Abstract

We report a facile and direct fabrication method for integrating functional optical microstructures on the top surface of an optical fiber. A programmable maskless fabrication system was developed by using digital micromirror device (DMD), which allows rapid prototyping and low-cost fabrication without physical photomask. This maskless UV exposure system has the spatial resolution of 2.2 μm for an exposed area of 245 μm x 185 μm. Diverse optical microstructures were photolithographically defined on multimode fibers and a single mode optical fiber serially spliced with a coreless silica fiber segment. This method provides a new route for developing compact functional fiber-optic applications such as laser scanning, biosensing, or laser endomicroscopy.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fine-tuned grayscale optofluidic maskless lithography for three-dimensional freeform shape microstructure fabrication

Suk-Heung Song, Kibeom Kim, Sung-Eun Choi, Sangkwon Han, Ho-Suk Lee, Sunghoon Kwon, and Wook Park
Opt. Lett. 39(17) 5162-5165 (2014)

Fabrication, splicing, Bragg grating writing, and polyelectrolyte functionalization of exposed-core microstructured optical fibers

Stephen C. Warren-Smith, Roman Kostecki, Linh Viet Nguyen, and Tanya M. Monro
Opt. Express 22(24) 29493-29504 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen and M. V. Schneider, “Microlenses for coupling junction lasers to optical fibers,” Appl. Opt. 13(1), 89–94 (1974).
    [Crossref] [PubMed]
  2. C. C. Wu, Y. D. Tseng, S. M. Kuo, and C. H. Lin, “Fabrication of asperical lensed optical fibers with an electro-static pulling of SU-8 photoresist,” Opt. Express 19(23), 22993–22998 (2011).
    [Crossref] [PubMed]
  3. H. Y. Choi, S. Y. Ryu, J. Na, B. H. Lee, I. B. Sohn, Y. C. Noh, and J. Lee, “Single-body lensed photonic crystal fibers as side-viewing probes for optical imaging systems,” Opt. Lett. 33(1), 34–36 (2008).
    [Crossref] [PubMed]
  4. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
    [Crossref] [PubMed]
  5. J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
    [Crossref] [PubMed]
  6. T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
    [Crossref]
  7. R. S. Rodrigues Ribeiro, P. Dahal, A. Guerreiro, P. Jorge, and J. Viegas, “Optical fibers as beam shapers: from Gaussian beams to optical vortices,” Opt. Lett. 41(10), 2137–2140 (2016).
    [Crossref] [PubMed]
  8. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt. 47(10), 1510–1516 (2008).
    [Crossref] [PubMed]
  9. K. M. Tan, M. Shishkov, A. Chee, M. B. Applegate, B. E. Bouma, and M. J. Suter, “Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance,” Biomed. Opt. Express 3(8), 1947–1954 (2012).
    [Crossref] [PubMed]
  10. C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
    [Crossref]
  11. G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
    [Crossref] [PubMed]
  12. K. Hwang, Y. H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic application,” Micro Nano Syst. Lett. 5(1), 1 (2017).
    [Crossref]
  13. K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguichi, B. K. Ng, W. Sibbett, C. S. Herrington, C. T. Brown, and K. Dholakia, “In-fiber common-path optical coherence tomography using a conical-tip fiber,” Opt. Express 17(4), 2375–2384 (2009).
    [Crossref] [PubMed]
  14. V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Interstitial Doppler optical coherence tomography,” Opt. Lett. 30(14), 1791–1793 (2005).
    [Crossref] [PubMed]
  15. F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
    [Crossref]
  16. C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
    [Crossref]
  17. C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
    [Crossref] [PubMed]
  18. H. Kogelnik, “On the propagation of gaussian beams of light through lenslike media including those with a loss or gain variation,” Appl. Opt. 4(12), 1562 (1965).
    [Crossref]
  19. K. R. Kim, S. L. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” IEEE Photonics Technol. Lett. 15(8), 1100–1102 (2003).
    [Crossref]
  20. V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 22(12), 125016 (2012).
    [Crossref]
  21. X. Yang, N. Ileri, C. C. Larson, T. C. Carlson, J. A. Britten, A. S. P. Chang, C. Gu, and T. C. Bond, “Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering,” Opt. Express 20(22), 24819–24826 (2012).
    [Crossref] [PubMed]
  22. M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
    [Crossref] [PubMed]

