Abstract

The device-independent (DI) quantum key distribution (QKD) protocol requires minimal assumptions about the devices and its security relies on the violation of Bell inequalities, making it hard to realize in real world. Semi-device-independent (SDI) QKD protocol confines quantum state within finite dimensional Hilbert space, thus easier for implementation with existing experimental technology. In this paper, we propose a practical SDI prepare-and-measure BB84 protocol. By introducing min entropy for security proof, we obtain a security bound under the practical condition with finite resources. Numerical simulations imply the finite-key effect can not be ignored in the forthcoming SDI QKD experiment.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

Nathan Walk, Sara Hosseini, Jiao Geng, Oliver Thearle, Jing Yan Haw, Seiji Armstrong, Syed M. Assad, Jiri Janousek, Timothy C. Ralph, Thomas Symul, Howard M. Wiseman, and Ping Koy Lam
Optica 3(6) 634-642 (2016)

Finite-key analysis of practical decoy-state measurement-device-independent quantum key distribution with unstable sources

Yang Wang, Wan-Su Bao, Chun Zhou, Mu-Sheng Jiang, and Hong-Wei Li
J. Opt. Soc. Am. B 36(3) B83-B91 (2019)

Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution

Qin Liao, Yijun Wang, Duan Huang, and Ying Guo
Opt. Express 26(16) 19907-19920 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, 1984) p. 175–179.
  2. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
    [Crossref]
  3. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16, 18790–18979 (2008).
    [Crossref]
  4. J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution over multicore fiber,” Opt. Express 24, 8081–8087 (2016).
    [Crossref] [PubMed]
  5. K. Lim, H. Ko, C. Suh, and J. K. Rhee, “Security analysis of quantum key distribution on passive optical networks,” Opt. Express 25, 11894–11909 (2017).
    [Crossref]
  6. W. Y. Liu, X. F. Zhong, T. Wu, F. Z. Li, B. Jin, Y. Tang, H. M. Hu, Z. P. Li, L. Zhang, W. Q. Cai, S. K. Liao, Y. Cao, and C. Z. Peng, “Experimental free-space quantum key distribution with efficient error correction,” Opt. Express 25, 10716–10723 (2017).
    [Crossref]
  7. P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
    [Crossref] [PubMed]
  8. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
    [Crossref]
  9. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
    [Crossref]
  10. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
    [Crossref] [PubMed]
  11. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
    [Crossref] [PubMed]
  12. J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
    [Crossref] [PubMed]
  13. X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
    [Crossref] [PubMed]
  14. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
    [Crossref]
  15. W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
    [Crossref]
  16. D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
    [Crossref]
  17. R. K. Chen, W. S. Bao, C. Zhou, H. W. Li, Y. Wang, and H. Z. Bao, “Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources,” Opt. Express 24, 6594–6605 (2016).
    [Crossref] [PubMed]
  18. D. Gottesman, H. K. Lo, N. Lükenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 4, 325 (2004).
  19. V. Scarani and R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
    [Crossref] [PubMed]
  20. M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
    [Crossref] [PubMed]
  21. C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
    [Crossref]
  22. J. Cederlöf and J-Ä. Larsson, “ Security aspects of the authentication used in quantum cryptography,” IEEE Trans. Inf. Theory 54, 1735 (2008).
    [Crossref]
  23. C. Zhou, W. S. Bao, H. W. Li, Y. Wang, and X. Q. Fu, “Key-leakage evaluation of authentication in quantum key distribution with finite resources,” Quantum Information Processing 13, 935 (2014).
    [Crossref]
  24. Y. Zhao, C. H. F. Fung, B. Qi, K. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
    [Crossref]
  25. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
    [Crossref]
  26. H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
    [Crossref]
  27. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
    [Crossref] [PubMed]
  28. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
    [Crossref] [PubMed]
  29. C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, “Device-independent quantum key distribution with local bell test,” Phys. Rev. X 3, 031006 (2013).
  30. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test Local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
    [Crossref]
  31. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
    [Crossref]
  32. M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
    [Crossref]
  33. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
    [Crossref]
  34. H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref] [PubMed]
  35. S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
    [Crossref] [PubMed]
  36. C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
    [Crossref]
  37. E. Woodhead, “Semi device independence of the BB84 protocol,” New J. Phys. 18, 055010 (2016).
    [Crossref]
  38. E. Woodhead and S. Pironio, “Secrecy in prepare-and-measure clauser-horne-shimony-holt tests with a qubit bound,” Phys. Rev. Lett. 115, 150501 (2015).
    [Crossref] [PubMed]
  39. Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Security of a practical semi-device-independent quantum key distribution protocol against collective attacks,” Chin. Phys. B 23, 080303 (2014).
    [Crossref]
  40. Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
    [Crossref]
  41. M. Tomamichel and R. Renner, “Uncertainty relation for smooth entropies,” Phys. Rev. Lett. 106, 110506 (2011).
    [Crossref] [PubMed]
  42. M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
    [Crossref] [PubMed]
  43. C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
    [Crossref]
  44. C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
    [Crossref]
  45. Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Finite-key analysis for one-sided device-independent quantum key distribution,” Phys. Rev. A 88, 052322 (2013).
    [Crossref]
  46. M. Mafu, K. Garapo, and F. Petruccione, “Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Rényi entropies,” Phys. Rev. A 88, 062306 (2013).
    [Crossref]
  47. A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, “Dense quantum coding and quantum finite automata,” J. ACM 49, 496 (2002).
    [Crossref]
  48. M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “(4,1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits,” New J. Phys. 8, 129 (2006).
    [Crossref]
  49. R. Renner, “Security of quantum key distribution,” Int. J. Quantum Inf. 6, 1 (2008).
    [Crossref]
  50. R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
    [Crossref]
  51. A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, “Chain rules for smooth min- and max-Entropies,” IEEE Trans. Inf. Theory 59, 2603 (2013).
    [Crossref]
  52. R. Serfling, “Probability inequalities for the sum in sampling without replacement,” J Ann. Stat. 2, 39 (1974).
    [Crossref]
  53. W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Amer. Stat. Assoc. 58, 13 (1963).
    [Crossref]

