Abstract

An all-fiber passively picosecond mode locked Erbium doped laser using a 45° tilted fiber grating (45° TFG) and a fiber Bragg grating (FBG) is reported in this work. Due to the strong polarization dependent loss (PDL) of 45° TFG and narrow 3-dB bandwidth of FBG, the Erbium doped fiber laser (EDFL) can generate picosecond mode locked pulse based on the nonlinear polarization rotation (NPR) effect. The laser features a repetition rate of 9.67 MHz, a pulse duration of 33 ps, a signal-to-noise ratio (SNR) of 70 dB, an average output power of 1.2 mW, and a single pulse energy of 124 pJ under the pump power of 102 mW. Besides, the central wavelength of the laser can be continuously adjusted from 1550.65 nm to 1551.44 nm. The technique of using a 45° TFG to generate picosecond pulses can be readily extended to other wavelength such as mid-infrared (mid-IR) where fiber polarizing components are either expensive or not available. To the best of our knowledge, the spectral width is the narrowest among all-fiber passively mode locked Erbium-doped laser based on NPR

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable nanosecond passively Q-switched all-fiber erbium-doped laser with a 45° tilted fiber grating

Tianxing Wang, Zhijun Yan, Chengbo Mou, Kaiming Zhou, and Lin Zhang
Appl. Opt. 56(12) 3583-3588 (2017)

Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating

Zuxing Zhang, Chengbo Mou, Zhijun Yan, Kaiming Zhou, Lin Zhang, and Sergei Turitsyn
Opt. Express 21(23) 28297-28303 (2013)

Thulium-doped all-fiber mode-locked laser based on NPR and 45°-tilted fiber grating

Jianfeng Li, Zhijun Yan, Zhongyuan Sun, Hongyu Luo, Yulian He, Zhuo Li, Yong Liu, and Lin Zhang
Opt. Express 22(25) 31020-31028 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
    [Crossref] [PubMed]
  2. Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 22(23), 1756–1758 (2010).
    [Crossref]
  3. K. Kieu and N. Peyghambarian, “Synchronized picosecond pulses at two different wavelengths from a compact fiber laser source for Raman microscopy,” Proc. SPIE 7903, 790310 (2011).
    [Crossref]
  4. Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
    [Crossref] [PubMed]
  5. Y. Ozeki and D. Tashiro, “Fast wavelength-tunable picosecond pulses from a passively mode-locked Er fiber laser using a galvanometer-driven intracavity filter,” Opt. Express 23(12), 15186–15194 (2015).
    [Crossref] [PubMed]
  6. C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
    [Crossref] [PubMed]
  7. Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
    [Crossref]
  8. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
    [Crossref]
  9. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
    [Crossref]
  10. C. Li, J. H. Chen, S. C. Yan, F. Xu, and Y. Q. Lu, “A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil,” IEEE Photonics J. 8(1), 1500307 (2016).
    [Crossref]
  11. M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
    [Crossref]
  12. H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-Pulse Modelocking in Fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
    [Crossref]
  13. L. M. Zhao, A. C. Bartnik, Q. Q. Tai, and F. W. Wise, “Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 38(11), 1942–1944 (2013).
    [Crossref] [PubMed]
  14. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
    [Crossref] [PubMed]
  15. D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
    [Crossref] [PubMed]
  16. M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “Linearly polarized all-fiber laser using a short section of highly polarizing microstructured fiber,” Laser Phys. Lett. 5(2), 135–138 (2008).
    [Crossref]
  17. K. K. Chow, S. Yamashita, Y. W. Song, B. T. Kuhlmey, and M. C. J. Large, “A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber,” Opt. Express 17(9), 7664–7669 (2009).
    [Crossref] [PubMed]
  18. G. E. Villanueva and P. Pérez-Millán, “Dynamic control of the operation regimes of a mode-locked fiber laser based on intracavity polarizing fibers: experimental and theoretical validation,” Opt. Lett. 37(11), 1971–1973 (2012).
    [Crossref] [PubMed]
  19. K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
    [Crossref] [PubMed]
  20. P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12(10), 1352–1354 (2000).
    [Crossref]
  21. Z. Yan, C. Mou, H. Wang, K. Zhou, Y. Wang, W. Zhao, and L. Zhang, “All-fiber polarization interference filters based on 45°-tilted fiber gratings,” Opt. Lett. 37(3), 353–355 (2012).
    [Crossref] [PubMed]
  22. S. J. Mihailov, R. B. Walker, T. J. Stocki, and D. C. Johnson, “Fabrication of tilted fibre-grating polarization dependent loss equaliser,” Electron. Lett. 37(5), 284–286 (2001).
    [Crossref]
  23. G. Wang, C. Wang, Z. Yan, and L. Zhang, “Highly efficient spectrally encoded imaging using a 45° tilted fiber grating,” Opt. Lett. 41(11), 2398–2401 (2016).
    [Crossref] [PubMed]
  24. C. Mou, H. Wang, B. G. Bale, K. Zhou, L. Zhang, and I. Bennion, “All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element,” Opt. Express 18(18), 18906–18911 (2010).
    [Crossref] [PubMed]
  25. X. Liu, H. Wang, Z. Yan, Y. Wang, W. Zhao, W. Zhang, L. Zhang, Z. Yang, X. Hu, X. Li, D. Shen, C. Li, and G. Chen, “All-fiber normal-dispersion single-polarization passively mode-locked laser based on a 45°-tilted fiber grating,” Opt. Express 20(17), 19000–19005 (2012).
    [Crossref] [PubMed]
  26. Z. J. Yan, C. B. Mou, K. M. Zhou, X. F. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29(18), 2715–2724 (2011).
    [Crossref]
  27. Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21(23), 28297–28303 (2013).
    [Crossref] [PubMed]
  28. C. B. Mou, K. M. Zhou, L. Zhang, and I. Bennion, “Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser,” J. Opt. Soc. Am. B 26(10), 1905–1911 (2009).
    [Crossref]
  29. X. Y. Dong, B. O. Guan, S. Z. Yuan, X. Y. Dong, and H. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1–3), 91–95 (2002).
    [Crossref]

