Abstract

Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator

Liu-Yong Cheng, Hong-Fu Wang, Shou Zhang, and Kyu-Hwang Yeon
Opt. Express 21(5) 5988-5997 (2013)

Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond

Liu-Yong Cheng, Hong-Fu Wang, and Shou Zhang
J. Opt. Soc. Am. B 30(7) 1821-1826 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  2. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
    [Crossref]
  3. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98(19), 193601 (2007).
    [Crossref] [PubMed]
  4. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
    [Crossref] [PubMed]
  5. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
    [Crossref]
  6. A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
    [Crossref] [PubMed]
  7. H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
    [Crossref] [PubMed]
  8. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
    [Crossref] [PubMed]
  9. A. Reiserer, S. Ritter, and G. Rempe, “Nondestructive detection of an optical photon,” Science 342(6164), 1349–1351 (2013).
    [Crossref] [PubMed]
  10. A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
    [Crossref] [PubMed]
  11. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
    [Crossref]
  12. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q Si Nx mi-crodisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
    [Crossref]
  13. N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
    [Crossref] [PubMed]
  14. D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
    [Crossref]
  15. S. Parkins and T. Aoki, “Microtoroidal cavity QED with fiber overcoupling and strong atom-field coupling: A single-atom quantum switch for coherent light fields,” Phys. Rev. A 90(5), 053822 (2014).
    [Crossref]
  16. Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phys. Mech. Astron. 58(11), 114208 (2015).
    [Crossref]
  17. X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41(15), 3603–3606 (2016).
    [Crossref] [PubMed]
  18. Y. F. Xiao and Q. Gong, “Optical microcavity: from fundamental physics to functional photonics devices,” Sci. Bull. 61(3), 185–186 (2016).
    [Crossref]
  19. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
    [Crossref] [PubMed]
  20. C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
    [Crossref] [PubMed]
  21. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
    [Crossref] [PubMed]
  22. K. Srinivasan, C. P. Michael, R. Perahia, and O. Painter, “Investigations of a coherently driven semiconductor optical cavity QED system,” Phys. Rev. A 78(3), 033839 (2008).
    [Crossref]
  23. B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
    [Crossref] [PubMed]
  24. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
    [Crossref] [PubMed]
  25. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79(3), 032303 (2009).
    [Crossref]
  26. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79(6), 064304 (2009).
    [Crossref]
  27. C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78(8), 085307 (2008).
    [Crossref]
  28. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78(12), 125318 (2008).
    [Crossref]
  29. A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87(1), 012332 (2013).
    [Crossref]
  30. M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
    [Crossref] [PubMed]
  31. K. Lemr and A. Cernoch, “Linear-optical programmable quantum router,” Opt. Commun. 300, 282–285 (2013).
    [Crossref]
  32. K. Lemr, K. Bartkiewicz, A. Cernoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87(6), 062333 (2013).
    [Crossref]
  33. C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
    [Crossref]
  34. I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
    [Crossref] [PubMed]
  35. C. Y. Hu, “Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors,” Phys. Rev. B 94(24), 245307 (2016).
    [Crossref]
  36. C. Y. Hu, “Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical micro-cavity,” Sci. Rep. 7, 45582 (2017).
    [Crossref]
  37. K. Bartkiewicz, A. Cernoch, and K. Lemr, “Using quantum routers to implement quantum message authentication and Bell-state manipulation,” Phys. Rev. A 90(2), 022335 (2014).
    [Crossref]
  38. L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
    [Crossref]
  39. R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull. 60(1), 96–100 (2015).
    [Crossref]
  40. B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90(5), 052309 (2014).
    [Crossref]
  41. F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62(1), 46–68 (2017).
    [Crossref]
  42. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
    [Crossref]
  43. X. Fang, K. F. MacDonald, and N. I. Zheludev,“Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
    [Crossref]
  44. G. L. Long, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45(5), 825–844 (2006).
    [Crossref]
  45. G. L. Long and Y. Liu, “Duality Computing in Quantum Computers,” Commun. Theor. Phys. 50(6), 1303–1306 (2008).
    [Crossref]
  46. G. L. Long, Y. Liu, and C. Wang, “Allowable Generalized Quantum Gates,” Commun. Theor. Phys. 51(1) 65–67. (2009).
    [Crossref]
  47. A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” Quantum Inf. Comput. 12(11–12), 901–924 (2012).
  48. D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett. 114(9), 090502 (2015).
    [Crossref] [PubMed]
  49. S. J. Wei and G. L. Long, “Duality quantum computer and the efficient quantum simulations,” Quantum Inf. Process. 15(3), 1189–1212 (2016).
    [Crossref]
  50. S. J. Wei, D. Ruan, and G. L. Long, “Duality quantum algorithm efficiently simulates open quantum systems,” Sci. Rep. 6, 30727 (2016).
    [Crossref] [PubMed]
  51. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
    [Crossref]
  52. K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).
  53. K. Cai, R. X. Wang, Z. Q. Yin, and G. L. Long, “Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator,” Sci. China-Phys. Mech. Astron. 60, 070311 (2017).
    [Crossref]
  54. L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
    [Crossref] [PubMed]
  55. B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-Light Coherence for Single-Spin Measurement and Control in Diamond,” Science 330(6008), 1212–1215 (2010).
    [Crossref] [PubMed]
  56. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
    [Crossref] [PubMed]
  57. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
    [Crossref] [PubMed]
  58. J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
    [Crossref]
  59. W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12(11), 113039 (2010).
    [Crossref]
  60. Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83(5), 054305 (2011).
    [Crossref]
  61. P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85(4), 042306 (2012).
    [Crossref]
  62. L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator,” Opt. Express 21(5), 5988–5997 (2013).
    [Crossref] [PubMed]
  63. S. Liu, J. Li, R. Yu, and Y. Wu, “Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator,” Opt. Express 21(3), 3501–3515 (2013).
    [Crossref] [PubMed]
  64. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96(24), 241113 (2010).
    [Crossref]
  65. H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88(4), 042323 (2013).
    [Crossref]
  66. C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21(16), 19252–19260 (2013).
    [Crossref] [PubMed]
  67. H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91(3), 032324 (2015).
    [Crossref]
  68. H. R. Wei and G. L. Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
    [Crossref] [PubMed]
  69. L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24(14), 15429–15445 (2016).
    [Crossref] [PubMed]
  70. H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24(16), 18619–18630 (2016).
    [Crossref] [PubMed]
  71. C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Am. B 29(12) 3349–3354 (2012).
    [Crossref]
  72. B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10(11), 115201 (2013).
    [Crossref]
  73. C. Wang, T. J. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Concentration of entangled nitrogen-vacancy centers in decoherence free subspace,” Opt. Express 22(2) 1551–1559 (2014).
    [Crossref] [PubMed]
  74. C. Cao, T. J. Wang, R. Zhang, and C. Wang, “Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator,” J. Opt. Soc. Am. B 32(7), 1524–1531 (2015).
    [Crossref]
  75. F. F. Du, F. G. Deng, and G. L. Long, “General hyperconcentration of photonic polarization-time-bin hyperentan-glement assisted by nitrogen-vacancy centers coupled to resonators,” Sci. Rep. 6, 35922 (2016).
    [Crossref]
  76. C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
    [Crossref]
  77. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
    [Crossref] [PubMed]
  78. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica micro-sphere,” Nano Lett. 9(4), 1447–1450 (2009).
    [Crossref] [PubMed]
  79. R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18(18), 18968–18974 (2010).
    [Crossref] [PubMed]
  80. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009).
    [Crossref]
  81. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008).
    [Crossref]
  82. A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
    [Crossref]
  83. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
    [Crossref] [PubMed]
  84. T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90(5), 052310 (2014).
    [Crossref]
  85. B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
    [Crossref]
  86. K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photonics Technol. Lett. 14(6), 828–830 (2002).
    [Crossref]
  87. H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
    [Crossref]
  88. H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
    [Crossref] [PubMed]
  89. H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
    [Crossref] [PubMed]
  90. F. Monifi, J. Friedlein, S. K. Özdemir, and L. Yang, , “A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator,” J. Lightwave Technol. 30(21), 3306–3315 (2012).
    [Crossref]
  91. F. Monifi, S. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103(18), 181103 (2013).
    [Crossref]
  92. D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111(19), 193601 (2013).
    [Crossref]
  93. A. Auffeves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A,  79(5), 053838 (2009).
    [Crossref]
  94. C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
    [Crossref]
  95. C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83(11), 115303 (2011).
    [Crossref]
  96. P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17(12), 9588–9601 (2009).
    [Crossref] [PubMed]
  97. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
    [Crossref] [PubMed]
  98. M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K. M. C. Fu, “Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform,” Phys. Rev. Appl. 6(1), 011001 (2016).
    [Crossref]

