Abstract

Broadband metamaterial absorber (MA) in the whole visible regime has attracted an enormous amount of attention for its potential applications in thermophotovoltaic cells, thermal emitters, and other optoelectronic devices. Nonetheless, complicated device configuration is still involved in achieving broadband, polarization-independent MA and it results in a cost-ineffective fabrication process. In this paper, a novel MA composed of a periodic array of dielectric cylinder sandwiched by the non-noble metal of nickel (Ni) film is demonstrated. Experimental results show that the proposed MA exhibits strong absorptive behavior independent of polarization in the whole visible regime (400-700 nm). The absorption still remains 80% when the incident angle is 60°. The proposed fabrication method is well compatible with the conventional soft nano-imprinting lithography technique, thus it is economic and scalable for a large-format substrate. These results provide an alternative method for the realization of high-performance visible light absorber and offer new opportunities for potential applications in related fields.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array

Yun Zhou, Minghui Luo, Su Shen, Heng Zhang, Donglin Pu, and Linsen Chen
Opt. Express 26(21) 27482-27491 (2018)

Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime

Shangliang Wu, Yu Gu, Yan Ye, Hong Ye, and Linsen Chen
Opt. Express 26(17) 21479-21489 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
    [Crossref] [PubMed]
  3. F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
    [Crossref]
  4. P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
    [Crossref]
  5. P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
    [Crossref]
  6. H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” In Emerging Technologies (ICET), 2016 International Conference on. IEEE 1–5 (2016)
    [Crossref]
  7. P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
    [Crossref]
  8. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  9. L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
    [Crossref]
  10. Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).
    [Crossref]
  11. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
    [Crossref]
  12. M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
    [PubMed]
  13. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
    [Crossref] [PubMed]
  14. B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
    [Crossref]
  15. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  16. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).
  17. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  18. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  19. B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B 87(11), 1214–1222 (2013).
    [Crossref]
  20. Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
    [Crossref] [PubMed]
  21. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
    [Crossref]
  22. K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).
  23. T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
    [PubMed]
  24. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  25. W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
    [Crossref]
  26. W. Wan, W. Qiao, W. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano-grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
    [Crossref] [PubMed]
  27. J. Zhang, S. Shen, X. X. Dong, and L. S. Chen, “Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold,” Opt. Express 22(2), 1842–1851 (2014).
    [Crossref] [PubMed]
  28. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  29. S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide-angle band absorbers,” Opt. Express 23(2), 963–970 (2015).
    [Crossref] [PubMed]
  30. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3), 131–314 (2005).
    [Crossref]
  31. P. Cheyssac, V. Sterligov, S. Lysenko, and R. Kofman, “Surface plasmon-polaritons,” Phys. Status Solidi 175 (1), 253–258 (1999).
    [Crossref]
  32. N. Ahmad, J. Stokes, and M. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
    [Crossref]
  33. J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
    [Crossref]
  34. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  35. N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
    [Crossref]
  36. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 5919–5926 (2011).
    [Crossref]
  37. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  38. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  39. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]

2016 (6)

P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
[Crossref]

W. Wan, W. Qiao, W. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano-grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
[Crossref] [PubMed]

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

2015 (5)

S. Shen, W. Qiao, Y. Ye, Y. Zhou, and L. Chen, “Dielectric-based subwavelength metallic meanders for wide-angle band absorbers,” Opt. Express 23(2), 963–970 (2015).
[Crossref] [PubMed]

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

2014 (5)

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[PubMed]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

J. Zhang, S. Shen, X. X. Dong, and L. S. Chen, “Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold,” Opt. Express 22(2), 1842–1851 (2014).
[Crossref] [PubMed]

N. Ahmad, J. Stokes, and M. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

2013 (2)

J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B 87(11), 1214–1222 (2013).
[Crossref]

2012 (2)

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
[Crossref]

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

2011 (4)

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 5919–5926 (2011).
[Crossref]

2010 (2)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3), 131–314 (2005).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1999 (1)

P. Cheyssac, V. Sterligov, S. Lysenko, and R. Kofman, “Surface plasmon-polaritons,” Phys. Status Solidi 175 (1), 253–258 (1999).
[Crossref]

1996 (1)

Ahmad, N.

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

N. Ahmad, J. Stokes, and M. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

Akgol, O.

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Akhlaghi, M. K.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Beermann, J.

J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Bozhevolnyi, S. I.

J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cao, T.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Chen, L.

Chen, L. S.

Chen, L. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Chen, X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cheyssac, P.

P. Cheyssac, V. Sterligov, S. Lysenko, and R. Kofman, “Surface plasmon-polaritons,” Phys. Status Solidi 175 (1), 253–258 (1999).
[Crossref]

Cong, L.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Cryan, M.

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

N. Ahmad, J. Stokes, and M. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

Cryan, M. J.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Diem, M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

Dincer, F.

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Dong, X. X.

Eriksen, R. L.

