E. Brocker, D. H. Werner, C. Dupuy, S. K. Park, and P. Harmon, “Three-dimensional gradient-index optics via inkjet-aided additive manufacturing techniques,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2015), pp. 605–606.

Brown, D. R.

G. T. Borek and D. R. Brown, “High-performance diffractive optics for beam shaping,” Proc. SPIE 3633, 51–60 (1999).
[Crossref]

Buff, A.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Campbell, S. D.

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
[Crossref] [PubMed]

K. L. Morgan, D. E. Brocker, S. D. Campbell, D. H. Werner, and P. L. Werner, “Transformation-optics-inspired anti-reflective coating design for gradient index lenses,” Opt. Lett. 40(11), 2521–2524 (2015).
[Crossref] [PubMed]

J. Nagar, S. D. Campbell, and D. H. Werner, “Multi-objective optimization for GRIN lens design,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE,2015), pp. 1326–1327.

J. Nagar, S. D. Campbell, D. E. Brocker, J. A. Easum, and D. H. Werner, “A new GRIN lens design paradigm based on wavefront matching”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1603–1604.
[Crossref]

S. D. Campbell, D. E. Brocker, D. H. Werner, C. Dupuy, S. K. Park, and P. Harmon, “Three-dimensional gradient-index optics via inkjet-aided additive manufacturing techniques,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2015), pp. 605–606.

Chan, C. T.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Chen, H.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Corsetti, J. A.

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

Dupuy, C.

S. D. Campbell, D. E. Brocker, D. H. Werner, C. Dupuy, S. K. Park, and P. Harmon, “Three-dimensional gradient-index optics via inkjet-aided additive manufacturing techniques,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2015), pp. 605–606.

Easum, J. A.

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

J. Nagar, S. D. Campbell, D. E. Brocker, J. A. Easum, and D. H. Werner, “A new GRIN lens design paradigm based on wavefront matching”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1603–1604.
[Crossref]

Feng, Z.

Fischer, D. J.

Flynn, R. A.

R. A. Flynn and G. Beadie, “Athermal achromat lens enabled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
[Crossref]

Fuchs, B.

B. Fuchs, O. Lafond, S. Rondineau, and M. Himdi, “Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves,” IEEE Trans. Microw. Theory Tech. 54(6), 2292–2300 (2006).
[Crossref]

Gibson, D. J.

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

Gong, M.

Gregory, M. D.

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

Grover, C. P.

Han, D.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Hansen, N.

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput. 9(2), 159–195 (2001).
[Crossref] [PubMed]

Harkrider, C. J.

Harmon, P.

S. D. Campbell, D. E. Brocker, D. H. Werner, C. Dupuy, S. K. Park, and P. Harmon, “Three-dimensional gradient-index optics via inkjet-aided additive manufacturing techniques,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2015), pp. 605–606.

Hashimoto, T.

Himdi, M.

B. Fuchs, O. Lafond, S. Rondineau, and M. Himdi, “Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves,” IEEE Trans. Microw. Theory Tech. 54(6), 2292–2300 (2006).
[Crossref]

Huang, L.

Hunt, J.

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

Jin, G.

Kang, M.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Kirk, A.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Kohtoku, M.

Kotov, M.

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

Kundtz, N.

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

Kwon, D.-H.

D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right angle bends,” New J. Phys. 10(11), 115023 (2008).
[Crossref]

Lafond, O.

B. Fuchs, O. Lafond, S. Rondineau, and M. Himdi, “Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves,” IEEE Trans. Microw. Theory Tech. 54(6), 2292–2300 (2006).
[Crossref]

Lai, Y.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Landy, N.

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

Lee, H. W.

H. W. Lee, “The Taylor-Hobson f/2 anastigmat,” Trans. Opt. Soc. 25(5), 240–248 (1924).
[Crossref]

Leonhardt, U.

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Li, J.

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Martin, S. V.

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

Mayer, T.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

McCarthy, P.

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

McClain, C.

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

McLeod, R. R.

Miklos, R.

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

Moore, D. T.

Morgan, K. L.

Musgraves, J. D.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Nagar, J.