2017 (4)

K. Lim, H. Ko, C. Suh, and J. K. Rhee, “Security analysis of quantum key distribution on passive optical networks,” Opt. Express 25, 11894–11909 (2017).
[Crossref]

W. Y. Liu, X. F. Zhong, T. Wu, F. Z. Li, B. Jin, Y. Tang, H. M. Hu, Z. P. Li, L. Zhang, W. Q. Cai, S. K. Liao, Y. Cao, and C. Z. Peng, “Experimental free-space quantum key distribution with efficient error correction,” Opt. Express 25, 10716–10723 (2017).
[Crossref]

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
[Crossref] [PubMed]

2016 (5)

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

R. K. Chen, W. S. Bao, C. Zhou, H. W. Li, Y. Wang, and H. Z. Bao, “Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources,” Opt. Express 24, 6594–6605 (2016).
[Crossref] [PubMed]

J. F. Dynes, S. J. Kindness, S. W.-B. Tam, A. Plews, A. W. Sharpe, M. Lucamarini, B. Fröhlich, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Quantum key distribution over multicore fiber,” Opt. Express 24, 8081–8087 (2016).
[Crossref] [PubMed]

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

E. Woodhead, “Semi device independence of the BB84 protocol,” New J. Phys. 18, 055010 (2016).
[Crossref]

2015 (3)

E. Woodhead and S. Pironio, “Secrecy in prepare-and-measure clauser-horne-shimony-holt tests with a qubit bound,” Phys. Rev. Lett. 115, 150501 (2015).
[Crossref] [PubMed]

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
[Crossref]

2014 (6)

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, and X. Q. Fu, “Key-leakage evaluation of authentication in quantum key distribution with finite resources,” Quantum Information Processing 13, 935 (2014).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Security of a practical semi-device-independent quantum key distribution protocol against collective attacks,” Chin. Phys. B 23, 080303 (2014).
[Crossref]

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref] [PubMed]

C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

2013 (5)

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, “Chain rules for smooth min- and max-Entropies,” IEEE Trans. Inf. Theory 59, 2603 (2013).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Finite-key analysis for one-sided device-independent quantum key distribution,” Phys. Rev. A 88, 052322 (2013).
[Crossref]

M. Mafu, K. Garapo, and F. Petruccione, “Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Rényi entropies,” Phys. Rev. A 88, 062306 (2013).
[Crossref]

C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, “Device-independent quantum key distribution with local bell test,” Phys. Rev. X 3, 031006 (2013).