2016 (4)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

C. Li, J. H. Chen, S. C. Yan, F. Xu, and Y. Q. Lu, “A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil,” IEEE Photonics J. 8(1), 1500307 (2016).
[Crossref]

G. Wang, C. Wang, Z. Yan, and L. Zhang, “Highly efficient spectrally encoded imaging using a 45° tilted fiber grating,” Opt. Lett. 41(11), 2398–2401 (2016).
[Crossref] [PubMed]

2015 (2)

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Y. Ozeki and D. Tashiro, “Fast wavelength-tunable picosecond pulses from a passively mode-locked Er fiber laser using a galvanometer-driven intracavity filter,” Opt. Express 23(12), 15186–15194 (2015).
[Crossref] [PubMed]

2014 (1)

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (3)

2011 (2)

Z. J. Yan, C. B. Mou, K. M. Zhou, X. F. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29(18), 2715–2724 (2011).
[Crossref]

K. Kieu and N. Peyghambarian, “Synchronized picosecond pulses at two different wavelengths from a compact fiber laser source for Raman microscopy,” Proc. SPIE 7903, 790310 (2011).
[Crossref]

2010 (3)

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 22(23), 1756–1758 (2010).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

C. Mou, H. Wang, B. G. Bale, K. Zhou, L. Zhang, and I. Bennion, “All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element,” Opt. Express 18(18), 18906–18911 (2010).
[Crossref] [PubMed]

2009 (4)

2008 (1)

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “Linearly polarized all-fiber laser using a short section of highly polarizing microstructured fiber,” Laser Phys. Lett. 5(2), 135–138 (2008).
[Crossref]

2007 (1)

2005 (1)

2002 (1)

X. Y. Dong, B. O. Guan, S. Z. Yuan, X. Y. Dong, and H. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1–3), 91–95 (2002).
[Crossref]

2001 (1)

S. J. Mihailov, R. B. Walker, T. J. Stocki, and D. C. Johnson, “Fabrication of tilted fibre-grating polarization dependent loss equaliser,” Electron. Lett. 37(5), 284–286 (2001).
[Crossref]

2000 (1)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12(10), 1352–1354 (2000).
[Crossref]

1994 (1)

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-Pulse Modelocking in Fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

1990 (1)

Andrés, M. V.