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
[Crossref] [PubMed]

J. Nagar, S. D. Campbell, and D. H. Werner, “Multi-objective optimization for GRIN lens design,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE,2015), pp. 1326–1327.

J. Nagar, S. D. Campbell, D. E. Brocker, J. A. Easum, and D. H. Werner, “A new GRIN lens design paradigm based on wavefront matching”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1603–1604.
[Crossref]

Ng, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Nguyen, V.

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

Ogawa, I.

Ostermeier, A.

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput. 9(2), 159–195 (2001).
[Crossref] [PubMed]

Pantano, C.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Park, S. K.

S. D. Campbell, D. E. Brocker, D. H. Werner, C. Dupuy, S. K. Park, and P. Harmon, “Three-dimensional gradient-index optics via inkjet-aided additive manufacturing techniques,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2015), pp. 605–606.

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Perram, T.

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

Pogrebnyakov, A.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Richardson, K.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Rivero-Baleine, C.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Rondineau, S.

B. Fuchs, O. Lafond, S. Rondineau, and M. Himdi, “Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves,” IEEE Trans. Microw. Theory Tech. 54(6), 2292–2300 (2006).
[Crossref]

Saida, T.

Sanghera, J. S.

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shibata, T.

Sisken, L.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Smith, C.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Smith, D. R.

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Starr, A.

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

Swisher, A.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Takahashi, H.

Turpin, J. P.

X. Wang, Q. Wu, J. P. Turpin, and D. H. Werner, “Rigorous analysis of axisymmetric transformation optics lenses embedded in layered media illuminated by obliquely incident plane waves,” Radio Sci. 48(3), 232–247 (2013).
[Crossref]

J. P. Turpin, D. Brocker, and D. H. Werner, “Optimization of quasi-conformal transformation optics lenses with an arbitrary GRIN-capable ray tracer,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2013), pp. 1898–1899.
[Crossref]

Urness, A. C.

van Driel, H. M.

Wachtel, P.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Wang, X.

X. Wang, Q. Wu, J. P. Turpin, and D. H. Werner, “Rigorous analysis of axisymmetric transformation optics lenses embedded in layered media illuminated by obliquely incident plane waves,” Radio Sci. 48(3), 232–247 (2013).
[Crossref]

Werner, D.

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

Werner, D. H.

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594–3598 (2016).
[Crossref] [PubMed]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

K. L. Morgan, D. E. Brocker, S. D. Campbell, D. H. Werner, and P. L. Werner, “Transformation-optics-inspired anti-reflective coating design for gradient index lenses,” Opt. Lett. 40(11), 2521–2524 (2015).
[Crossref] [PubMed]

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

X. Wang, Q. Wu, J. P. Turpin, and D. H. Werner, “Rigorous analysis of axisymmetric transformation optics lenses embedded in layered media illuminated by obliquely incident plane waves,” Radio Sci. 48(3), 232–247 (2013).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right angle bends,” New J. Phys. 10(11), 115023 (2008).
[Crossref]

S. D. Campbell, D. E. Brocker, D. H. Werner, C. Dupuy, S. K. Park, and P. Harmon, “Three-dimensional gradient-index optics via inkjet-aided additive manufacturing techniques,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2015), pp. 605–606.

J. Nagar, S. D. Campbell, D. E. Brocker, J. A. Easum, and D. H. Werner, “A new GRIN lens design paradigm based on wavefront matching”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1603–1604.
[Crossref]

J. P. Turpin, D. Brocker, and D. H. Werner, “Optimization of quasi-conformal transformation optics lenses with an arbitrary GRIN-capable ray tracer,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2013), pp. 1898–1899.
[Crossref]

J. Nagar, S. D. Campbell, and D. H. Werner, “Multi-objective optimization for GRIN lens design,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE,2015), pp. 1326–1327.

Werner, P. L.

Wilson, W. L.

Wu, Q.

X. Wang, Q. Wu, J. P. Turpin, and D. H. Werner, “Rigorous analysis of axisymmetric transformation optics lenses embedded in layered media illuminated by obliquely incident plane waves,” Radio Sci. 48(3), 232–247 (2013).
[Crossref]

Xiao, J.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Ye, C.

Zhang, Z.-Q.