2017 (3)

C. Y. Hu, “Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical micro-cavity,” Sci. Rep. 7, 45582 (2017).
[Crossref]

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62(1), 46–68 (2017).
[Crossref]

K. Cai, R. X. Wang, Z. Q. Yin, and G. L. Long, “Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator,” Sci. China-Phys. Mech. Astron. 60, 070311 (2017).
[Crossref]

2016 (11)

S. J. Wei and G. L. Long, “Duality quantum computer and the efficient quantum simulations,” Quantum Inf. Process. 15(3), 1189–1212 (2016).
[Crossref]

S. J. Wei, D. Ruan, and G. L. Long, “Duality quantum algorithm efficiently simulates open quantum systems,” Sci. Rep. 6, 30727 (2016).
[Crossref] [PubMed]

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

Y. F. Xiao and Q. Gong, “Optical microcavity: from fundamental physics to functional photonics devices,” Sci. Bull. 61(3), 185–186 (2016).
[Crossref]

C. Y. Hu, “Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors,” Phys. Rev. B 94(24), 245307 (2016).
[Crossref]

F. F. Du, F. G. Deng, and G. L. Long, “General hyperconcentration of photonic polarization-time-bin hyperentan-glement assisted by nitrogen-vacancy centers coupled to resonators,” Sci. Rep. 6, 35922 (2016).
[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
[Crossref]

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K. M. C. Fu, “Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform,” Phys. Rev. Appl. 6(1), 011001 (2016).
[Crossref]

L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24(14), 15429–15445 (2016).
[Crossref] [PubMed]

X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41(15), 3603–3606 (2016).
[Crossref] [PubMed]

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24(16), 18619–18630 (2016).
[Crossref] [PubMed]

2015 (10)

C. Cao, T. J. Wang, R. Zhang, and C. Wang, “Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator,” J. Opt. Soc. Am. B 32(7), 1524–1531 (2015).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phys. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91(3), 032324 (2015).
[Crossref]

H. R. Wei and G. L. Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
[Crossref] [PubMed]

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev,“Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull. 60(1), 96–100 (2015).
[Crossref]

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett. 114(9), 090502 (2015).
[Crossref] [PubMed]

2014 (8)

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90(5), 052309 (2014).
[Crossref]

K. Bartkiewicz, A. Cernoch, and K. Lemr, “Using quantum routers to implement quantum message authentication and Bell-state manipulation,” Phys. Rev. A 90(2), 022335 (2014).
[Crossref]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
[Crossref] [PubMed]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

S. Parkins and T. Aoki, “Microtoroidal cavity QED with fiber overcoupling and strong atom-field coupling: A single-atom quantum switch for coherent light fields,” Phys. Rev. A 90(5), 053822 (2014).
[Crossref]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90(5), 052310 (2014).
[Crossref]

C. Wang, T. J. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Concentration of entangled nitrogen-vacancy centers in decoherence free subspace,” Opt. Express 22(2) 1551–1559 (2014).
[Crossref] [PubMed]

2013 (14)

S. Liu, J. Li, R. Yu, and Y. Wu, “Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator,” Opt. Express 21(3), 3501–3515 (2013).
[Crossref] [PubMed]

L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator,” Opt. Express 21(5), 5988–5997 (2013).
[Crossref] [PubMed]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21(16), 19252–19260 (2013).
[Crossref] [PubMed]

F. Monifi, S. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103(18), 181103 (2013).
[Crossref]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111(19), 193601 (2013).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88(4), 042323 (2013).
[Crossref]

A. Reiserer, S. Ritter, and G. Rempe, “Nondestructive detection of an optical photon,” Science 342(6164), 1349–1351 (2013).
[Crossref] [PubMed]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10(11), 115201 (2013).
[Crossref]

K. Lemr and A. Cernoch, “Linear-optical programmable quantum router,” Opt. Commun. 300, 282–285 (2013).
[Crossref]

K. Lemr, K. Bartkiewicz, A. Cernoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87(6), 062333 (2013).
[Crossref]

C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
[Crossref]

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87(1), 012332 (2013).
[Crossref]

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

2012 (5)

A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” Quantum Inf. Comput. 12(11–12), 901–924 (2012).

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85(4), 042306 (2012).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Am. B 29(12) 3349–3354 (2012).
[Crossref]

F. Monifi, J. Friedlein, S. K. Özdemir, and L. Yang, , “A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator,” J. Lightwave Technol. 30(21), 3306–3315 (2012).
[Crossref]

2011 (7)

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83(11), 115303 (2011).
[Crossref]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83(5), 054305 (2011).
[Crossref]

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
[Crossref] [PubMed]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

2010 (6)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-Light Coherence for Single-Spin Measurement and Control in Diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12(11), 113039 (2010).
[Crossref]

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96(24), 241113 (2010).
[Crossref]

R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18(18), 18968–18974 (2010).
[Crossref] [PubMed]

2009 (11)

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17(12), 9588–9601 (2009).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica micro-sphere,” Nano Lett. 9(4), 1447–1450 (2009).
[Crossref] [PubMed]

A. Auffeves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A,  79(5), 053838 (2009).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009).
[Crossref]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79(3), 032303 (2009).
[Crossref]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79(6), 064304 (2009).
[Crossref]

G. L. Long, Y. Liu, and C. Wang, “Allowable Generalized Quantum Gates,” Commun. Theor. Phys. 51(1) 65–67. (2009).
[Crossref]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

2008 (8)

G. L. Long and Y. Liu, “Duality Computing in Quantum Computers,” Commun. Theor. Phys. 50(6), 1303–1306 (2008).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78(8), 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78(12), 125318 (2008).
[Crossref]

K. Srinivasan, C. P. Michael, R. Perahia, and O. Painter, “Investigations of a coherently driven semiconductor optical cavity QED system,” Phys. Rev. A 78(3), 033839 (2008).
[Crossref]

B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008).
[Crossref]

2007 (4)

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98(19), 193601 (2007).
[Crossref] [PubMed]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref] [PubMed]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
[Crossref]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[Crossref] [PubMed]

2006 (7)

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

G. L. Long, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45(5), 825–844 (2006).
[Crossref]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q Si Nx mi-crodisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[Crossref]

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[Crossref] [PubMed]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

2005 (2)

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

2004 (1)

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
[Crossref] [PubMed]

2002 (1)

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photonics Technol. Lett. 14(6), 828–830 (2002).
[Crossref]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Alkemade, P. F. A.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
[Crossref] [PubMed]

Altepeter, J. B.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

Alton, D. J.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

An, J. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79(3), 032303 (2009).
[Crossref]

Aoki, T.

