Abstract

Acousto-optic coupling in polyimide-coated single-mode optical fibers using flexural elastic waves is demonstrated. The effect of the polyimide coating on the acousto-optic interaction process is analyzed in detailed. Theoretical and experimental results are in good agreement. Although the elastic attenuation is significant, we show that acousto-optic coupling can be produced with a reasonably good efficiency. To our knowledge, it is the first experimental demonstration of acousto-optic coupling in optical fibers with robust protective coating.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics

E. Alcusa-Sáez, A. Díez, and M. V. Andrés
Opt. Express 24(5) 4899-4905 (2016)

Forward Brillouin scattering acoustic impedance sensor using thin polyimide-coated fiber

Desmond M. Chow and Luc Thévenaz
Opt. Lett. 43(21) 5467-5470 (2018)

Effect of metal coating in all-fiber acousto-optic tunable filter using torsional wave

Du-Ri Song, Chang Su Jun, Sun Do Lim, and Byoung Yoon Kim
Opt. Express 22(25) 30873-30881 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11(6), 389–391 (1986).
    [Crossref] [PubMed]
  2. D. Östling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in a two-mode fiber,” Opt. Lett. 20(11), 1247–1249 (1995).
    [Crossref] [PubMed]
  3. H. S. Kim, S. H. Yun, I. K. Kwang, and B. Y. Kim, “All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile,” Opt. Lett. 22(19), 1476–1478 (1997).
    [Crossref] [PubMed]
  4. T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
    [Crossref]
  5. K. J. Lee, H. C. Park, and B. Y. Kim, “Highly efficient all-fiber tunable polarization filter using torsional acoustic wave,” Opt. Express 15(19), 12362–12367 (2007).
    [Crossref] [PubMed]
  6. A. Díez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000).
    [Crossref] [PubMed]
  7. M. W. Haakestad and H. E. Engan, “Acoustooptic properties of a weakly multimode solid core photonic crystal fiber,” J. Lightwave Technol. 24(2), 838–845 (2006).
    [Crossref]
  8. E. P. Alcusa-Sáez, A. Díez, M. González-Herráez, and M. V. Andrés, “Time-resolved acousto-optic interaction in single-mode optical fibers: characterization of axial nonuniformities at the nanometer scale,” Opt. Lett. 39(6), 1437–1440 (2014).
    [Crossref] [PubMed]
  9. B. Stiller, S. M. Foaleng, J.-C. Beugnot, M. W. Lee, M. Delqué, G. Bouwmans, A. Kudlinski, L. Thévenaz, H. Maillotte, and T. Sylvestre, “Photonic crystal fiber mapping using Brillouin echoes distributed sensing,” Opt. Express 18(19), 20136–20142 (2010).
    [Crossref] [PubMed]
  10. E. P. Alcusa-Sáez, A. Díez, and M. V. Andrés, “Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics,” Opt. Express 24(5), 4899–4905 (2016).
    [Crossref]
  11. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016).
    [Crossref] [PubMed]
  12. L. Carrión-Higueras, E. P. Alcusa-Sáez, A. Díez, and M. V. Andrés, “All-fiber laser with intracavity acousto-optic dynamic mode converter for efficient generation of radially polarized cylindrical vector beams,” IEEE Photonics J. 9(1), 1500507 (2017).
  13. T. Wei, “The Effects of Polymer Coatings on the Strength and Fatigue Properties of Optical Fibers,” Proceedings of the American Ceramics Society (1986).
  14. D.-R. Song, C. S. Jun, S. Do Lim, and B. Y. Kim, “Effect of metal coating in all-fiber acousto-optic tunable filter using torsional wave,” Opt. Express 22(25), 30873–30881 (2014).
    [Crossref] [PubMed]
  15. Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
    [Crossref]
  16. D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
    [Crossref]
  17. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016).
    [Crossref] [PubMed]
  18. M. V. Andres, M. J. Tudor, and K. W. H. Foulds, “Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors,” Electron. Lett. 23(15), 774 (1987).
    [Crossref]
  19. R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64(1), 1–37 (1978).
    [Crossref]
  20. A. W. Snyder and J. Jove, Optical Waveguide Theory (Springer, 1983).

2017 (1)

L. Carrión-Higueras, E. P. Alcusa-Sáez, A. Díez, and M. V. Andrés, “All-fiber laser with intracavity acousto-optic dynamic mode converter for efficient generation of radially polarized cylindrical vector beams,” IEEE Photonics J. 9(1), 1500507 (2017).

2016 (3)

2014 (2)

2010 (1)

2007 (1)

2006 (1)

2003 (1)

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

2000 (1)

1997 (1)

1996 (1)

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

1995 (1)

1991 (1)

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

1987 (1)

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, “Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors,” Electron. Lett. 23(15), 774 (1987).
[Crossref]

1986 (1)

1978 (1)

R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64(1), 1–37 (1978).
[Crossref]

Alcusa-Sáez, E. P.

Andres, M. V.

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, “Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors,” Electron. Lett. 23(15), 774 (1987).
[Crossref]

Andrés, M. V.

Beugnot, J.-C.

Birks, T. A.

A. Díez, T. A. Birks, W. H. Reeves, B. J. Mangan, and P. St. J. Russell, “Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves,” Opt. Lett. 25(20), 1499–1501 (2000).
[Crossref] [PubMed]

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Blake, J. N.

Bodor, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Bohnert, K.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Bouwmans, G.

Brändle, H.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Carrión-Higueras, L.

L. Carrión-Higueras, E. P. Alcusa-Sáez, A. Díez, and M. V. Andrés, “All-fiber laser with intracavity acousto-optic dynamic mode converter for efficient generation of radially polarized cylindrical vector beams,” IEEE Photonics J. 9(1), 1500507 (2017).