2017 (1)

K. Hwang, Y. H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic application,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

2016 (2)

2014 (1)

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

2013 (2)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

2012 (4)

K. M. Tan, M. Shishkov, A. Chee, M. B. Applegate, B. E. Bouma, and M. J. Suter, “Flexible transbronchial optical frequency domain imaging smart needle for biopsy guidance,” Biomed. Opt. Express 3(8), 1947–1954 (2012).
[Crossref] [PubMed]

V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 22(12), 125016 (2012).
[Crossref]

X. Yang, N. Ileri, C. C. Larson, T. C. Carlson, J. A. Britten, A. S. P. Chang, C. Gu, and T. C. Bond, “Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering,” Opt. Express 20(22), 24819–24826 (2012).
[Crossref] [PubMed]

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

2009 (2)

2008 (2)

2007 (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

2005 (1)

2004 (1)

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

2003 (1)

K. R. Kim, S. L. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” IEEE Photonics Technol. Lett. 15(8), 1100–1102 (2003).
[Crossref]

1974 (1)

1965 (1)

Applegate, M. B.

Bond, T. C.

Bouma, B. E.

Bragheri, F.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Britten, J. A.

Brown, C. T.

Cabrini, S.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Candeloro, P.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Carlson, T. C.

Chang, A. S. P.

Chang, S. L.

K. R. Kim, S. L. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” IEEE Photonics Technol. Lett. 15(8), 1100–1102 (2003).
[Crossref]

Chee, A.

Choi, H. Y.

Choi, W. J.

Chow, T. H.

Cohen, L. G.

Cojoc, D.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Cojoc, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Consales, M.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Crescitelli, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Cristiani, I.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Cusano, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Cutolo, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Dahal, P.

Das, G.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

De Angelis, F.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

De Vittorio, M.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Degiorgio, V.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Dholakia, K.

Di Fabrizio, E.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Esposito, E.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Ferrara, L.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

Gentile, F.

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

Gerardino, A.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Giessen, H.

Gissibl, T.

Gu, C.

Guerreiro, A.

Ha, W.

Herrington, C. S.

Hwang, K.

K. Hwang, Y. H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic application,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

Ileri, N.

Jeong, K.-H.

K. Hwang, Y. H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic application,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

Jeong, Y. S.

Jorge, P.

Jung, Y.

Kim, J.

Kim, J. K.

Kim, K. R.

K. R. Kim, S. L. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” IEEE Photonics Technol. Lett. 15(8), 1100–1102 (2003).
[Crossref]

Kogelnik, H.

Kostovski, G.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Kucharczyk, W.

Kumar, R.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Kuo, S. M.

La Rocca, R.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

Larson, C. C.

Lee, B. H.

Lee, J.

Lee, S.

Lee, W. M.

Liberale, C.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Lin, C. H.

Mao, Y. X.

Marcon, N. E.

Mazilu, M.

Minzioni, P.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Mitchell, A.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Munce, N.

Na, J.

Ng, B. K.

Noh, Y. C.

Oh, K.

J. K. Kim, J. Kim, Y. Jung, W. Ha, Y. S. Jeong, S. Lee, A. Tünnermann, and K. Oh, “Compact all-fiber Bessel beam generator based on hollow optical fiber combined with a hybrid polymer fiber lens,” Opt. Lett. 34(19), 2973–2975 (2009).
[Crossref] [PubMed]

K. R. Kim, S. L. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” IEEE Photonics Technol. Lett. 15(8), 1100–1102 (2003).
[Crossref]

Perozziello, G.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

Prasciolu, M.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Rajamanickam, V.

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

Ricciardi, A.

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Rodrigues Ribeiro, R. S.

Ryu, S. Y.

Schiappelli, F.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Schmid, M.

Schneider, M. V.

Seo, Y. H.

K. Hwang, Y. H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic application,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

Shishkov, M.

Sibbett, W.

Sohn, I. B.

Standish, B.

Stoddart, P. R.

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Sundaram, V. M.

V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 22(12), 125016 (2012).
[Crossref]

Suter, M. J.

Taguichi, K.

Tan, K. M.

Tseng, Y. D.

Tünnermann, A.

Viegas, J.

Visimberga, G.

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Vitkin, I. A.

Wen, S. B.