2012 (6)

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

2011 (4)

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
[Crossref]

M. Tomamichel and R. Renner, “Uncertainty relation for smooth entropies,” Phys. Rev. Lett. 106, 110506 (2011).
[Crossref] [PubMed]

2010 (2)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
[Crossref]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

2009 (1)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

2008 (5)

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16, 18790–18979 (2008).
[Crossref]

Y. Zhao, C. H. F. Fung, B. Qi, K. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref] [PubMed]

J. Cederlöf and J-Ä. Larsson, “ Security aspects of the authentication used in quantum cryptography,” IEEE Trans. Inf. Theory 54, 1735 (2008).
[Crossref]

R. Renner, “Security of quantum key distribution,” Int. J. Quantum Inf. 6, 1 (2008).
[Crossref]

2007 (1)

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

2006 (1)

M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “(4,1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits,” New J. Phys. 8, 129 (2006).
[Crossref]

2005 (1)

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

2004 (1)

D. Gottesman, H. K. Lo, N. Lükenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 4, 325 (2004).

2002 (2)

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[Crossref]

A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, “Dense quantum coding and quantum finite automata,” J. ACM 49, 496 (2002).
[Crossref]

1999 (1)

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

1974 (1)

R. Serfling, “Probability inequalities for the sum in sampling without replacement,” J Ann. Stat. 2, 39 (1974).
[Crossref]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test Local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

1963 (1)

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Amer. Stat. Assoc. 58, 13 (1963).
[Crossref]

Acín, A.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Ambainis, A.

A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, “Dense quantum coding and quantum finite automata,” J. ACM 49, 496 (2002).
[Crossref]

Anisimova, E.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Bao, H. Z.

Bao, W. S.

R. K. Chen, W. S. Bao, C. Zhou, H. W. Li, Y. Wang, and H. Z. Bao, “Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources,” Opt. Express 24, 6594–6605 (2016).
[Crossref] [PubMed]

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Security of a practical semi-device-independent quantum key distribution protocol against collective attacks,” Chin. Phys. B 23, 080303 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, and X. Q. Fu, “Key-leakage evaluation of authentication in quantum key distribution with finite resources,” Quantum Information Processing 13, 935 (2014).
[Crossref]

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Finite-key analysis for one-sided device-independent quantum key distribution,” Phys. Rev. A 88, 052322 (2013).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, 1984) p. 175–179.

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

Branciard, C.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, 1984) p. 175–179.

Braunstein, S. L.

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

Brunner, N.

M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
[Crossref]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Bužek, V.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

Cai, W. Q.

Cai, X.-D.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Cao, D. Y.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
[Crossref]

Cao, Y.

W. Y. Liu, X. F. Zhong, T. Wu, F. Z. Li, B. Jin, Y. Tang, H. M. Hu, Z. P. Li, L. Zhang, W. Q. Cai, S. K. Liao, Y. Cao, and C. Z. Peng, “Experimental free-space quantum key distribution with efficient error correction,” Opt. Express 25, 10716–10723 (2017).
[Crossref]

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Cavalcanti, E. G.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Cederlöf, J.

J. Cederlöf and J-Ä. Larsson, “ Security aspects of the authentication used in quantum cryptography,” IEEE Trans. Inf. Theory 54, 1735 (2008).
[Crossref]

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Chen, K.

Y. Zhao, C. H. F. Fung, B. Qi, K. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

Chen, R. K.

Chen, W.

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Chen, Y.-A.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test Local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Cui, W.

M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref] [PubMed]

Curty, M.

C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref] [PubMed]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Ding, D. S.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
[Crossref] [PubMed]

Dixon, A. R.

Dupuis, F.

A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, “Chain rules for smooth min- and max-Entropies,” IEEE Trans. Inf. Theory 59, 2603 (2013).
[Crossref]

Dusek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Dynes, J. F.

Elser, D.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
[Crossref]

Erven, C.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Fan, F.

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

Fröhlich, B.

Fu, X. Q.

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, and X. Q. Fu, “Key-leakage evaluation of authentication in quantum key distribution with finite resources,” Quantum Information Processing 13, 935 (2014).
[Crossref]

Fujiwara, M.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Fung, C. H. F.

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

Y. Zhao, C. H. F. Fung, B. Qi, K. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

Garapo, K.