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

Appl. Opt. (3)

Evol. Comput. (1)

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput. 9(2), 159–195 (2001).
[Crossref] [PubMed]

IEEE Antennas Propag. Mag. (1)

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: The covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

B. Fuchs, O. Lafond, S. Rondineau, and M. Himdi, “Design and characterization of half Maxwell fish-eye lens antennas in millimeter waves,” IEEE Trans. Microw. Theory Tech. 54(6), 2292–2300 (2006).
[Crossref]

J. Opt. (1)

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Nat. Mater. (1)

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

D.-H. Kwon and D. H. Werner, “Transformation optical designs for wave collimators, flat lenses and right angle bends,” New J. Phys. 10(11), 115023 (2008).
[Crossref]

Opt. Eng. (1)

J. A. Corsetti, P. McCarthy, and D. T. Moore, “Color correction in the infrared using gradient-index materials,” Opt. Eng. 52(11), 112109 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102(25), 253902 (2009).
[Crossref] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[Crossref] [PubMed]

Proc. SPIE (4)

K. Richardson, A. Buff, C. Smith, L. Sisken, J. D. Musgraves, P. Wachtel, T. Mayer, A. Swisher, A. Pogrebnyakov, M. Kang, C. Pantano, D. Werner, A. Kirk, S. Aiken, and C. Rivero-Baleine, “Engineering novel infrared glass ceramics for advanced optical solutions,” Proc. SPIE 9822, 982205 (2016).
[Crossref]

D. J. Gibson, S. S. Bayya, V. Nguyen, J. S. Sanghera, M. Kotov, R. Miklos, and C. McClain, “IR-GRIN optics for imaging,” Proc. SPIE 9822, 98220R (2016).
[Crossref]

R. A. Flynn and G. Beadie, “Athermal achromat lens enabled by polymer gradient index optics,” Proc. SPIE 9822, 98220S (2016).
[Crossref]

G. T. Borek and D. R. Brown, “High-performance diffractive optics for beam shaping,” Proc. SPIE 3633, 51–60 (1999).
[Crossref]

Radio Sci. (1)

X. Wang, Q. Wu, J. P. Turpin, and D. H. Werner, “Rigorous analysis of axisymmetric transformation optics lenses embedded in layered media illuminated by obliquely incident plane waves,” Radio Sci. 48(3), 232–247 (2013).
[Crossref]

Science (2)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. Hunt, N. Kundtz, N. Landy, V. Nguyen, T. Perram, A. Starr, and D. R. Smith, “Broadband wide angle lens implemented with dielectric metamaterials,” Sensors (Basel) 11(12), 7982–7991 (2011).
[Crossref] [PubMed]

Trans. Opt. Soc. (1)

H. W. Lee, “The Taylor-Hobson f/2 anastigmat,” Trans. Opt. Soc. 25(5), 240–248 (1924).
[Crossref]

Other (13)

J. G. Baker, “Highly corrected objective having two inner divergent meniscus components between collective elements,” US Patent 2,532,751 (1950).

J. P. Turpin, D. Brocker, and D. H. Werner, “Optimization of quasi-conformal transformation optics lenses with an arbitrary GRIN-capable ray tracer,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2013), pp. 1898–1899.
[Crossref]

W. J. Smith, Modern Optical Engineering (McGraw-Hill Education, 2007).

D. Malacara and Z. Malacara, Handbook of Lens Design (Marcel Dekker, 1994).

J. Nagar, S. D. Campbell, and D. H. Werner, “Multi-objective optimization for GRIN lens design,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE,2015), pp. 1326–1327.

M. Kidger, Fundamental Optical Design (SPIE, 2002).

G. E. Farin, Curves and Surfaces for CAGD: A Practical Guide (Morgan Kaufmann, 2002).

“Schott Glass Catalog,” http://www.us.schott.com/d/advanced_optics/ade6e884-76b0-4930-8166-f6e605e4ca10/1.5/schott-optical-glass-pocket-catalog-feb

S. D. Campbell, D. E. Brocker, D. H. Werner, C. Dupuy, S. K. Park, and P. Harmon, “Three-dimensional gradient-index optics via inkjet-aided additive manufacturing techniques,” Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2015), pp. 605–606.