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “Linearly polarized all-fiber laser using a short section of highly polarizing microstructured fiber,” Laser Phys. Lett. 5(2), 135–138 (2008).
[Crossref]

Bale, B. G.

Bartnik, A. C.

Bennion, I.

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Caspani, L.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Chen, G.

Chen, J. H.

C. Li, J. H. Chen, S. C. Yan, F. Xu, and Y. Q. Lu, “A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil,” IEEE Photonics J. 8(1), 1500307 (2016).
[Crossref]

Chen, X.

Chen, X. F.

Cheung, K. K. Y.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 22(23), 1756–1758 (2010).
[Crossref]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
[Crossref] [PubMed]

Chow, K. K.

Chu, S. T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Chui, P. C.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 22(23), 1756–1758 (2010).
[Crossref]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
[Crossref] [PubMed]

Cruz, J. L.

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “Linearly polarized all-fiber laser using a short section of highly polarizing microstructured fiber,” Laser Phys. Lett. 5(2), 135–138 (2008).
[Crossref]

Delgado-Pinar, M.

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “Linearly polarized all-fiber laser using a short section of highly polarizing microstructured fiber,” Laser Phys. Lett. 5(2), 135–138 (2008).
[Crossref]

Díez, A.

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “Linearly polarized all-fiber laser using a short section of highly polarizing microstructured fiber,” Laser Phys. Lett. 5(2), 135–138 (2008).
[Crossref]

Dong, X. Y.

X. Y. Dong, B. O. Guan, S. Z. Yuan, X. Y. Dong, and H. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1–3), 91–95 (2002).
[Crossref]

X. Y. Dong, B. O. Guan, S. Z. Yuan, X. Y. Dong, and H. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1–3), 91–95 (2002).
[Crossref]

Erdogan, T.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12(10), 1352–1354 (2000).
[Crossref]

Fermann, M. E.

Ferrari, A.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Ferrari, A. C.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Fu, S. N.

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Guan, B. O.

X. Y. Dong, B. O. Guan, S. Z. Yuan, X. Y. Dong, and H. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1–3), 91–95 (2002).
[Crossref]

Haberl, F.

Hasan, T.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-Pulse Modelocking in Fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

Hochreiter, H.

Hofer, M.

Holtom, G. R.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Howe, R.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Hu, G.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Hu, X.

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-Pulse Modelocking in Fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

Johnson, D. C.

S. J. Mihailov, R. B. Walker, T. J. Stocki, and D. C. Johnson, “Fabrication of tilted fibre-grating polarization dependent loss equaliser,” Electron. Lett. 37(5), 284–286 (2001).
[Crossref]

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Kelleher, E.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Kieu, K.

K. Kieu and N. Peyghambarian, “Synchronized picosecond pulses at two different wavelengths from a compact fiber laser source for Raman microscopy,” Proc. SPIE 7903, 790310 (2011).
[Crossref]

Kieu, K. Q.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Kues, M.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Kuhlmey, B. T.

Large, M. C. J.

Li, C.

Li, L.

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

Li, X.

Little, B. E.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Liu, D. M.

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

Liu, X.

Lu, Y. Q.

C. Li, J. H. Chen, S. C. Yan, F. Xu, and Y. Q. Lu, “A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil,” IEEE Photonics J. 8(1), 1500307 (2016).
[Crossref]

Luo, Y. Y.

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, R. B. Walker, T. J. Stocki, and D. C. Johnson, “Fabrication of tilted fibre-grating polarization dependent loss equaliser,” Electron. Lett. 37(5), 284–286 (2001).
[Crossref]

Morandotti, R.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Moss, D. J.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Mou, C.

Mou, C. B.

Nicolosi, V.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

O’Neill, W.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Ozeki, Y.

Pérez-Millán, P.