S. Parkins and T. Aoki, “Microtoroidal cavity QED with fiber overcoupling and strong atom-field coupling: A single-atom quantum switch for coherent light fields,” Phys. Rev. A 90(5), 053822 (2014).
[Crossref]

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Aparo, L.

C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
[Crossref]

Artemyev, M. V.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[Crossref] [PubMed]

Asano, T.

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[Crossref]

Auffeves, A.

A. Auffeves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A,  79(5), 053838 (2009).
[Crossref]

Awschalom, D. D.

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-Light Coherence for Single-Spin Measurement and Control in Diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

Balasubramanian, G.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Banin, U.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[Crossref] [PubMed]

Barbour, R. J.

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17(12), 9588–9601 (2009).
[Crossref] [PubMed]

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009).
[Crossref]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q Si Nx mi-crodisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[Crossref]

Bartkiewicz, K.

K. Bartkiewicz, A. Cernoch, and K. Lemr, “Using quantum routers to implement quantum message authentication and Bell-state manipulation,” Phys. Rev. A 90(2), 022335 (2014).
[Crossref]

K. Lemr, K. Bartkiewicz, A. Cernoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87(6), 062333 (2013).
[Crossref]

Bassett, L. C.

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-Light Coherence for Single-Spin Measurement and Control in Diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009).
[Crossref]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17(12), 9588–9601 (2009).
[Crossref] [PubMed]

Bechler, O.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
[Crossref] [PubMed]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Bernien, H.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
[Crossref] [PubMed]

Berry, D. W.

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett. 114(9), 090502 (2015).
[Crossref] [PubMed]

Boca, A.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98(19), 193601 (2007).
[Crossref] [PubMed]

Bochmann, J.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Boozer, A. D.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98(19), 193601 (2007).
[Crossref] [PubMed]

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Buckley, B. B.

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-Light Coherence for Single-Spin Measurement and Control in Diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

Buczak, K.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Cai, K.

K. Cai, R. X. Wang, Z. Q. Yin, and G. L. Long, “Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator,” Sci. China-Phys. Mech. Astron. 60, 070311 (2017).
[Crossref]

Cao, C.

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
[Crossref]

C. Cao, T. J. Wang, R. Zhang, and C. Wang, “Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator,” J. Opt. Soc. Am. B 32(7), 1524–1531 (2015).
[Crossref]

Cernoch, A.

K. Bartkiewicz, A. Cernoch, and K. Lemr, “Using quantum routers to implement quantum message authentication and Bell-state manipulation,” Phys. Rev. A 90(2), 022335 (2014).
[Crossref]

K. Lemr, K. Bartkiewicz, A. Cernoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87(6), 062333 (2013).
[Crossref]

K. Lemr and A. Cernoch, “Linear-optical programmable quantum router,” Opt. Commun. 300, 282–285 (2013).
[Crossref]

Chen, Q.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83(5), 054305 (2011).
[Crossref]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79(6), 064304 (2009).
[Crossref]

Chen, X.

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
[Crossref]

Cheng, L. Y.

Childress, L.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Childs, A. M.

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett. 114(9), 090502 (2015).
[Crossref] [PubMed]

A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” Quantum Inf. Comput. 12(11–12), 901–924 (2012).

Choi, S. J.

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photonics Technol. Lett. 14(6), 828–830 (2002).
[Crossref]

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photonics Technol. Lett. 14(6), 828–830 (2002).
[Crossref]

Chu, Y.

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Cleve, R.

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett. 114(9), 090502 (2015).
[Crossref] [PubMed]

Cook, A. K.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Cory, D. G.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Dadgostar, S.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K. M. C. Fu, “Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform,” Phys. Rev. Appl. 6(1), 011001 (2016).
[Crossref]

Dapkus, P. D.

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photonics Technol. Lett. 14(6), 828–830 (2002).
[Crossref]

Dayan, B.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
[Crossref] [PubMed]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Deng, F. G.

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62(1), 46–68 (2017).
[Crossref]

F. F. Du, F. G. Deng, and G. L. Long, “General hyperconcentration of photonic polarization-time-bin hyperentan-glement assisted by nitrogen-vacancy centers coupled to resonators,” Sci. Rep. 6, 35922 (2016).
[Crossref]

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24(16), 18619–18630 (2016).
[Crossref] [PubMed]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90(5), 052309 (2014).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88(4), 042323 (2013).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10(11), 115201 (2013).
[Crossref]

Devitt, S. J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Dinyari, K. N.

Djordjev, K.

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photonics Technol. Lett. 14(6), 828–830 (2002).
[Crossref]

Doherty, M. W.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Dong, C. H.

Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phys. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Du, F. F.

F. F. Du, F. G. Deng, and G. L. Long, “General hyperconcentration of photonic polarization-time-bin hyperentan-glement assisted by nitrogen-vacancy centers coupled to resonators,” Sci. Rep. 6, 35922 (2016).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90(5), 052309 (2014).
[Crossref]

Du, J. F.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83(5), 054305 (2011).
[Crossref]

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12(11), 113039 (2010).
[Crossref]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96(24), 241113 (2010).
[Crossref]

Duan, Y. W.

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
[Crossref]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Everitt, M. S.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Fan, L.

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
[Crossref]

Fang, X.

X. Fang, K. F. MacDonald, and N. I. Zheludev,“Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

Faraon, A.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Feng, M.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83(5), 054305 (2011).
[Crossref]

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12(11), 113039 (2010).
[Crossref]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96(24), 241113 (2010).
[Crossref]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79(3), 032303 (2009).
[Crossref]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79(6), 064304 (2009).
[Crossref]

Figueroa, E.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Friedlein, J.

Fu, K. C.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Fu, K. M.

Fu, K. M. C.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K. M. C. Fu, “Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform,” Phys. Rev. Appl. 6(1), 011001 (2016).
[Crossref]

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009).
[Crossref]

Fuchs, G. D.

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-Light Coherence for Single-Spin Measurement and Control in Diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

Gali, A.

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Gao, M.

Gao, S. Y.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85(4), 042306 (2012).
[Crossref]

Gérard, J. M.

A. Auffeves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A,  79(5), 053838 (2009).
[Crossref]

Goh, K. W.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Gong, Q.

Y. F. Xiao and Q. Gong, “Optical microcavity: from fundamental physics to functional photonics devices,” Sci. Bull. 61(3), 185–186 (2016).
[Crossref]

Gould, M.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K. M. C. Fu, “Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform,” Phys. Rev. Appl. 6(1), 011001 (2016).
[Crossref]

Gräfe, M.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull. 60(1), 96–100 (2015).
[Crossref]

Guendelman, G.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
[Crossref] [PubMed]

Guo, G. C.

Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phys. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Hahn, C.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Hall, M. A.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

Hanson, R.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
[Crossref] [PubMed]

Hatami, F.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K. M. C. Fu, “Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform,” Phys. Rev. Appl. 6(1), 011001 (2016).
[Crossref]

He, L. Y.