M. Mafu, K. Garapo, and F. Petruccione, “Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Rényi entropies,” Phys. Rev. A 88, 062306 (2013).
[Crossref]

Gerhardt, I.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

Gisin, N.

C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, “Device-independent quantum key distribution with local bell test,” Phys. Rev. X 3, 031006 (2013).

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

Godfrey, M.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Gottesman, D.

D. Gottesman, H. K. Lo, N. Lükenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 4, 325 (2004).

Guo, G. C.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
[Crossref] [PubMed]

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
[Crossref]

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Hadfield, R. H.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Han, Z. F.

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Hayashi, M.

M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “(4,1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits,” New J. Phys. 8, 129 (2006).
[Crossref]

Herbst, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Hillery, M.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

Hoeffding, W.

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Amer. Stat. Assoc. 58, 13 (1963).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test Local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test Local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

Hu, H. M.

Hu, J. Y.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

Huang, J. Z.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Huang, W.

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

Huang, Y. F.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
[Crossref]

Huang, Y.-M.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Iwama, K.

M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “(4,1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits,” New J. Phys. 8, 129 (2006).
[Crossref]

Jennewein, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Jia, H. Y.

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

Jia, J.-J.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Jia, S. T.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

Jiang, Y.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Jin, B.

Jing, M. Y.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Kindness, S. J.

Ko, H.

Kofler, J.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Kraus, B.

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

Kropatschek, S.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Kurtsiefer, C.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

Lamas-Linares, A.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

Larsson, J-Ä.

J. Cederlöf and J-Ä. Larsson, “ Security aspects of the authentication used in quantum cryptography,” IEEE Trans. Inf. Theory 54, 1735 (2008).
[Crossref]

Li, C. F.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
[Crossref]

Li, F. Y.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Li, F. Z.

Li, H. W.

R. K. Chen, W. S. Bao, C. Zhou, H. W. Li, Y. Wang, and H. Z. Bao, “Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources,” Opt. Express 24, 6594–6605 (2016).
[Crossref] [PubMed]

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Security of a practical semi-device-independent quantum key distribution protocol against collective attacks,” Chin. Phys. B 23, 080303 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, and X. Q. Fu, “Key-leakage evaluation of authentication in quantum key distribution with finite resources,” Quantum Information Processing 13, 935 (2014).
[Crossref]

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Finite-key analysis for one-sided device-independent quantum key distribution,” Phys. Rev. A 88, 052322 (2013).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Li, Y.

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Security of a practical semi-device-independent quantum key distribution protocol against collective attacks,” Chin. Phys. B 23, 080303 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Finite-key analysis for one-sided device-independent quantum key distribution,” Phys. Rev. A 88, 052322 (2013).
[Crossref]

Li, Z. P.

Liao, S. K.

Liao, S.-K.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Lim, C. C. W.

M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref] [PubMed]

C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, “Device-independent quantum key distribution with local bell test,” Phys. Rev. X 3, 031006 (2013).

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

Lim, K.

Liu, B.

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

Liu, B. H.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
[Crossref]

Liu, C.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Liu, D.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Liu, Q.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

Liu, W. Y.

Liu, X. S.

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[Crossref]

Lo, H. K.

M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref] [PubMed]

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Y. Zhao, C. H. F. Fung, B. Qi, K. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

D. Gottesman, H. K. Lo, N. Lükenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 4, 325 (2004).

Long, G. L.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[Crossref]

Lu, H.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Lucamarini, M.

Lükenhaus, N.

D. Gottesman, H. K. Lo, N. Lükenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 4, 325 (2004).

Lütkenhausand, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Lydersen, L.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
[Crossref]

Ma, X. F.

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

Ma, X.-S.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Mafu, M.

M. Mafu, K. Garapo, and F. Petruccione, “Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Rényi entropies,” Phys. Rev. A 88, 062306 (2013).
[Crossref]

Makarov, V.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
[Crossref]

Massar, S.

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Mech, A.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Miki, S.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Natarajan, C. M.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Nayak, A.

A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, “Dense quantum coding and quantum finite automata,” J. ACM 49, 496 (2002).
[Crossref]

Naylor, W.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Nishimura, H.

M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “(4,1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits,” New J. Phys. 8, 129 (2006).
[Crossref]

O’Brien, J. L.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Pan, G.-S.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Pan, J.-W.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Pawlowski, M.

M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
[Crossref]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Peng, C. Z.

Peng, C.-Z.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Penty, R. V.