J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Fan, S.

Fang, Z.

W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
[Crossref]

W. Wan, W. Qiao, W. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano-grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Garcíaripoll, J. J.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Garnett, E. C.

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Gawarikar, A. S.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Guo, L. J.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 5919–5926 (2011).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Ho, K. M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Holmgaard, T.

J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Huang, W.

W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
[Crossref]

W. Wan, W. Qiao, W. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano-grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
[Crossref] [PubMed]

Jay Guo, L.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
[Crossref]

Ji, C.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

Johansson, G.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Karaaslan, M.

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kofman, R.

P. Cheyssac, V. Sterligov, S. Lysenko, and R. Kofman, “Surface plasmon-polaritons,” Phys. Status Solidi 175 (1), 253–258 (1999).
[Crossref]

Konstantatos, G.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Koschny, T.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

Lalanne, P.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, K. T.

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

Liu, B.

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B 87(11), 1214–1222 (2013).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Y.

W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
[Crossref]

W. Wan, W. Qiao, W. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano-grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
[Crossref] [PubMed]

Lu, M.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Lysenko, S.

P. Cheyssac, V. Sterligov, S. Lysenko, and R. Kofman, “Surface plasmon-polaritons,” Phys. Status Solidi 175 (1), 253–258 (1999).
[Crossref]

Mann, S. A.

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3), 131–314 (2005).
[Crossref]

Marko, P.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mock, D. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Morris, G. M.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Núñez-Sánchez, S.

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pedersen, K.

J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Peropadre, B.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Pu, D.

W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
[Crossref]

W. Wan, W. Qiao, W. Huang, M. Zhu, Z. Fang, D. Pu, Y. Ye, Y. Liu, and L. Chen, “Efficient fabrication method of nano-grating for 3D holographic display with full parallax views,” Opt. Express 24(6), 6203–6212 (2016).
[Crossref] [PubMed]

Pugh, J.

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

Qiao, W.

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 5919–5926 (2011).
[Crossref]

Rephaeli, E.

Romero, G.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Rufangura, P.

P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

Sabah, C.

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sargent, E. H.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Schelew, E.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shea, R. P.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Shen, S.

Simpson, R. E.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Singh, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3), 131–314 (2005).
[Crossref]

Solano, E.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Søndergaard, T.

J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Soukoulis, C. M.

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Sterligov, V.

P. Cheyssac, V. Sterligov, S. Lysenko, and R. Kofman, “Surface plasmon-polaritons,” Phys. Status Solidi 175 (1), 253–258 (1999).
[Crossref]

Stokes, J.

N. Ahmad, J. Stokes, and M. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

Talghader, J. J.

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Tan, S.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Ünal, E.

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wan, W.

Wang, C. Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Wang, S. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Wang, Z. Y.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Wei, C. W.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Wei, G.

W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wilson, C. M.

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Yahiaoui, R.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Yan, F.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Ye, Y.

Ye, Z.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Young, J. F.

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3), 131–314 (2005).
[Crossref]

Zhang, J.

Zhang, L.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Zhang, R. J.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Zhang, W.

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

Zheng, Y. X.

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 5919–5926 (2011).
[Crossref]

Zhou, X.

W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
[Crossref]

Zhou, Y.

Zhu, M.

Zhu, P.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
[Crossref]

ACS Photonics (1)

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

L. Cong, S. Tan, R. Yahiaoui, F. Yan, W. Zhang, and R. Singh, “Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces,” Appl. Phys. Lett. 106(3), 26 (2015).
[Crossref]

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 051105 (2012).
[Crossref]

K. T. Lee, C. Ji, and L. J. Guo, “Wide-angle, polarization-independent ultrathin broadband visible absorbers,” Appl. Phys. Lett. 108, 59 (2016).

J. Alloys Compd. (2)

P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” J. Alloys Compd. 680, 473–479 (2016).
[Crossref]

P. Rufangura and C. Sabah, “Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications,” J. Alloys Compd. 671, 43–50 (2016).
[Crossref]

J. Opt. (2)

N. Ahmad, J. Stokes, and M. Cryan, “Solar absorbers using 1D and 2D periodic nanostructured nickel films,” J. Opt. 16(12), 125003 (2014).
[Crossref]

N. Ahmad, S. Núñez-Sánchez, J. Pugh, and M. Cryan, “Deep-groove nickel gratings for solar thermal absorbers,” J. Opt. 18(10), 105901 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

J. J. Talghader, A. S. Gawarikar, and R. P. Shea, “Spectral selectivity in infrared thermal detection,” Light Sci. Appl. 1(8), e24 (2012).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Commun. (2)

M. K. Akhlaghi, E. Schelew, and J. F. Young, “Waveguide integrated superconducting single photon detectors implemented as coherent perfect absorbers,” Nat. Commun. 6, 8233 (2014).
[PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5(6), 391–400 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

New J. Phys. (1)