Peyghambarian, N.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

K. Kieu and N. Peyghambarian, “Synchronized picosecond pulses at two different wavelengths from a compact fiber laser source for Raman microscopy,” Proc. SPIE 7903, 790310 (2011).
[Crossref]

Popa, D.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Popov, S.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Reimer, C.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Rozhin, A. G.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Roztocki, P.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Shen, D.

Simpson, G.

Song, Y. W.

Stocki, T. J.

S. J. Mihailov, R. B. Walker, T. J. Stocki, and D. C. Johnson, “Fabrication of tilted fibre-grating polarization dependent loss equaliser,” Electron. Lett. 37(5), 284–286 (2001).
[Crossref]

Strasser, T. A.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12(10), 1352–1354 (2000).
[Crossref]

Sun, Q. Z.

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

Sun, Z.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Tai, Q. Q.

Tam, H.

X. Y. Dong, B. O. Guan, S. Z. Yuan, X. Y. Dong, and H. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1–3), 91–95 (2002).
[Crossref]

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-Pulse Modelocking in Fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

Tang, D. Y.

Tashiro, D.

Taylor, J.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Torrisi, F.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Travers, J.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Turitsyn, S.

Villanueva, G. E.

Walker, R. B.

S. J. Mihailov, R. B. Walker, T. J. Stocki, and D. C. Johnson, “Fabrication of tilted fibre-grating polarization dependent loss equaliser,” Electron. Lett. 37(5), 284–286 (2001).
[Crossref]

Wang, C.

Wang, F.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Wang, G.

Wang, H.

Wang, Y.

Westbrook, P. S.

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12(10), 1352–1354 (2000).
[Crossref]

Wetzel, B.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Wise, F. W.

Wong, K. K. Y.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 22(23), 1756–1758 (2010).
[Crossref]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
[Crossref] [PubMed]

Woodward, R.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Wu, Z. C.

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

Xie, X. S.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Xu, F.

C. Li, J. H. Chen, S. C. Yan, F. Xu, and Y. Q. Lu, “A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil,” IEEE Photonics J. 8(1), 1500307 (2016).
[Crossref]

Xu, Z. L.

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

Yamashita, S.

Yan, S. C.

C. Li, J. H. Chen, S. C. Yan, F. Xu, and Y. Q. Lu, “A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil,” IEEE Photonics J. 8(1), 1500307 (2016).
[Crossref]

Yan, Z.

Yan, Z. J.

Yang, S.

Yang, S. G.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 22(23), 1756–1758 (2010).
[Crossref]

Yang, W.

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Yang, Z.

Yuan, S. Z.

X. Y. Dong, B. O. Guan, S. Z. Yuan, X. Y. Dong, and H. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1–3), 91–95 (2002).
[Crossref]

Zhang, L.

G. Wang, C. Wang, Z. Yan, and L. Zhang, “Highly efficient spectrally encoded imaging using a 45° tilted fiber grating,” Opt. Lett. 41(11), 2398–2401 (2016).
[Crossref] [PubMed]

Z. Zhang, C. Mou, Z. Yan, K. Zhou, L. Zhang, and S. Turitsyn, “Sub-100 fs mode-locked erbium-doped fiber laser using a 45°-tilted fiber grating,” Opt. Express 21(23), 28297–28303 (2013).
[Crossref] [PubMed]

X. Liu, H. Wang, Z. Yan, Y. Wang, W. Zhao, W. Zhang, L. Zhang, Z. Yang, X. Hu, X. Li, D. Shen, C. Li, and G. Chen, “All-fiber normal-dispersion single-polarization passively mode-locked laser based on a 45°-tilted fiber grating,” Opt. Express 20(17), 19000–19005 (2012).
[Crossref] [PubMed]

Z. Yan, C. Mou, H. Wang, K. Zhou, Y. Wang, W. Zhao, and L. Zhang, “All-fiber polarization interference filters based on 45°-tilted fiber gratings,” Opt. Lett. 37(3), 353–355 (2012).
[Crossref] [PubMed]

Z. J. Yan, C. B. Mou, K. M. Zhou, X. F. Chen, and L. Zhang, “UV-inscription, polarization-dependent loss characteristics and applications of 45° tilted fiber gratings,” J. Lightwave Technol. 29(18), 2715–2724 (2011).
[Crossref]

C. Mou, H. Wang, B. G. Bale, K. Zhou, L. Zhang, and I. Bennion, “All-fiber passively mode-locked femtosecond laser using a 45º-tilted fiber grating polarization element,” Opt. Express 18(18), 18906–18911 (2010).
[Crossref] [PubMed]

C. B. Mou, K. M. Zhou, L. Zhang, and I. Bennion, “Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser,” J. Opt. Soc. Am. B 26(10), 1905–1911 (2009).
[Crossref]

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Zhang, W.