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Petruccione, F.

M. Mafu, K. Garapo, and F. Petruccione, “Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Rényi entropies,” Phys. Rev. A 88, 062306 (2013).
[Crossref]

Pirandola, S.

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

Pironio, S.

E. Woodhead and S. Pironio, “Secrecy in prepare-and-measure clauser-horne-shimony-holt tests with a qubit bound,” Phys. Rev. Lett. 115, 150501 (2015).
[Crossref] [PubMed]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Plews, A.

Portmann, C.

C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, “Device-independent quantum key distribution with local bell test,” Phys. Rev. X 3, 031006 (2013).

Preskill, J.

D. Gottesman, H. K. Lo, N. Lükenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 4, 325 (2004).

Qi, B.

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

Y. Zhao, C. H. F. Fung, B. Qi, K. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

Qin, G. Q.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

Raymond, R.

M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “(4,1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits,” New J. Phys. 8, 129 (2006).
[Crossref]

Ren, J.-G.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Renner, R.

A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, “Chain rules for smooth min- and max-Entropies,” IEEE Trans. Inf. Theory 59, 2603 (2013).
[Crossref]

C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, “Device-independent quantum key distribution with local bell test,” Phys. Rev. X 3, 031006 (2013).

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

M. Tomamichel and R. Renner, “Uncertainty relation for smooth entropies,” Phys. Rev. Lett. 106, 110506 (2011).
[Crossref] [PubMed]

R. Renner, “Security of quantum key distribution,” Int. J. Quantum Inf. 6, 1 (2008).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref] [PubMed]

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

Rhee, J. K.

Sangouard, N.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

Sasaki, M.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Scarani, V.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref] [PubMed]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

Scheidl, T.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Serfling, R.

R. Serfling, “Probability inequalities for the sum in sampling without replacement,” J Ann. Stat. 2, 39 (1974).
[Crossref]

Sharpe, A. W.

Sheng, Y. B.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
[Crossref] [PubMed]

Shi, B. S.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
[Crossref] [PubMed]

Shields, A. J.

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test Local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

Sibson, P.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Skaar, J.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
[Crossref]

Su, Q.

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

Suh, C.

Tam, S. W.-B.

Tamaki, K.

M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref] [PubMed]

Tang, Y.

Tanner, M. G.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Ta-Shma, A.

A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, “Dense quantum coding and quantum finite automata,” J. ACM 49, 496 (2002).
[Crossref]

Terai, H.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Thompson, M. G.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Tomamichel, M.

A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, “Chain rules for smooth min- and max-Entropies,” IEEE Trans. Inf. Theory 59, 2603 (2013).
[Crossref]

C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, “Device-independent quantum key distribution with local bell test,” Phys. Rev. X 3, 031006 (2013).

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

M. Tomamichel and R. Renner, “Uncertainty relation for smooth entropies,” Phys. Rev. Lett. 106, 110506 (2011).
[Crossref] [PubMed]

Ursin, R.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Vazirani, U.

A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, “Dense quantum coding and quantum finite automata,” J. ACM 49, 496 (2002).
[Crossref]

Vitanov, A.

A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, “Chain rules for smooth min- and max-Entropies,” IEEE Trans. Inf. Theory 59, 2603 (2013).
[Crossref]

Walborn, S. P.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Walenta, N.

C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

Wang, D.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Wang, J.-Y.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Wang, S.

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Wang, X.

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

Wang, Y.

R. K. Chen, W. S. Bao, C. Zhou, H. W. Li, Y. Wang, and H. Z. Bao, “Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources,” Opt. Express 24, 6594–6605 (2016).
[Crossref] [PubMed]

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Security of a practical semi-device-independent quantum key distribution protocol against collective attacks,” Chin. Phys. B 23, 080303 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, and X. Q. Fu, “Key-leakage evaluation of authentication in quantum key distribution with finite resources,” Quantum Information Processing 13, 935 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Finite-key analysis for one-sided device-independent quantum key distribution,” Phys. Rev. A 88, 052322 (2013).
[Crossref]

Wang, Z.

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
[Crossref]

Wiechers, C.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
[Crossref]

Wiseman, H. M.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Wittmann, B.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Wittmann, C.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
[Crossref]

Woodhead, E.