J. Beermann, R. L. Eriksen, T. Søndergaard, T. Holmgaard, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves,” New J. Phys. 15(7), 073007 (2013).
[Crossref]

Opt. Express (4)

Org. Electron. (1)

W. Huang, D. Pu, W. Qiao, Z. Fang, X. Zhou, Y. Ye, G. Wei, Y. Liu, and L. Chen, “Nearly diffraction-limited conjugated polymer microlasers utilizing two-dimensional distributed Bragg resonators,” Org. Electron. 38, 238–244 (2016).
[Crossref]

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408(3), 131–314 (2005).
[Crossref]

Phys. Rev. A (1)

B. Peropadre, G. Romero, G. Johansson, C. M. Wilson, E. Solano, and J. J. Garcíaripoll, “Perfect microwave photodetection in circuit QED,” Phys. Rev. A 84(6), 063834 (2011).
[Crossref]

Phys. Rev. B (3)

B. Liu and S. Shen, “Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: Direct numerical simulation by the Wiener chaos expansion method,” Phys. Rev. B 87(11), 1214–1222 (2013).
[Crossref]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 5919–5926 (2011).
[Crossref]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B Condens. Matter 79(3), 3101 (2008).

Phys. Rev. Lett. (3)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, S. Sajuyigbe, and D. J. Mock, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Phys. Status Solidi (1)

P. Cheyssac, V. Sterligov, S. Lysenko, and R. Kofman, “Surface plasmon-polaritons,” Phys. Status Solidi 175 (1), 253–258 (1999).
[Crossref]

Prog. Electromagnetics Res. (1)

F. Dincer, O. Akgol, M. Karaaslan, E. Ünal, and C. Sabah, “Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime,” Prog. Electromagnetics Res. 144(1), 93–101 (2014).
[Crossref]

Sci. Rep. (2)

Z. Y. Wang, R. J. Zhang, S. Y. Wang, M. Lu, X. Chen, Y. X. Zheng, L. Y. Chen, Z. Ye, C. Z. Wang, and K. M. Ho, “Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays,” Sci. Rep. 5(1), 7810 (2015).
[Crossref] [PubMed]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(2), 3955 (2014).
[PubMed]

Science (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Vacuum (1)

P. Rufangura and C. Sabah, “Dual-band perfect metamaterial absorber for solar cell applications,” Vacuum 120, 68–74 (2015).
[Crossref]

Other (3)

Y. Long, Y. Li, L. Shen, W. Liang, H. Deng, and H. Xu, “Dually guided-mode-resonant graphene perfect absorbers with narrow bandwidth for sensors,” J. Phys. D: Appl. Phys. 49(32), 32T01 (2016).
[Crossref]

H. Ullah, A. D. Khan, A. Ullah, I. Ullah, and M. Noman, “Plasmonic perfect absorber for solar cell applications,” In Emerging Technologies (ICET), 2016 International Conference on. IEEE 1–5 (2016)
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic of the proposed MA structure. (a) Three-dimensional (3D) topography. (b) The corresponding cross-section configuration of the MA.
Fig. 2
Fig. 2 (a) The experimental setup of the continuously variable spatial frequency photolithography system. (b) The fabrication process for proposed MA.
Fig. 3
Fig. 3 Experimental and theoretical characterization of the proposed MA. (a) SEM images of the photolithographic two-dimensional cylinder arrays. The dimensions of a unit are p = 250 nm, w = 100 nm, h1 = 200 nm, h2 = 60 nm, h3 = 85 nm. (b) The numerical simulated absorption (blue line), reflection (red line), and transmission (green line, negligible) spectra of the MA. The inset depicts the photograph of the fabricated sample with a size of 2.5 × 3 cm2 placed on the front of the trees under ambient light. (c) Comparison between the simulated absorption (blue line) and experimental absorption (red line) of the MA sample at the incident angle of 20°.
Fig. 4
Fig. 4 Simulated (a) and measured (b) angular absorptions of the MA for TM polarized light, measured (c) angular absorption of the MA for TE polarized light. The incident angle is varied from 30° to 60° in 15° steps.
Fig. 5
Fig. 5 Calculated electromagnetic field distributions at some wavelengths at normal incidence. (a), (c), and (e) are for the magnetic amplitude at 450nm, 550nm, and 650nm, respectively. (b), (d), and (f) are for the magnetic amplitude at 450nm, 550nm, and 650nm, respectively.
Fig. 6
Fig. 6 Calculated Poynting vector distribution at 550 nm wavelength at normal incidence.
Fig. 7
Fig. 7 Magnitude of the simulated S parameters for TM polarized light and calculated real and image part of the effective impedance
Fig. 8
Fig. 8 Demonstration of geometric effects on the normally incident TM polarized light: (a) the period, (b) the thickness of the cylinder.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z e f f = μ e f f ε e f f = ± ( 1 + S 11 ) 2 S 21 2 ( 1 S 11 ) 2 S 21 2

Metrics