Culverhouse, D. O.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Delqué, M.

Díez, A.

Do Lim, S.

Engan, H. E.

Foaleng, S. M.

Foulds, K. W. H.

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, “Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors,” Electron. Lett. 23(15), 774 (1987).
[Crossref]

Frank, A.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Gao, F.

González-Herráez, M.

Griffin, S. E.

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

Haakestad, M. W.

Harrington, C. T.

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

He, Y.

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

Huang, L.

Jiang, B.

Jun, C. S.

Kim, B. Y.

Kim, H. S.

Kudlinski, A.

Kwang, I. K.

Lee, K. J.

Lee, M. W.

Li, P.

Maillotte, H.

Mangan, B. J.

Mao, D.

Mauron, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Mei, T.

Morse, T. F.

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

Nath, D. K.

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

Nellen, Ph. M.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Nelson, G. W.

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

Östling, D.

Paine, D. C.

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

Park, H. C.

Pequignot, P.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Reeves, W. H.

Reinhart, L. J.

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

Russell, P. S.

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

Russell, P. St. J.

Sennhauser, U.

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Shaw, H. J.

Song, D.-R.

Stiller, B.

Sylvestre, T.

Thévenaz, L.

Thurston, R. N.

R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64(1), 1–37 (1978).
[Crossref]

Tudor, M. J.

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, “Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors,” Electron. Lett. 23(15), 774 (1987).
[Crossref]

Wei, K.

Wei, T.

T. Wei, “The Effects of Polymer Coatings on the Strength and Fatigue Properties of Optical Fibers,” Proceedings of the American Ceramics Society (1986).

Yun, S. H.

Zhang, G.

Zhang, W.

Zhao, J.

Actuator A-Phys. (1)

Ph. M. Nellen, P. Mauron, A. Frank, U. Sennhauser, K. Bohnert, P. Pequignot, P. Bodor, and H. Brändle, ““Reliability of fiber Bragg grating based sensors for downhole applications,” Sens,” Actuator A-Phys. 103(3), 364–376 (2003).
[Crossref]

Electron. Lett. (1)

M. V. Andres, M. J. Tudor, and K. W. H. Foulds, “Analysis of an interferometric optical fibre detection technique applied to silicon vibrating sensors,” Electron. Lett. 23(15), 774 (1987).
[Crossref]

IEEE Photonics J. (1)

L. Carrión-Higueras, E. P. Alcusa-Sáez, A. Díez, and M. V. Andrés, “All-fiber laser with intracavity acousto-optic dynamic mode converter for efficient generation of radially polarized cylindrical vector beams,” IEEE Photonics J. 9(1), 1500507 (2017).

J. Acoust. Soc. Am. (1)

R. N. Thurston, “Elastic waves in rods and clad rods,” J. Acoust. Soc. Am. 64(1), 1–37 (1978).
[Crossref]

J. Lightwave Technol. (2)

T. A. Birks, P. S. Russell, and D. O. Culverhouse, “The acousto-optic effect in single-mode fiber tapers and couplers,” J. Lightwave Technol. 14(11), 2519–2529 (1996).
[Crossref]

M. W. Haakestad and H. E. Engan, “Acoustooptic properties of a weakly multimode solid core photonic crystal fiber,” J. Lightwave Technol. 24(2), 838–845 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Proc. SPIE (1)

D. K. Nath, G. W. Nelson, S. E. Griffin, C. T. Harrington, Y. He, L. J. Reinhart, D. C. Paine, and T. F. Morse, “Polyimide coated embedded optical fiber sensors,” Proc. SPIE 1489, 17–32 (1991).
[Crossref]

Other (2)

T. Wei, “The Effects of Polymer Coatings on the Strength and Fatigue Properties of Optical Fibers,” Proceedings of the American Ceramics Society (1986).

A. W. Snyder and J. Jove, Optical Waveguide Theory (Springer, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scanning electron microscope image of CF1 (a) and CF2 (b).
Fig. 2
Fig. 2 Transmission spectra showing different mode couplings. Red line is for polyimide-coated fibers and black line is for bare fibers. (a) CF1 and BF1, (b) CF2 and BF2. Frequency of the acoustic wave: 2.06 MHz. (c) LP01-LP12 coupling notch for the polyimide coated CF2 fiber and two different RF voltage amplitudes. Frequency of the acoustic wave: 2.25 MHz
Fig. 3
Fig. 3 Resonance wavelength tuning with acoustic frequency for the polyimide-coated fibers (closed symbols) and the bare fibers (open symbols). (a) Fibers CF1 and BF1, (b1) fiber CF2 and (b2) fiber BF2. The lines show theoretical calculations. Dashed lines are for bare fibers and solid lines for the polyimide-coated fibers.
Fig. 4
Fig. 4 Experimental characterization of the dispersion relation of the flexural elastic wave propagating along the polyimide-coated fiber CF2 (red) and the bare fiber BF2 (black). Symbols are experimental data and lines are theoretical calculations following [19].
Fig. 5
Fig. 5 (a) Comparison of LP01-LP11 notch depth vs. voltage, for fibers CF1, CF2 and BF1. Symbols are experimental data and lines are the best fit to theoretical transmittance. Frequency: 2.217 MHz. (b) Normalized amplitude of the acoustic wave along the fibers. U0 is the amplitude at the excitation point. Symbols are experimental data and lines are the best fit to an exponential decay function.

Tables (1)

Tables Icon

Table 1 Optical characteristics of the fibers. Nominal and best-fit parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = ( π Ω ) 1 / 2 [ E 1 a 4 + E 2 ( b 4 a 4 ) ρ 1 a 2 + ρ 2 ( b 2 a 2 ) ] 1 / 4
λ R = Δ n e f f Λ

Metrics