E. Woodhead, “Semi device independence of the BB84 protocol,” New J. Phys. 18, 055010 (2016).
[Crossref]

E. Woodhead and S. Pironio, “Secrecy in prepare-and-measure clauser-horne-shimony-holt tests with a qubit bound,” Phys. Rev. Lett. 115, 150501 (2015).
[Crossref] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Wu, T.

Wu, Y.-P.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Xiao, L. T.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

Xu, B. J.

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

Xu, F. H.

M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref] [PubMed]

C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

Xu, P.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Yamashita, S.

M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “(4,1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits,” New J. Phys. 8, 129 (2006).
[Crossref]

Yamashita, T.

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

Yang, Y. H.

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

Yin, H.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Yin, J.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Yin, Z. Q.

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Yong, H.-L.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Yu, B.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

Yuan, Z. L.

Zbinden, H.

C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

Zeilinger, A.

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

Zhang, C. M.

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

Zhang, H. L.

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

Zhang, L.

Zhang, W.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
[Crossref] [PubMed]

Zhang, Y.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Zhao, Y.

Y. Zhao, C. H. F. Fung, B. Qi, K. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

Zhong, X. F.

Zhou, C.

R. K. Chen, W. S. Bao, C. Zhou, H. W. Li, Y. Wang, and H. Z. Bao, “Biased decoy-state measurement-device-independent quantum cryptographic conferencing with finite resources,” Opt. Express 24, 6594–6605 (2016).
[Crossref] [PubMed]

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Security of a practical semi-device-independent quantum key distribution protocol against collective attacks,” Chin. Phys. B 23, 080303 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, and X. Q. Fu, “Key-leakage evaluation of authentication in quantum key distribution with finite resources,” Quantum Information Processing 13, 935 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Finite-key analysis for one-sided device-independent quantum key distribution,” Phys. Rev. A 88, 052322 (2013).
[Crossref]

Zhou, F.

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

Zhou, L.

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
[Crossref] [PubMed]

Zhou, Z.

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

Chin. Phys. B (1)

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Security of a practical semi-device-independent quantum key distribution protocol against collective attacks,” Chin. Phys. B 23, 080303 (2014).
[Crossref]

IEEE Trans. Inf. Theory (2)

A. Vitanov, F. Dupuis, M. Tomamichel, and R. Renner, “Chain rules for smooth min- and max-Entropies,” IEEE Trans. Inf. Theory 59, 2603 (2013).
[Crossref]

J. Cederlöf and J-Ä. Larsson, “ Security aspects of the authentication used in quantum cryptography,” IEEE Trans. Inf. Theory 54, 1735 (2008).
[Crossref]

Int. J. Quantum Inf. (1)

R. Renner, “Security of quantum key distribution,” Int. J. Quantum Inf. 6, 1 (2008).
[Crossref]

J Ann. Stat. (1)

R. Serfling, “Probability inequalities for the sum in sampling without replacement,” J Ann. Stat. 2, 39 (1974).
[Crossref]

J. ACM (1)

A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, “Dense quantum coding and quantum finite automata,” J. ACM 49, 496 (2002).
[Crossref]

J. Amer. Stat. Assoc. (1)

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Amer. Stat. Assoc. 58, 13 (1963).
[Crossref]

Light: Science and Applications (1)

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light: Science and Applications 5, e16144 (2016).
[Crossref]

Nat. Commun. (3)

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” Nat. Commun. 8, 13984 (2017).
[Crossref] [PubMed]

M. Curty, F. H. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H. K. Lo, “Finite-key analysis for measurement-device-independent quantum key distribution,” Nat. Commun. 5, 3732 (2014).
[Crossref] [PubMed]

M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight finite-key analysis for quantum cryptography,” Nat. Commun. 3, 634 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics 4, 686 (2010).
[Crossref]

Nature (2)

J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang, X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z. Peng, and J.-W. Pan, “Quantum teleportation and entanglement distribution over 100-kilometre free-space channels,” Nature 488, 185–188 (2012).
[Crossref] [PubMed]

X.-S. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, B. Wittmann, A. Mech, J. Kofler, E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, and A. Zeilinger, “Quantum teleportation over 143 kilometres using active feed-forward,” Nature 489, 269–273 (2012).
[Crossref] [PubMed]

New J. Phys. (2)