Heilmann, R.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull. 60(1), 96–100 (2015).
[Crossref]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Hensen, B.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
[Crossref] [PubMed]

Hijlkema, M.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
[Crossref]

Hodges, J. S.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Hollenberg, L. C. L.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Hu, C. Y.

C. Y. Hu, “Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical micro-cavity,” Sci. Rep. 7, 45582 (2017).
[Crossref]

C. Y. Hu, “Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors,” Phys. Rev. B 94(24), 245307 (2016).
[Crossref]

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87(1), 012332 (2013).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83(11), 115303 (2011).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78(8), 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78(12), 125318 (2008).
[Crossref]

Hu, J. Y.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

Isoya, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Jacques, V.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Jelezko, F.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Jia, S. T.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

Jiang, L.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Jiao, R. Z.

Jin, G. S.

Jing, M. Y.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

Junge, C.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111(19), 193601 (2013).
[Crossref]

Kalb, N.

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

Kaxiras, E.

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Kazes, M.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[Crossref] [PubMed]

Kimble, H. J.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98(19), 193601 (2007).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Kippenberg, T. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Koch, M.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

Kolesov, R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Kothari, R.

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett. 114(9), 090502 (2015).
[Crossref] [PubMed]

Kubanek, A.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

Kuhn, A.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
[Crossref]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref] [PubMed]

Kumar, P.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

Larsson, M.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica micro-sphere,” Nano Lett. 9(4), 1447–1450 (2009).
[Crossref] [PubMed]

Le Thomas, N.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[Crossref] [PubMed]

Lee, H.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

Lei, F.

Lemr, K.

K. Bartkiewicz, A. Cernoch, and K. Lemr, “Using quantum routers to implement quantum message authentication and Bell-state manipulation,” Phys. Rev. A 90(2), 022335 (2014).
[Crossref]

K. Lemr and A. Cernoch, “Linear-optical programmable quantum router,” Opt. Commun. 300, 282–285 (2013).
[Crossref]

K. Lemr, K. Bartkiewicz, A. Cernoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87(6), 062333 (2013).
[Crossref]

Lev, B.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q Si Nx mi-crodisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[Crossref]

Li, F. L.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85(4), 042306 (2012).
[Crossref]

Li, H. R.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85(4), 042306 (2012).
[Crossref]

Li, J.

Li, L.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, P. B.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85(4), 042306 (2012).
[Crossref]

Li, T.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Li, X. H.

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62(1), 46–68 (2017).
[Crossref]

Liu, S.

Liu, X. F.

Liu, Y.

G. L. Long, Y. Liu, and C. Wang, “Allowable Generalized Quantum Gates,” Commun. Theor. Phys. 51(1) 65–67. (2009).
[Crossref]

G. L. Long and Y. Liu, “Duality Computing in Quantum Computers,” Commun. Theor. Phys. 50(6), 1303–1306 (2008).
[Crossref]

Loncar, M.

Long, G. L.

K. Cai, R. X. Wang, Z. Q. Yin, and G. L. Long, “Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator,” Sci. China-Phys. Mech. Astron. 60, 070311 (2017).
[Crossref]

S. J. Wei, D. Ruan, and G. L. Long, “Duality quantum algorithm efficiently simulates open quantum systems,” Sci. Rep. 6, 30727 (2016).
[Crossref] [PubMed]

S. J. Wei and G. L. Long, “Duality quantum computer and the efficient quantum simulations,” Quantum Inf. Process. 15(3), 1189–1212 (2016).
[Crossref]

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24(16), 18619–18630 (2016).
[Crossref] [PubMed]

X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41(15), 3603–3606 (2016).
[Crossref] [PubMed]

F. F. Du, F. G. Deng, and G. L. Long, “General hyperconcentration of photonic polarization-time-bin hyperentan-glement assisted by nitrogen-vacancy centers coupled to resonators,” Sci. Rep. 6, 35922 (2016).
[Crossref]

H. R. Wei and G. L. Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
[Crossref] [PubMed]

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91(3), 032324 (2015).
[Crossref]

G. L. Long, Y. Liu, and C. Wang, “Allowable Generalized Quantum Gates,” Commun. Theor. Phys. 51(1) 65–67. (2009).
[Crossref]

G. L. Long and Y. Liu, “Duality Computing in Quantum Computers,” Commun. Theor. Phys. 50(6), 1303–1306 (2008).
[Crossref]

G. L. Long, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45(5), 825–844 (2006).
[Crossref]

Lovsky, Y.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
[Crossref] [PubMed]

Lukin, M.

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Lukin, M. D.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Ma, S. L.

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85(4), 042306 (2012).
[Crossref]

Mabuchi, H.

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q Si Nx mi-crodisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[Crossref]

MacDonald, K. F.

X. Fang, K. F. MacDonald, and N. I. Zheludev,“Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Markham, M.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Marrucci, L.

C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
[Crossref]

Maurer, P.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Maze, J.

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Maze, J. R.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

McCutcheon, M. W.

Michael, C. P.

K. Srinivasan, C. P. Michael, R. Perahia, and O. Painter, “Investigations of a coherently driven semiconductor optical cavity QED system,” Phys. Rev. A 78(3), 033839 (2008).
[Crossref]

Miller, R.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98(19), 193601 (2007).
[Crossref] [PubMed]

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Monifi, F.

F. Monifi, S. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103(18), 181103 (2013).
[Crossref]

F. Monifi, J. Friedlein, S. K. Özdemir, and L. Yang, , “A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator,” J. Lightwave Technol. 30(21), 3306–3315 (2012).
[Crossref]

Mücke, M.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Munro, W. J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78(8), 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78(12), 125318 (2008).
[Crossref]

Murr, K.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

Nemoto, K.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Neumann, P.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Neuzner, A.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Nöbauer, T.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Noda, S.

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[Crossref]

Nölleke, C.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Nolte, S.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull. 60(1), 96–100 (2015).
[Crossref]

Northup, T. E.

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98(19), 193601 (2007).
[Crossref] [PubMed]

O’Brien, J. L.

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78(8), 085307 (2008).
[Crossref]

O’Shea, D.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111(19), 193601 (2013).
[Crossref]

Oh, C. H.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79(3), 032303 (2009).
[Crossref]

Ostby, E.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
[Crossref] [PubMed]

Ourjoumtsev, A.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

Özdemir, S. K.

F. Monifi, S. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103(18), 181103 (2013).
[Crossref]

F. Monifi, J. Friedlein, S. K. Özdemir, and L. Yang, , “A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator,” J. Lightwave Technol. 30(21), 3306–3315 (2012).
[Crossref]

Painter, O.

K. Srinivasan, C. P. Michael, R. Perahia, and O. Painter, “Investigations of a coherently driven semiconductor optical cavity QED system,” Phys. Rev. A 78(3), 033839 (2008).
[Crossref]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[Crossref] [PubMed]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q Si Nx mi-crodisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[Crossref]

Park, Y. S.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

Parkins, S.

S. Parkins and T. Aoki, “Microtoroidal cavity QED with fiber overcoupling and strong atom-field coupling: A single-atom quantum switch for coherent light fields,” Phys. Rev. A 90(5), 053822 (2014).
[Crossref]

Perahia, R.

