Abstract

We propose and experimentally verify an innovative label-free optical fiber biosensor based on a Mach-Zehnder interferometer for bovine serum albumin (BSA) concentration detection. The proposed fiber biosensor utilized a micro-cavity within a single-mode fiber to induce Mach-Zehnder interference. A remarkable feature of this biosensor is that external media can directly interact with the fiber core signal through microfluidic channels connected to the micro-cavity and sensor surface. The device was fabricated by means of femtosecond laser micromachining and chemical etching. A fiber interferometer of this type exhibits an ultrahigh refractive index sensitivity of −10,055 nm/RIU and a detection limit of 3.5 × 10−5 RIU. Different concentrations of BSA with an infinitesimally small refractive index difference can be clearly differentiated in situ by the interferential spectra of the structure. Experiments demonstrated the biosensor exhibited a BSA solution concentration sensitivity of −38.9 nm/(mg/mL) and a detection limit of 2.57 × 10−4 mg/mL, respectively. Moreover, this biosensor is a sub-microliter dose and ultrasensitive at the low concentrations detected in BSA, which make it a promising for biochemical applications such as DNA hybridization, cancer screenings, medicine examination and environmental engineering, etc.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Side-polished few-mode fiber based surface plasmon resonance biosensor

Jiangli Dong, Yaxin Zhang, Yajun Wang, Fan Yang, Shiqi Hu, Yaofei Chen, Wenguo Zhu, Wentao Qiu, Heyuan Guan, Huihui Lu, Jianhui Yu, Yongchun Zhong, Jun Zhang, Yunhan Luo, and Zhe Chen
Opt. Express 27(8) 11348-11360 (2019)

Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach–Zehnder configuration

S. Y. Wu, H. P. Ho, W. C. Law, Chinlon Lin, and S. K. Kong
Opt. Lett. 29(20) 2378-2380 (2004)

References

  • View by:
  • |
  • |
  • |

  1. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  2. T. Guo, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
    [Crossref]
  3. S. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosens. Bioelectron. 65, 251–256 (2015).
    [Crossref] [PubMed]
  4. W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).
  5. A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
    [Crossref]
  6. R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Actuator B-Chem. 10(3), 209–217 (1993).
    [Crossref]
  7. F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
    [Crossref]
  8. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, “Integrated Optical Mach-Zehnder Biosensor,” J. Lightwave Technol. 16(4), 583–592 (1998).
    [Crossref]
  9. Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
    [Crossref]
  10. F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
    [Crossref]
  11. S. H. Hsu and Y. T. Huang, “A novel Mach-Zehnder interferometer based on dual-ARROW structures for sensing applications,” J. Lightwave Technol. 23(12), 4200–4206 (2005).
    [Crossref]
  12. B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
    [Crossref] [PubMed]
  13. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004).
    [Crossref] [PubMed]
  14. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  15. H. Y. Choi, K. S. Park, and B. H. Lee, “Photonic crystal fiber interferometer composed of a long period fiber grating and one point collapsing of air holes,” Opt. Lett. 33(8), 812–814 (2008).
    [Crossref] [PubMed]
  16. J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
    [Crossref]
  17. Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
    [Crossref] [PubMed]
  18. Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
    [Crossref]
  19. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
    [Crossref] [PubMed]
  20. Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and X. M. Hong, “Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach-Zehnder Interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
    [Crossref]
  21. Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
    [Crossref] [PubMed]
  22. J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
    [Crossref]
  23. S. S. Zhang, W. G. Zhang, P. C. Geng, and L. Wang, “A Mach-Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
    [Crossref]
  24. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
    [Crossref] [PubMed]
  25. B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
    [Crossref] [PubMed]
  26. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [Crossref]
  27. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001).
    [Crossref] [PubMed]
  28. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [Crossref]
  29. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]

2016 (3)

T. Guo, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (5)

Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

S. S. Zhang, W. G. Zhang, P. C. Geng, and L. Wang, “A Mach-Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and X. M. Hong, “Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach-Zehnder Interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

2013 (2)

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

2011 (1)

2010 (3)

2008 (4)

2005 (2)

2004 (1)

2003 (1)

F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
[Crossref]

2001 (1)

1998 (1)

1997 (1)

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

1993 (1)

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Actuator B-Chem. 10(3), 209–217 (1993).
[Crossref]

Albert, J.

T. Guo, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Asokan, S.

S. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosens. Bioelectron. 65, 251–256 (2015).
[Crossref] [PubMed]

Barnes, J.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Bock, W.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Bojan, K.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Boo, J. L.

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

Brosinger, F.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Calle, A.

F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
[Crossref]

Cammann, K.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Chan, C. C.

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

Choi, H. Y.

Chung, Y.

Clark, M.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Deng, Y. L.

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and X. M. Hong, “Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach-Zehnder Interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Dominguez, C.