E. Woodhead, “Semi device independence of the BB84 protocol,” New J. Phys. 18, 055010 (2016).
[Crossref]

M. Hayashi, K. Iwama, H. Nishimura, R. Raymond, and S. Yamashita, “(4,1)-Quantum random access coding does not exist-one qubit is not enough to recover one of four bits,” New J. Phys. 8, 129 (2006).
[Crossref]

Opt. Express (5)

Phys. Rev. A (14)

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829 (1999).
[Crossref]

R. Renner, N. Gisin, and B. Kraus, “Information-theoretic security proof for quantum-key-distribution protocols,” Phys. Rev. A 72, 012332 (2005).
[Crossref]

Z. Q. Yin, C. H. F. Fung, X. F. Ma, C. M. Zhang, H. W. Li, W. Chen, S. Wang, G. C. Guo, and Z. F. Han, “Mismatched-basis statistics enable quantum key distribution with uncharacterized qubit sources,” Phys. Rev. A 90, 052319 (2014).
[Crossref]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002).
[Crossref]

Y. Zhao, C. H. F. Fung, B. Qi, K. Chen, and H. K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).
[Crossref]

C. Zhou, W. S. Bao, W. Chen, H. W. Li, Z. Q. Yin, Y. Wang, and Z. F. Han, “Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources,” Phys. Rev. A 88, 052333 (2013).
[Crossref]

C. C. W. Lim, M. Curty, N. Walenta, F. H. Xu, and H. Zbinden, “Concise security bounds for practical decoy-state quantum key distribution,” Phys. Rev. A 89, 022307 (2014).
[Crossref]

C. Zhou, W. S. Bao, H. L. Zhang, H. W. Li, Y. Wang, Y. Li, and X. Wang, “Biased decoy-state measurement-device-independent quantum key distribution with finite resources,” Phys. Rev. A 91, 022313 (2015).
[Crossref]

Y. Wang, W. S. Bao, H. W. Li, C. Zhou, and Y. Li, “Finite-key analysis for one-sided device-independent quantum key distribution,” Phys. Rev. A 88, 052322 (2013).
[Crossref]

M. Mafu, K. Garapo, and F. Petruccione, “Finite-size key in the Bennett 1992 quantum-key-distribution protocol for Rényi entropies,” Phys. Rev. A 88, 062306 (2013).
[Crossref]

H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, “Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources,” Phys. Rev. A 84, 062308 (2011).
[Crossref]

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, Y. Li, Z. Q. Yin, W. Chen, and Z. F. Han, “Tight finite-key analysis for passive decoy-state quantum key distribution under general attacks,” Phys. Rev. A 89, 052328 (2014).
[Crossref]

M. Pawłowski and N. Brunner, “Semi-device-independent security of one-way quantum key distribution,” Phys. Rev. A 84, 010302 (2011).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Phys. Rev. Lett. (11)

H. K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref] [PubMed]

S. L. Braunstein and S. Pirandola, “Side-channel-free quantum key distribution,” Phys. Rev. Lett. 108, 130502 (2012).
[Crossref] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test Local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).
[Crossref]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally faking the violation of bell’s inequalities,” Phys. Rev. Lett. 107, 170404 (2011).
[Crossref]

V. Scarani and R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
[Crossref] [PubMed]

A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).
[Crossref] [PubMed]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier,” Phys. Rev. Lett. 105, 070501 (2010).
[Crossref] [PubMed]

E. Woodhead and S. Pironio, “Secrecy in prepare-and-measure clauser-horne-shimony-holt tests with a qubit bound,” Phys. Rev. Lett. 115, 150501 (2015).
[Crossref] [PubMed]

M. Tomamichel and R. Renner, “Uncertainty relation for smooth entropies,” Phys. Rev. Lett. 106, 110506 (2011).
[Crossref] [PubMed]

W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, “Quantum secure direct communication with quantum memory,” Phys. Rev. Lett. 118, 220501 (2017).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895 (1993).
[Crossref] [PubMed]

Phys. Rev. X (1)

C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, “Device-independent quantum key distribution with local bell test,” Phys. Rev. X 3, 031006 (2013).