K. Srinivasan, C. P. Michael, R. Perahia, and O. Painter, “Investigations of a coherently driven semiconductor optical cavity QED system,” Phys. Rev. A 78(3), 033839 (2008).
[Crossref]

Pinkse, P. W. H.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

Poizat, J. P.

A. Auffeves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A,  79(5), 053838 (2009).
[Crossref]

Qin, G. Q.

X. F. Liu, F. Lei, M. Gao, X. Yang, G. Q. Qin, and G. L. Long, “Fabrication of a microtoroidal resonator with picometer precise resonant wavelength,” Opt. Lett. 41(15), 3603–3606 (2016).
[Crossref] [PubMed]

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

Rarity, J. G.

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87(1), 012332 (2013).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83(11), 115303 (2011).
[Crossref]

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78(8), 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78(12), 125318 (2008).
[Crossref]

Rauschenbeutel, A.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111(19), 193601 (2013).
[Crossref]

Regal, C. A.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Reiserer, A.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

A. Reiserer, S. Ritter, and G. Rempe, “Nondestructive detection of an optical photon,” Science 342(6164), 1349–1351 (2013).
[Crossref] [PubMed]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Rempe, G.

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

A. Reiserer, S. Ritter, and G. Rempe, “Nondestructive detection of an optical photon,” Science 342(6164), 1349–1351 (2013).
[Crossref] [PubMed]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
[Crossref]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref] [PubMed]

Ren, B. C.

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62(1), 46–68 (2017).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90(5), 052309 (2014).
[Crossref]

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10(11), 115201 (2013).
[Crossref]

Ritter, S.

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

A. Reiserer, S. Ritter, and G. Rempe, “Nondestructive detection of an optical photon,” Science 342(6164), 1349–1351 (2013).
[Crossref] [PubMed]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Robledo, L.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
[Crossref] [PubMed]

Rokhsari, H.

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
[Crossref] [PubMed]

Rosenblum, S.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
[Crossref] [PubMed]

Ruan, D.

S. J. Wei, D. Ruan, and G. L. Long, “Duality quantum algorithm efficiently simulates open quantum systems,” Sci. Rep. 6, 30727 (2016).
[Crossref] [PubMed]

Santamato, E.

C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
[Crossref]

Santori, C.

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009).
[Crossref]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17(12), 9588–9601 (2009).
[Crossref] [PubMed]

Scharfenberger, B.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Schmidgall, E. R.

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K. M. C. Fu, “Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform,” Phys. Rev. Appl. 6(1), 011001 (2016).
[Crossref]

Schmiedmayer, J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Schöps, O.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[Crossref] [PubMed]

Schuster, I.

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

Sciarrino, F.

C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
[Crossref]

Shen, Z.

Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phys. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Shomroni, I.

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
[Crossref] [PubMed]

Shu, F. J.

Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phys. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Somma, R. D.

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett. 114(9), 090502 (2015).
[Crossref] [PubMed]

Song, B. S.

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[Crossref]

Sørensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Soubusta, J.

K. Lemr, K. Bartkiewicz, A. Cernoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87(6), 062333 (2013).
[Crossref]

Spagnolo, N.

C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
[Crossref]

Specht, H. P.

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
[Crossref]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Srinivasan, K.

K. Srinivasan, C. P. Michael, R. Perahia, and O. Painter, “Investigations of a coherently driven semiconductor optical cavity QED system,” Phys. Rev. A 78(3), 033839 (2008).
[Crossref]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[Crossref] [PubMed]

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q Si Nx mi-crodisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[Crossref]

Stephens, A. M.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Stern, N. P.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

Szameit, A.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull. 60(1), 96–100 (2015).
[Crossref]

Takano, H.

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[Crossref]

Tang, X. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Taylor, J. M.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Togan, E.

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Trifonov, A.

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Trupke, M.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Twitchen, D.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Uphoff, M.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

Vahala, K. J.

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
[Crossref] [PubMed]

Vitelli, C.

C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
[Crossref]

Volz, J.

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111(19), 193601 (2013).
[Crossref]

Vuckovic, J.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

Waks, E.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

Walsworth, R. L.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Wang, C.

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
[Crossref]

L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24(14), 15429–15445 (2016).
[Crossref] [PubMed]

C. Cao, T. J. Wang, R. Zhang, and C. Wang, “Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator,” J. Opt. Soc. Am. B 32(7), 1524–1531 (2015).
[Crossref]

C. Wang, T. J. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Concentration of entangled nitrogen-vacancy centers in decoherence free subspace,” Opt. Express 22(2) 1551–1559 (2014).
[Crossref] [PubMed]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90(5), 052310 (2014).
[Crossref]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21(16), 19252–19260 (2013).
[Crossref] [PubMed]

C. Wang, Y. Zhang, G. S. Jin, and R. Zhang, “Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators,” J. Opt. Soc. Am. B 29(12) 3349–3354 (2012).
[Crossref]

G. L. Long, Y. Liu, and C. Wang, “Allowable Generalized Quantum Gates,” Commun. Theor. Phys. 51(1) 65–67. (2009).
[Crossref]

Wang, G. Y.

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

Wang, H.

R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18(18), 18968–18974 (2010).
[Crossref] [PubMed]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica micro-sphere,” Nano Lett. 9(4), 1447–1450 (2009).
[Crossref] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Wang, H. F.

Wang, Q. J.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, R. X.

K. Cai, R. X. Wang, Z. Q. Yin, and G. L. Long, “Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator,” Sci. China-Phys. Mech. Astron. 60, 070311 (2017).
[Crossref]

Wang, S. M.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Wang, T. J.

L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24(14), 15429–15445 (2016).
[Crossref] [PubMed]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
[Crossref]

C. Cao, T. J. Wang, R. Zhang, and C. Wang, “Concentration on partially entangled W-class states on nitrogen-vacancy centers assisted by microresonator,” J. Opt. Soc. Am. B 32(7), 1524–1531 (2015).
[Crossref]

C. Wang, T. J. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Concentration of entangled nitrogen-vacancy centers in decoherence free subspace,” Opt. Express 22(2) 1551–1559 (2014).
[Crossref] [PubMed]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90(5), 052310 (2014).
[Crossref]

Weber, B.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
[Crossref]

Webster, S. C.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
[Crossref]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref] [PubMed]

Wei, H. R.

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24(16), 18619–18630 (2016).
[Crossref] [PubMed]

H. R. Wei and G. L. Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
[Crossref] [PubMed]

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91(3), 032324 (2015).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88(4), 042323 (2013).
[Crossref]

Wei, S. J.

S. J. Wei and G. L. Long, “Duality quantum computer and the efficient quantum simulations,” Quantum Inf. Process. 15(3), 1189–1212 (2016).
[Crossref]

S. J. Wei, D. Ruan, and G. L. Long, “Duality quantum algorithm efficiently simulates open quantum systems,” Sci. Rep. 6, 30727 (2016).
[Crossref] [PubMed]

Wiebe, N.

A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” Quantum Inf. Comput. 12(11–12), 901–924 (2012).

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

Wilk, T.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref] [PubMed]

Woggon, U.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[Crossref] [PubMed]

Wrachtrup, J.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Wu, Y.

Xiao, L. T.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

Xiao, Y. F.

Y. F. Xiao and Q. Gong, “Optical microcavity: from fundamental physics to functional photonics devices,” Sci. Bull. 61(3), 185–186 (2016).
[Crossref]

Xu, Z. Y.

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96(24), 241113 (2010).
[Crossref]

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12(11), 113039 (2010).
[Crossref]

Yacoby, A.