V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 22(12), 125016 (2012).
[Crossref]

Wilson, B. C.

Wu, C. C.

Yang, V. X. D.

Yang, X.

ACS Nano (1)

M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-Fiber Technology: Toward Multifunctional Optical Nanoprobes,” ACS Nano 6(4), 3163–3170 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

G. Kostovski, P. R. Stoddart, and A. Mitchell, “The optical fiber tip: an inherently light-coupled microscopic platform for micro- and nanotechnologies,” Adv. Mater. 26(23), 3798–3820 (2014).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (1)

IEEE Photonics Technol. Lett. (2)

C. Liberale, G. Cojoc, P. Candeloro, G. Das, F. Gentile, F. De Angelis, and E. Di Fabrizio, “Micro-optics fabrication on top of optical fibers using two-photon lithography,” IEEE Photonics Technol. Lett. 22(7), 474–476 (2010).
[Crossref]

K. R. Kim, S. L. Chang, and K. Oh, “Refractive microlens on fiber using UV-curable fluorinated acrylate polymer by surface-tension,” IEEE Photonics Technol. Lett. 15(8), 1100–1102 (2003).
[Crossref]

J. Micromech. Microeng. (1)

V. M. Sundaram and S. B. Wen, “Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,” J. Micromech. Microeng. 22(12), 125016 (2012).
[Crossref]

Micro Nano Syst. Lett. (1)

K. Hwang, Y. H. Seo, and K.-H. Jeong, “Microscanners for optical endomicroscopic application,” Micro Nano Syst. Lett. 5(1), 1 (2017).
[Crossref]

Microelectron. Eng. (1)

F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73, 397–404 (2004).
[Crossref]

Nat. Photonics (1)

C. Liberale, P. Minzioni, F. Bragheri, F. De Angelis, E. Di Fabrizio, and I. Cristiani, “Miniaturized all-fibre probe for three-dimensional optical trapping and manipulation,” Nat. Photonics 1(12), 723–727 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Optica (1)

Sci. Rep. (2)

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1258), 1258 (2013).
[Crossref] [PubMed]

C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, R. La Rocca, L. Ferrara, V. Rajamanickam, E. Di Fabrizio, and I. Cristiani, “Integrated microfluidic device for single-cell trapping and spectroscopy,” Sci. Rep. 3(1), 1258–1263 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of DMD based maskless lithography for patterning functional optical elements on a fiber facet. (i) Optical image of optical fiber ferrule assembly, coated by a SU-8 photoresist layer. The coated photoresist has uniform area over the fiber region. (ii) A UV pattern is illuminated on the photoresist layer on an optical fiber through a 40x objective lens. (b, c) Photograph of the experimental set up.

Fig. 2
Fig. 2

The 2D fabrication results using DMD based maskless lithography on wafer. The micro fabrication was performed with a 2 μm negative tone photoresist ((a), (b) SU-8 2002), 1.2 μm positive tone photoresist ((c) AZ1512), 3 μm negative tone photoresist ((d), (e) black SU-8). Optical images and SEM images of diverse microstructures such as (a) line arrays, (b) checker board, (c) hole arrays, (d) concentric ring elements, and (e) Fresnel zone plate lens. The fabrication results show high spatial resolution with the minimum line/space of 2.2 μm.

Fig. 3
Fig. 3

(a, b) Hybrid optical fiber, i.e., a SMF serially concatenated with a CSF segment. (c) Preparation of separable fiber-ferrule assembly. (d) Schematic and photograph of rotating chuck for spin-coating photoresist on a fiber facet. (e) Maskless fabrication procedure for functional optical elements on the top surface of an optical fiber. (i) polished fiber ferrule assembly preparation, (ii) spin-coating of photoresist over the entire fiber (inset: multi-layer photoresist coating result), (iii) UV exposure by DMD-based maskless lithography, (iv) photolithographic definition of SU-8 resist on the fiber ferrule assembly, (v) extraction of the optical fiber from the ferrule.

Fig. 4
Fig. 4

(a-c) SEM of diverse functional optical elements on top surface of an optical fibers. (d-f) Light distributions at 637 nm wavelength. The optical characterization results shows effectively modulate light patterns. (g-h) Optical and SEM images of functional optical elements on top surface of a multimode fiber and a fiber bundle. (i) SEM images of detached optical fiber from the ferrule.

Metrics