Quant. Inf. Comp. (1)

D. Gottesman, H. K. Lo, N. Lükenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quant. Inf. Comp. 4, 325 (2004).

Quantum Information Processing (1)

C. Zhou, W. S. Bao, H. W. Li, Y. Wang, and X. Q. Fu, “Key-leakage evaluation of authentication in quantum key distribution with finite resources,” Quantum Information Processing 13, 935 (2014).
[Crossref]

Rev. Mod. Phys. (1)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhausand, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301 (2009).
[Crossref]

Science Bulletin (1)

D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, “Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons,” Science Bulletin 60, 1128–1132 (2015).
[Crossref]

Science China Physics, Mechanics and Astronomy (1)

W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, “Improved multiparty quantum key agreement in travelling mode,” Science China Physics, Mechanics and Astronomy 59, 120311 (2016).
[Crossref]

Other (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore, India, 1984) p. 175–179.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 PM SDI setting with CHSH estimation: Alice’s device of state preparation is an oracle with input being (x, a) ∈ {0, 1}2. A series of pulses are modulated to be one of four different qubit states ρx,a ∈ {ρ, ρ′, σ, σ′}. Bob’s device of state measurement is an oracle with input being y ∈ {0, 1} and output being b ∈ {0, 1}.
Fig. 2
Fig. 2 Comparison of secret bound fsecr as a function of the channel visibility V between SDI-QKD protocol and standard BB84 protocol: The solid line, shown the fraction of asymptotic secret key of our SDI-QKD protocol, is plotted according to Eq. (13), where Qtol = (1 − V)/2 and S tol = 2 2 V . The dashed line, shown that of the standard BB84 protocol, is plotted by the ideal asymptotic formula of f secr = 1 2 h ( 1 V 2 ) .
Fig. 3
Fig. 3 Fraction of secret key /MCP as a function of the channel visibility V for different classical postprocessing block size MCP: Assuming that pc and pq (parameters in step 1 of our protocol) are chosen to satisfy MCP: MPE: Mj = 100: 10: 1, we plot the secret bounds for the channel environment with visibility V according to Eq. (5). Here, Qtol = (1 − V)/2, S tol = 2 2 V , εcor = 10−8 and εsec = 10−10. The non-black solid curves are obtained with MCP = 1010, 109, 108 and 107 from left to right.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

S = a , b , x , y ( 1 ) a + b + x y P ( a b | x y ) ,
W = 1 2 a , b , x , y ( 1 ) a + b + x y P ( b | a x y ) .
| α 0 , 0 = cos ( π / 8 ) | 0 + sin ( π / 8 ) | 1 | α 1 , 1 = cos ( 5 π / 8 ) | 0 + sin ( 5 π / 8 ) | 1 | α 0 , 1 = cos ( 7 π / 8 ) | 0 + sin ( 7 π / 8 ) | 1 | α 1 , 0 = cos ( 3 π / 8 ) | 0 + sin ( 3 π / 8 ) | 1 .
max ρ ˜ ε ( ρ A B ) { log 2 min { λ > 0 : σ B : ρ ˜ A B λ id A σ B } } ,
M CP [ 1 log 2 ( 1 + 2 ( S tol λ ) 2 4 ) h ( Q tol + μ ) ξ δ ] l o g 2 1 2 ε cor ε 2
λ = 32 M j ln 1 ε μ = ( M CP + M PE ) ( M PE + 1 ) M CP M PE 2 ln 1 ε ξ = 2 ln ( 1 / ε ) + 2 ln ( M j + 1 ) M j δ = 7 log 2 ( 2 / ε ) M CP
H min 2 ε ( A n | C E n ) 2 log 2 1 2 ε pa ,
H min 2 ε ( A n | C E n ) H min 2 ε ( A n | E n ) leak EC log 2 2 ε cor ,
( M CP + M PE ) ( M PE + 1 ) M CP M PE 2 ln 1 ε Q ,
H min 2 ε ( A n | E n ) n [ min σ A ¯ E ¯ Γ ξ H ( A ¯ | E ¯ ) δ ] ,
H min ( A ¯ | E ¯ ) 1 log 2 ( 1 + 2 S 2 4 ) .
H min ( A ¯ | E ¯ ) 1 l o g 2 ( 1 + 2 ( S tol λ ) 2 4 ) .
H min 2 ε ( A n | E n ) n [ 1 log 2 ( 1 + 2 ( S tol λ ) 2 4 ) ξ δ ] .
p pass ( 4 ε + ε pa + ε PE p pass ) 4 ε + ε pa + ε PE = ε sec .
f secr = 1 log 2 ( 1 + 2 ( S tol ) 2 4 ) h ( Q tol ) .

Metrics