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Yang, L.

F. Monifi, S. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103(18), 181103 (2013).
[Crossref]

F. Monifi, J. Friedlein, S. K. Özdemir, and L. Yang, , “A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator,” J. Lightwave Technol. 30(21), 3306–3315 (2012).
[Crossref]

Yang, W.

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83(5), 054305 (2011).
[Crossref]

Yang, W. L.

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12(11), 113039 (2010).
[Crossref]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96(24), 241113 (2010).
[Crossref]

Yang, X.

Yeon, K. H.

Yin, Z. Q.

K. Cai, R. X. Wang, Z. Q. Yin, and G. L. Long, “Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator,” Sci. China-Phys. Mech. Astron. 60, 070311 (2017).
[Crossref]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96(24), 241113 (2010).
[Crossref]

Young, A.

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78(8), 085307 (2008).
[Crossref]

Young, A. B.

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87(1), 012332 (2013).
[Crossref]

Yu, B.

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

Yu, R.

Zhang, R.

Zhang, S.

Zhang, Y.

Zheludev, N. I.

X. Fang, K. F. MacDonald, and N. I. Zheludev,“Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

Zhou, Z. H.

Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phys. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Zhu, S. N.

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-Q Si Nx mi-crodisks with atom chips,” Appl. Phys. Lett. 89(13), 131108 (2006).
[Crossref]

W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96(24), 241113 (2010).
[Crossref]

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95(19), 191115 (2009).
[Crossref]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86(24), 241101 (2005).
[Crossref]

F. Monifi, S. K. Özdemir, and L. Yang, “Tunable add-drop filter using an active whispering gallery mode microcavity,” Appl. Phys. Lett. 103(18), 181103 (2013).
[Crossref]

Commun. Theor. Phys. (3)

G. L. Long, “General quantum interference principle and duality computer,” Commun. Theor. Phys. 45(5), 825–844 (2006).
[Crossref]

G. L. Long and Y. Liu, “Duality Computing in Quantum Computers,” Commun. Theor. Phys. 50(6), 1303–1306 (2008).
[Crossref]

G. L. Long, Y. Liu, and C. Wang, “Allowable Generalized Quantum Gates,” Commun. Theor. Phys. 51(1) 65–67. (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Djordjev, S. J. Choi, S. J. Choi, and P. D. Dapkus, “Microdisk tunable resonant filters and switches,” IEEE Photonics Technol. Lett. 14(6), 828–830 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

B. C. Ren and F. G. Deng, “Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities,” Laser Phys. Lett. 10(11), 115201 (2013).
[Crossref]

Light Sci. Appl. (3)

L. Li, T. Li, X. M. Tang, S. M. Wang, Q. J. Wang, and S. N. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9), e330 (2015).
[Crossref]

J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, “Experimental quantum secure direct communication with single photons,” Light Sci. Appl. 5(9), e16144 (2016).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev,“Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4(5), e292 (2015).
[Crossref]

Nano Lett. (3)

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica micro-sphere,” Nano Lett. 9(4), 1447–1450 (2009).
[Crossref] [PubMed]

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[Crossref] [PubMed]

Nat. Mater. (1)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Faraon, P. E. Barclay, C. Santori, K. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

C. Vitelli, N. Spagnolo, L. Aparo, F. Sciarrino, E. Santamato, and L. Marrucci, “Joining the quantum state of two photons into one,” Nat. Photonics 7(7), 521–526 (2013).
[Crossref]

Nat. Phys. (2)

D. J. Alton, N. P. Stern, T. Aoki, H. Lee, E. Ostby, K. J. Vahala, and H. J. Kimble, “Strong interactions of single atoms and photons near a dielectric boundary,” Nat. Phys. 7(2), 159–165 (2010).
[Crossref]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3(4), 253–255 (2007).
[Crossref]

Nature (8)

H. P. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S. Ritter, and G. Rempe, “A single-atom quantum memory,” Nature 473(7346), 190–193 (2011).
[Crossref] [PubMed]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, “A quantum gate between a flying optical photon and a single trapped atom,” Nature 508(7495), 237–240 (2014).
[Crossref] [PubMed]

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477(7366), 574–578 (2011).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum Entanglement between an Optical Photon and a Solid-State Spin Qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, H. J. Kimble, T. J. Kippenberg, and K. J. Vahala, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443(7112), 671–674 (2006).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[Crossref] [PubMed]

New J. Phys. (2)

J. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13(2), 025025 (2011).
[Crossref]

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12(11), 113039 (2010).
[Crossref]

Opt. Commun. (1)

K. Lemr and A. Cernoch, “Linear-optical programmable quantum router,” Opt. Commun. 300, 282–285 (2013).
[Crossref]

Opt. Express (10)

L. Y. He, T. J. Wang, and C. Wang, “Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator,” Opt. Express 24(14), 15429–15445 (2016).
[Crossref] [PubMed]

H. R. Wei, F. G. Deng, and G. L. Long, “Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities,” Opt. Express 24(16), 18619–18630 (2016).
[Crossref] [PubMed]

S. Liu, J. Li, R. Yu, and Y. Wu, “Achieving maximum entanglement between two nitrogen-vacancy centers coupling to a whispering-gallery-mode microresonator,” Opt. Express 21(3), 3501–3515 (2013).
[Crossref] [PubMed]

L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator,” Opt. Express 21(5), 5988–5997 (2013).
[Crossref] [PubMed]

C. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators,” Opt. Express 21(16), 19252–19260 (2013).
[Crossref] [PubMed]

C. Wang, T. J. Wang, Y. Zhang, R. Z. Jiao, and G. S. Jin, “Concentration of entangled nitrogen-vacancy centers in decoherence free subspace,” Opt. Express 22(2) 1551–1559 (2014).
[Crossref] [PubMed]

H. Takano, B. S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14(8), 3491–3496 (2006).
[Crossref] [PubMed]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express 16(23), 19136–19145 (2008).
[Crossref]

P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Opt. Express 17(12), 9588–9601 (2009).
[Crossref] [PubMed]

R. J. Barbour, K. N. Dinyari, and H. Wang, “A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length,” Opt. Express 18(18), 18968–18974 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. L. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528(1), 1–45 (2013).
[Crossref]

Phys. Rev. A (16)

B. C. Ren, F. F. Du, and F. G. Deng, “Two-step hyperentanglement purification with the quantum-state-joining method,” Phys. Rev. A 90(5), 052309 (2014).
[Crossref]

K. Lemr, K. Bartkiewicz, A. Cernoch, and J. Soubusta, “Resource-efficient linear-optical quantum router,” Phys. Rev. A 87(6), 062333 (2013).
[Crossref]

A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low-Q-factor microcavities,” Phys. Rev. A 87(1), 012332 (2013).
[Crossref]

K. Srinivasan, C. P. Michael, R. Perahia, and O. Painter, “Investigations of a coherently driven semiconductor optical cavity QED system,” Phys. Rev. A 78(3), 033839 (2008).
[Crossref]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79(3), 032303 (2009).
[Crossref]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79(6), 064304 (2009).
[Crossref]

Q. Chen, W. Yang, M. Feng, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83(5), 054305 (2011).
[Crossref]

P. B. Li, S. Y. Gao, H. R. Li, S. L. Ma, and F. L. Li, “Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers,” Phys. Rev. A 85(4), 042306 (2012).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W. Goh, E. Wilcut, and H. J. Kimble, “Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71(1), 013817 (2005).
[Crossref]