E. W. Marchand, Gradient Index Optics (Academic Press, 1978).

D.-H. Kwon and D. H. Werner, eds., Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (Springer-Verlag, 2014).

J. Nagar, S. D. Campbell, D. E. Brocker, J. A. Easum, and D. H. Werner, “A new GRIN lens design paradigm based on wavefront matching”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1603–1604.
[Crossref]

S. D. Campbell, J. Nagar, and D. H. Werner, “Optical wavefront matching as a multi-frequency compliment to transformation optics”, Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (IEEE, 2016), pp. 1601–1602 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Example of a biconvex to flat lens transformation. The source lens (left) is mapped to the intended geometry in the physical domain (center) and realized in the resulting GRIN profile (right).
Fig. 2
Fig. 2 Depiction of flattened achromatic-doublet transformation.
Fig. 3
Fig. 3 WFM concept. The aberrated wavefront from a homogeneous doublet serves as the reference wavefront to be matched by a “black-box” GRIN equivalent.
Fig. 4
Fig. 4 Ray trace diagrams of the (a) homogeneous reference achromatic doublet and (b) the GRIN equivalent singlet.
Fig. 5
Fig. 5 Aberrated wavefronts for the (a) homogeneous reference doublet and (b) the GRIN equivalent singlet at the center wavelength λ = 587.6 nm. (c) The difference between the two wavefronts.
Fig. 6
Fig. 6 Ray trace diagrams of the (a) homogeneous reference achromatic doublet and (b) the GRIN equivalent singlet.
Fig. 7
Fig. 7 Spot diagram comparisons between homogeneous reference double Gauss and wavefront-matched GRIN systems: (left) θ = 0°, (middle) θ = 10°, (right) θ = 14°
Fig. 8
Fig. 8 Ray trace diagrams of the (a) homogeneous and (b) GRIN equivalent afocal telescope systems.
Fig. 9
Fig. 9 MTF comparisons between the reference and GRIN systems at incidence angle and wavelength combinations of: (left) λ = 3 µm; θ = 2.5°, (middle) λ = 4 µm; θ = 1.25°, (right) λ = 5 µm; θ = 0°.
Fig. 10
Fig. 10 Ray trace diagrams for the (a) homogeneous reference and (b) GRIN equivalent beam-shaper systems.
Fig. 11
Fig. 11 Beam intensity as a function of the distance from the optical axis (r) for the (blue) input beam and the (black) homogeneous and (magenta) GRIN system output beams.

Tables (3)

Tables Icon

Table 1 Summary of RMS WFE and WFM errors for the reference and GRIN-equivalent doublet systems at the match wavelengths 486.1 nm, 587.6 nm, and 656.3 nm as well as additional test wavelengths. All values are in units of waves.

Tables Icon

Table 2 Summary of RMS spot sizes (diameter) for the reference and GRIN optics when in isolation and as a part of the full optical systems. All values are in units of microns.

Tables Icon

Table 3 Summary of Strehl ratios for the reference and GRIN afocal telescope systems.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ϵ= Αϵ Α Τ det(Α) , μ Αμ Α Τ det(Α)
n= ϵ = n a
n(λ)= 1 a n(λ)
ν= n( λ 2 )1 n( λ 1 )n( λ 3 )
ν= Δn( λ 2 ) Δn( λ 1 )Δn( λ 3 )
ν= [min (a) 1 max (a) 1 ]n( λ 2 ) [min (a) 1 max (a) 1 ]n( λ 1 )[min (a) 1 max (a) 1 ]n( λ 3 ) = Δn( λ 2 ) Δn( λ 1 )Δn( λ 3 ) = n( λ 2 ) n( λ 1 )n( λ 3 )
COST= max P [ | W H ( x P , y P ) W G ( x P , y P ) | ]
ψ( x P , y P )=exp[ j2πλW( x P , y P ) ]
H( f x , f y )= 1 1 ψ( x P + f x 2 , y P + f y 2 ) ψ * ( x P f x 2 , y P f y 2 )d x P d y P 1 1 ψ( x P , y P ) ψ * ( x P , y P )d x P d y P
n( λ;r,z )= i n j m α i,j ( r D/2 ) i ( z T ) j

Metrics