F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
[Crossref]

Dong, X.

Ehrfeld, W.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Fabricius, N.

Fan, X.

Fraser, J. M.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Freimuth, H.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Gedig, E.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Geng, P. C.

S. S. Zhang, W. G. Zhang, P. C. Geng, and L. Wang, “A Mach-Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Geng, Y. F.

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and X. M. Hong, “Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach-Zehnder Interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Goicoechea, J.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Greig, P.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Greve, J.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Actuator B-Chem. 10(3), 209–217 (1993).
[Crossref]

Guan, B. O.

T. Guo, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Guo, T.

T. Guo, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Han, K.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

He, J.

He, S. L.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Heideman, R. G.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Actuator B-Chem. 10(3), 209–217 (1993).
[Crossref]

Hollenbach, U.

Hong, X. M.

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and X. M. Hong, “Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach-Zehnder Interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Hsu, S. H.

Huang, Y.

Huang, Y. T.

Hwang, D.

Ingenhoff, J.

James, S.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Jang, H. S.

Jiang, L.

Juodkazis, S.

Katerkamp, A.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Kee, J. S.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Kim, J. C.

Kim, K. W.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Kooyman, R. P. H.

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Actuator B-Chem. 10(3), 209–217 (1993).
[Crossref]

Korposh, S.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Lacher, M.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Lechuga, L. M.

F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
[Crossref]

Lee, B. H.

Lee, K. S.

Leong, K. C.

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

Li, B.

Li, C. M.

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

Li, X. J.

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and X. M. Hong, “Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach-Zehnder Interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Li, Z.

Li, Z. Y.

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

Liao, C.

Liao, C. R.

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

Lim, J. H.

Lin, W.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Liu, B.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Liu, S.

Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
[Crossref] [PubMed]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

Liu, Y.

Llobera, A.

F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
[Crossref]

Lo, G. Q.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Loock, H. P.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Lou, J.

Lu, P.

Lu, Y.

Luff, B. J.

Marcinkevicius, A.

Marques, L.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Matsuo, S.

Misawa, H.

Miwa, M.

Moon, D. S.

Moon, S.

Mullaney, K.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Nguyen, L. V.

Nishii, J.

Oleschuk, R. D.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Park, K. S.

Park, M. K.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Piehler, J.

Preieto, F.

F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
[Crossref]

Sepulveda, B.

F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
[Crossref]

Shin, Y.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Song, B.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Sood, A. K.

S. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosens. Bioelectron. 65, 251–256 (2015).
[Crossref] [PubMed]

Spener, F.

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Sridevi, S.

S. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosens. Bioelectron. 65, 251–256 (2015).
[Crossref] [PubMed]

Sun, B.

Tan, X. L.

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and X. M. Hong, “Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach-Zehnder Interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

Tang, J.

Tatam, R.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Teo, Z. Y.

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

Tian, Z. B.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Tong, L.

Tou, Z. Q.

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

Tsai, H.

Tu, X.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Urrutia, A.

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Vasu, K. S.

S. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosens. Bioelectron. 65, 251–256 (2015).
[Crossref] [PubMed]

Wang, C.

Wang, D.

Wang, D. N.

Wang, L.

S. S. Zhang, W. G. Zhang, P. C. Geng, and L. Wang, “A Mach-Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Wang, M.

Wang, Q.

Wang, S.

Wang, W. C.

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

Wang, Y.

Z. Li, C. Liao, Y. Wang, L. Xu, D. Wang, X. Dong, S. Liu, Q. Wang, K. Yang, and J. Zhou, “Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer,” Opt. Express 23(5), 6673–6678 (2015).
[Crossref] [PubMed]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

Z. Li, C. Liao, Y. Wang, X. Dong, S. Liu, K. Yang, Q. Wang, and J. Zhou, “Ultrasensitive refractive index sensor based on a Mach-Zehnder interferometer created in twin-core fiber,” Opt. Lett. 39(17), 4982–4985 (2014).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

Wang, Y. P.

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

Watanabe, M.

White, I. M.

Wilkinson, J. S.

Wu, J.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Xia, T. H.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Xiao, H.

Xu, L.

Xue, W.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Yam, S. S. H.

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Yang, H. B.

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

Yang, J.

Yang, K.

Yang, K. M.

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

Yang, M.

Ye, Z.

Yin, G.

Yin, G. L.

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

Yoon, Y. J.

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Zhang, A. P.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Zhang, H.

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

Zhang, S. S.

S. S. Zhang, W. G. Zhang, P. C. Geng, and L. Wang, “A Mach-Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Zhang, W. G.

S. S. Zhang, W. G. Zhang, P. C. Geng, and L. Wang, “A Mach-Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

Zhao, J.

Zhong, X. Y.

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

Zhou, J.

Zhou, J. T.

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

Zhu, J. J.