S. Parkins and T. Aoki, “Microtoroidal cavity QED with fiber overcoupling and strong atom-field coupling: A single-atom quantum switch for coherent light fields,” Phys. Rev. A 90(5), 053822 (2014).
[Crossref]

H. R. Wei and F. G. Deng, “Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities,” Phys. Rev. A 88(4), 042323 (2013).
[Crossref]

H. R. Wei and G. L. Long, “Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators,” Phys. Rev. A 91(3), 032324 (2015).
[Crossref]

T. J. Wang and C. Wang, “Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator,” Phys. Rev. A 90(5), 052310 (2014).
[Crossref]

B. C. Ren, G. Y. Wang, and F. G. Deng, “Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime,” Phys. Rev. A 91(3), 032328 (2015).
[Crossref]

K. Bartkiewicz, A. Cernoch, and K. Lemr, “Using quantum routers to implement quantum message authentication and Bell-state manipulation,” Phys. Rev. A 90(2), 022335 (2014).
[Crossref]

A. Auffeves, J. M. Gérard, and J. P. Poizat, “Pure emitter dephasing: A resource for advanced solid-state single-photon sources,” Phys. Rev. A,  79(5), 053838 (2009).
[Crossref]

Phys. Rev. Appl. (1)

M. Gould, E. R. Schmidgall, S. Dadgostar, F. Hatami, and K. M. C. Fu, “Efficient Extraction of Zero-Phonon-Line Photons from Single Nitrogen-Vacancy Centers in an Integrated GaP-on-Diamond Platform,” Phys. Rev. Appl. 6(1), 011001 (2016).
[Crossref]

Phys. Rev. B (5)

C. Y. Hu, W. J. Munro, J. L. O’Brien, and J. G. Rarity, “Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity,” Phys. Rev. B 80(20), 205326 (2009).
[Crossref]

C. Y. Hu and J. G. Rarity, “Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity,” Phys. Rev. B 83(11), 115303 (2011).
[Crossref]

C. Y. Hu, A. Young, J. L. O’Brien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon,” Phys. Rev. B 78(8), 085307 (2008).
[Crossref]

C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78(12), 125318 (2008).
[Crossref]

C. Y. Hu, “Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors,” Phys. Rev. B 94(24), 245307 (2016).
[Crossref]

Phys. Rev. Lett. (9)

C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel, “Strong coupling between single atoms and nontransversal photons,” Phys. Rev. Lett. 110(21), 213604 (2013).
[Crossref] [PubMed]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106(5), 053901 (2011).
[Crossref] [PubMed]

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101(20), 203602 (2008).
[Crossref] [PubMed]

A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98(19), 193601 (2007).
[Crossref] [PubMed]

D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, “Simulating Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev. Lett. 114(9), 090502 (2015).
[Crossref] [PubMed]

H. Rokhsari and K. J. Vahala, “Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics,” Phys. Rev. Lett. 92(25), 253905 (2004).
[Crossref] [PubMed]

D. O’Shea, C. Junge, J. Volz, and A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111(19), 193601 (2013).
[Crossref]

Phys. Rev. X (1)

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic Architecture for Scalable Quantum Information Processing in Diamond,” Phys. Rev. X 4(3), 031022 (2014).

Quantum Inf. Comput. (1)

A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” Quantum Inf. Comput. 12(11–12), 901–924 (2012).

Quantum Inf. Process. (1)

S. J. Wei and G. L. Long, “Duality quantum computer and the efficient quantum simulations,” Quantum Inf. Process. 15(3), 1189–1212 (2016).
[Crossref]

Rev. Mod. Phys. (1)

A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87(4), 1379–1418 (2015).
[Crossref]

Sci. Bull. (3)

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization,” Sci. Bull. 60(1), 96–100 (2015).
[Crossref]

F. G. Deng, B. C. Ren, and X. H. Li, “Quantum hyperentanglement and its applications in quantum information processing,” Sci. Bull. 62(1), 46–68 (2017).
[Crossref]

Y. F. Xiao and Q. Gong, “Optical microcavity: from fundamental physics to functional photonics devices,” Sci. Bull. 61(3), 185–186 (2016).
[Crossref]

Sci. China-Phys. Mech. Astron. (3)

K. Cai, R. X. Wang, Z. Q. Yin, and G. L. Long, “Second-order magnetic field gradient-induced strong coupling between nitrogen-vacancy centers and a mechanical oscillator,” Sci. China-Phys. Mech. Astron. 60, 070311 (2017).
[Crossref]

C. Cao, X. Chen, Y. W. Duan, L. Fan, R. Zhang, T. J. Wang, and C. Wang, “Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements,” Sci. China-Phys. Mech. Astron. 59(10), 100315 (2016).
[Crossref]

Z. H. Zhou, F. J. Shu, Z. Shen, C. H. Dong, and G. C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phys. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Sci. Rep. (4)

H. R. Wei and G. L. Long, “Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities,” Sci. Rep. 5, 12918 (2015).
[Crossref] [PubMed]

F. F. Du, F. G. Deng, and G. L. Long, “General hyperconcentration of photonic polarization-time-bin hyperentan-glement assisted by nitrogen-vacancy centers coupled to resonators,” Sci. Rep. 6, 35922 (2016).
[Crossref]

S. J. Wei, D. Ruan, and G. L. Long, “Duality quantum algorithm efficiently simulates open quantum systems,” Sci. Rep. 6, 30727 (2016).
[Crossref] [PubMed]

C. Y. Hu, “Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical micro-cavity,” Sci. Rep. 7, 45582 (2017).
[Crossref]

Science (6)

L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive Readout of a Single Electronic Spin via Quantum Logic with Nuclear Spin Ancillae,” Science 326(5950), 267–272 (2009).
[Crossref] [PubMed]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-Light Coherence for Single-Spin Measurement and Control in Diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, “All-optical routing of single photons by a one-atom switch controlled by a single photon,” Science 345(6199), 903–906 (2014).
[Crossref] [PubMed]

B. Dayan, A. S. Parkins, T. Aoki, H. J. Kimble, E. Ostby, and K. J. Vahala, “A photon turnstile dynamically regulated by one atom,” Science 319(5866), 1062–1065 (2008).
[Crossref] [PubMed]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317(5837), 488–490 (2007).
[Crossref] [PubMed]

A. Reiserer, S. Ritter, and G. Rempe, “Nondestructive detection of an optical photon,” Science 342(6164), 1349–1351 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the system used in our schemes. A single NV center is fixed on the exterior surface of a WGM microtoroidal resonator and coupled by the evanescent field to the resonator. The resonator is evanescently coupled to two tapered fiber fibers (waveguides) and behaves as a drop-filter structure. The two waveguides are marked with 1 and 2 and the four ports are marked with a1, b1, a2, and b2, respectively. κe represents the extrinsic decay rate from the resonator into each waveguide mode. κi denotes the intrinsic decay rate of the resonator into loss mode. γ is the NV center dipolar decay rate. (b) Energy level configuration of the NV center.

Fig. 2
Fig. 2

Absolute values of the reflection and transmission coefficients (|r(ωp)| and |t(ωp)|) as a function of g2/(κeγ) with ωp = ωc = ω0 and κi = 0.01κe. |r(ωp)| and |t(ωp)| correspond to the red dashed and blue solid lines, respectively.

Fig. 3
Fig. 3

Absolute values of the reflection and transmission coefficients (|r(ωp)| and |t(ωp)|) as a function of normalized frequency detuning (ωcωp)e for (a) g = 0, (b) g = 0.1κe, (c) g = 0.5 κe, and (d) g = κe with ω0 = ωc, γ = 1.5 × 10−3 κe, and κi = 0.01κe. |r(ωp)| and |t(ωp)| correspond to the red dashed and blue solid lines, respectively.

Fig. 4
Fig. 4

Schematic of the single-photon quantum router for the implementation of signal-photon quantum routing controlled by a control photon. CPBS represents polarizing beam splitter in the circular basis, which transmits the right circularly polarized photon |R〉 and reflects the left circularly polarized photon |L〉. H denotes half-wave plate which is set to 22.5° to induce the Hadamard transformations on the polarization of photons as | R 1 2 ( | R + | L ) and | L 1 2 ( | R | L ). P is phase shifter that contribute a π phase shift to the photon passing through it. X is half-wave plate which is used to perform a polarization bit-flip operation σ x p = | R L | + | L R | on the photon passing through it. DL is delay line used to erase the time difference between the different components.

Fig. 5
Fig. 5

Schematic of the single-photon quantum decoupler for the implementation of signal-photon quantum decoupling. All the devices are the same as that in Fig. 4.

Fig. 6
Fig. 6

Efficiencies and fidelities of our quantum routing (η1, F1) and decoupling (η2, F2) schemes as a function of g2/(κeγ) and κie with β = δ = 1 / 2 and ωp = ωc = ω0.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d a ^ d t = i ( ω c ω p ) a ^ κ e a ^ κ i 2 a ^ g σ ^ + κ e ( a ^ 1 , i n + a ^ 2 , i n ) + h ^ , d σ ^ d t = i ( ω 0 ω p ) σ ^ γ 2 σ ^ g a ^ σ ^ z + f ^ ,
r ( ω p ) = κ e [ i ( ω 0 ω p ) + γ / 2 ] [ i ( ω 0 ω p ) + γ / 2 ] [ i ( ω c ω p ) + κ e + κ i / 2 ] + g 2 , t ( ω p ) = 1 κ e [ i ( ω 0 ω p ) + γ / 2 ] [ i ( ω 0 ω p ) + γ / 2 ] [ i ( ω c ω p ) + κ e + κ i / 2 ] + g 2 ,
r ( ω p ) = 2 κ e γ 2 κ e γ + κ i γ + 4 g 2 , t ( ω p ) = κ i γ + 4 g 2 2 κ e γ + κ i γ + 4 g 2 .
| L a 1 , 1 | R b 2 , 1 , | R a 1 , 1 | R b 1 , 1 , | L a 2 , 1 | L b 2 , 1 , | R a 2 , 1 | L b 1 , 1 , | L a 1 , + 1 | L b 1 , + 1 , | R a 1 , + 1 | L b 2 , + 1 , | L a 2 , + 1 | R b 1 , + 1 , | R a 2 , + 1 | R b 2 , + 1 ,
| ϕ s = α | R s + β | L s ,
| φ c = ε | R c + δ | L c .
| Φ 0 = | φ c 1 2 ( | 1 + | + 1 ) , | Φ 1 = ε 2 | R c ( | 1 + | + 1 ) + δ 2 | L c ( | 1 + | + 1 ) .
| Φ 0 = ( ε | R c + δ | L c ) 1 2 ( | 1 + | + 1 ) C P B S 1 , H ε 2 | R c ( | 1 + | + 1 ) + δ 2 ( | R c | L c ) ( | 1 + | + 1 ) C P B S 2 , P ε 2 | R c ( | 1 + | + 1 ) + δ 2 ( | R a 1 c + | L a 2 c ) ( | 1 + | + 1 ) N V ε 2 | R c ( | 1 + | + 1 ) + δ 2 ( | R b 1 , 1 | L b 2 , + 1 + | L b 2 , 1 | R b 1 , + 1 ) P , C P B S 3 ε 2 | R c ( | 1 + | + 1 ) + δ 2 ( | R c | L c ) ( | 1 | + 1 ) H , C P B S 4 ε 2 | R c ( | 1 + | + 1 ) + δ 2 | L c ( | 1 | + 1 ) .
| Φ 2 = ε | R c | 1 + δ | L c | + 1 .
| Φ 3 = | Φ 2 | ϕ s , | Φ 4 = ε | R c ( α | R s + β | L s ) 1 | 1 + δ | L c ( α | R s + β | L s ) 2 | + 1 ,
| Φ = ε | R c ( α | R s + β | L s ) 1 + δ | L c ( α | R s + β | L s ) 2 .
| Φ = ε | R c ( α | R s + β | L s ) 1 δ | L c ( α | R s + β | L s ) 2 .
| ψ s = ε ( α | R s + β | L s ) i n 1 + δ ( α | R s + β | L s ) i n 2 .
| Ψ 0 = | ψ s 1 2 ( | 1 + | + 1 ) , | Ψ 1 = 1 2 [ ( ε | R s + δ | L s ) 1 ( α | 1 + β | + 1 ) + ( ε | R s + δ | L s ) 2 ( α | + 1 + β | 1 ) ] ,
| φ s = ε | R s + δ | L s .
| Ψ 2 = | Ψ 1 | R a , | Ψ 3 = 1 2 [ ( ε | R s + δ | L s ) 1 ( α | 1 | R a + β | + 1 | L a ) + ( ε | R s + δ | L s ) 2 ( α | + 1 | L a + β | 1 | R a ) ] .
| ϕ a = α | R a + β | L a .
| ϕ a = α | R a β | L a .
| L a 1 , 1 t 0 | L b 1 , 1 + r 0 | R b 2 , 1 , | R a 1 , 1 t | R b 1 , 1 + r | L b 2 , 1 , | L a 2 , 1 t | L b 2 , 1 + r | R b 1 , 1 , | R a 2 , 1 t 0 | R b 2 , 1 + r 0 | L b 1 , 1 , | L a 1 , + 1 t | L b 1 , + 1 + r | R b 2 , + 1 , | R a 1 , + 1 t 0 | R b 1 , + 1 + r 0 | L b 2 , + 1 , | L a 2 , + 1 t 0 | L b 2 , + 1 + r 0 | R b 1 , + 1 , | R a 2 , + 1 t | R b 2 , + 1 + r | L b 1 , + 1 .
η 1 = 1 4 [ 3 2 ( | t 0 | 2 + | t | 2 + | r 0 | 2 + | r | 2 ) + | t 0 t | 2 + | r 0 t 0 | 2 + | r 0 t | 2 + | r t 0 | 2 + | r t | 2 + | r 0 r | 2 ] , F 1 = 1 16 | t r 0 + 1 2 ( t 2 r 0 t + r t t 0 t ) 1 2 ( t r 0 r 0 2 + r 0 r t 0 r 0 ) | 2 .
η 2 = 1 8 [ | t 0 | 4 + | t | 4 + | r 0 | 4 + | r | 4 + 2 ( | r 0 t | 2 + | r t | 2 + | t 0 t | 2 + | r 0 r | 2 + | r t 0 | 2 + | r 0 t 0 | 2 ) ] , F 2 = 1 16 | ( r 0 t + t 0 t ) + ( r 0 r t r 0 ) + ( r t + t 2 ) + ( r 0 2 t 0 r 0 ) | 2 ,

Metrics