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

Actuator B-Chem. (2)

R. G. Heideman, R. P. H. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Actuator B-Chem. 10(3), 209–217 (1993).
[Crossref]

Q. Liu, X. Tu, K. W. Kim, J. S. Kee, Y. Shin, K. Han, Y. J. Yoon, G. Q. Lo, and M. K. Park, “Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide,” Actuator B-Chem. 188, 681–688 (2013).
[Crossref]

Appl. Opt. (1)

Biosens. Bioelectron. (2)

B. Song, H. Zhang, B. Liu, W. Lin, and J. Wu, “Label-free in-situ real-time DNA hybridization kinetics detection employing microfiber-assisted Mach-Zehnder interferometer,” Biosens. Bioelectron. 81, 151–158 (2016).
[Crossref] [PubMed]

S. Sridevi, K. S. Vasu, S. Asokan, and A. K. Sood, “Sensitive detection of C-reactive protein using optical fiber Bragg gratings,” Biosens. Bioelectron. 65, 251–256 (2015).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

W. C. Wang, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Quantum Electron. 19(3), 4206107 (2013).

IEEE Photonics Technol. Lett. (2)

Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, “Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

J. T. Zhou, Y. P. Wang, C. R. Liao, G. L. Yin, K. M. Yang, X. Y. Zhong, Q. Wang, and Z. Y. Li, “Intensity-Modulated Strain Sensor Based on Fiber In-Line Mach-Zehnder Interferometer,” IEEE Photonics Technol. Lett. 26(5), 508–511 (2014).
[Crossref]

IEEE Sens. J. (2)

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and X. M. Hong, “Compact and Ultrasensitive Temperature Sensor With a Fully Liquid-Filled Photonic Crystal Fiber Mach-Zehnder Interferometer,” IEEE Sens. J. 14(1), 167–170 (2014).
[Crossref]

J. J. Zhu, A. P. Zhang, T. H. Xia, S. L. He, and W. Xue, “Fiber-Optic High-Temperature Sensor Based on Thin-Core Fiber Modal Interferometer,” IEEE Sens. J. 10(9), 1415–1418 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

S. S. Zhang, W. G. Zhang, P. C. Geng, and L. Wang, “A Mach-Zehnder interferometer constructed using lateral offset and a long period fiber grating for two-dimensional bending vector sensing,” J. Opt. 16(1), 015501 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Sens. (1)

A. Urrutia, K. Bojan, L. Marques, K. Mullaney, J. Goicoechea, S. James, M. Clark, R. Tatam, and S. Korposh, “Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings,” J. Sens. 2016, 1–11 (2016).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

T. Guo, B. O. Guan, and J. Albert, “Tilted fiber grating mechanical and biochemical sensors,” Opt. Laser Technol. 78, 19–33 (2016).
[Crossref]

Opt. Lett. (5)

Sens. Actuator B-Chem. (2)

F. Preieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. M. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuator B-Chem. 92(1–2), 151–158 (2003).
[Crossref]

F. Brosinger, H. Freimuth, M. Lacher, W. Ehrfeld, E. Gedig, A. Katerkamp, F. Spener, and K. Cammann, “A label-free affinity sensor with compensation of unspecific protein interaction by a highly sensitive integrated optical Mach-Zehnder interferometer on silicon,” Sens. Actuator B-Chem. 44(1–3), 350–355 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic diagram of the MZI-based biosensor.
Fig. 2
Fig. 2 (a) A schematic diagram of the FS laser micromachining system employed to fabricate the in-fiber structure. The system includes an attenuator comprised of half-wave plate (W) and polarizer (P) for adjusting the laser power, a beam splitter (BS), a CCD camera, and an objective lens (MO) for focusing the laser onto the fiber. (b) The treading track of the FS laser beam. (c) FS laser-induced index modification and (d) etching micro-cavity in the fiber. (e) The SEM image of the micro-cavity cross-section.
Fig. 3
Fig. 3 The in-fiber MZI sensing system: (a) the stock BSA solution, (b) a schematic diagram of the BSA detection system, (c) a molecular BSA diagram.
Fig. 4
Fig. 4 (a) Interference spectra for the MZI sensor when the micro-cavity is filled with air and RI liquid (n = 1.300). (b) Transmission spectra evolution at wavelengths ranging from 1250 to 1650 nm for surrounding RI changes. (c) Dip wavelength plotted as a linear function of RI with error bars. Inset shows the average and error of the dip wavelength @1.315.
Fig. 5
Fig. 5 (a) Transmission spectra evolution at different BSA concentrations. (b) Spectra shift dips at long wavelengths for different BSA concentration samples.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( 2 π L Δ n λ + φ 0 )
2 π L Δ n λ m + φ 0 = (2m+1) π ,
d λ d ( Δ n ) = λ Δ n .
F S R = λ 2 Δ n L .

Metrics