Zhang, Z.

Zhao, L. M.

Zhao, W.

Zhou, K.

Zhou, K. M.

Zhou, Y.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 22(23), 1756–1758 (2010).
[Crossref]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Electron. Lett. (1)

S. J. Mihailov, R. B. Walker, T. J. Stocki, and D. C. Johnson, “Fabrication of tilted fibre-grating polarization dependent loss equaliser,” Electron. Lett. 37(5), 284–286 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus, E. P. Ippen, and K. Tamura, “Additive-Pulse Modelocking in Fiber lasers,” IEEE J. Quantum Electron. 30(1), 200–208 (1994).
[Crossref]

IEEE Photonics J. (2)

C. Li, J. H. Chen, S. C. Yan, F. Xu, and Y. Q. Lu, “A Fiber Laser Using Graphene-Integrated 3-D Microfiber Coil,” IEEE Photonics J. 8(1), 1500307 (2016).
[Crossref]

Y. Y. Luo, L. Li, L. M. Zhao, Q. Z. Sun, Z. C. Wu, Z. L. Xu, S. N. Fu, and D. M. Liu, “Dynamics of dissipative solitons in a high repetition rate normal-dispersion erbium-doped fiber laser,” IEEE Photonics J. 8(4), 7101507 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

P. S. Westbrook, T. A. Strasser, and T. Erdogan, “In-line polarimeter using blazed fiber gratings,” IEEE Photonics Technol. Lett. 12(10), 1352–1354 (2000).
[Crossref]

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “Ultra-Widely Tunable, Narrow Linewidth Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photonics Technol. Lett. 22(23), 1756–1758 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

M. Delgado-Pinar, A. Díez, J. L. Cruz, and M. V. Andrés, “Linearly polarized all-fiber laser using a short section of highly polarizing microstructured fiber,” Laser Phys. Lett. 5(2), 135–138 (2008).
[Crossref]

Nano Res. (2)

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010).
[Crossref]

M. Zhang, R. Howe, R. Woodward, E. Kelleher, F. Torrisi, G. Hu, S. Popov, J. Taylor, and T. Hasan, “Solution processed MoS2-PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser,” Nano Res. 8(5), 1522–1534 (2015).
[Crossref]

Nat. Photonics (1)

C. W. Freudiger, W. Yang, G. R. Holtom, N. Peyghambarian, X. S. Xie, and K. Q. Kieu, “Stimulated Raman scattering microscopy with a robust fibre laser source,” Nat. Photonics 8(2), 153–159 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Y. Dong, B. O. Guan, S. Z. Yuan, X. Y. Dong, and H. Tam, “Strain gradient chirp of uniform fiber Bragg grating without shift of central Bragg wavelength,” Opt. Commun. 202(1–3), 91–95 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (8)

G. E. Villanueva and P. Pérez-Millán, “Dynamic control of the operation regimes of a mode-locked fiber laser based on intracavity polarizing fibers: experimental and theoretical validation,” Opt. Lett. 37(11), 1971–1973 (2012).
[Crossref] [PubMed]

K. Zhou, G. Simpson, X. Chen, L. Zhang, and I. Bennion, “High extinction ratio in-fiber polarizers based on 45 ° tilted fiber Bragg gratings,” Opt. Lett. 30(11), 1285–1287 (2005).
[Crossref] [PubMed]

L. M. Zhao, A. C. Bartnik, Q. Q. Tai, and F. W. Wise, “Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 38(11), 1942–1944 (2013).
[Crossref] [PubMed]

M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
[Crossref] [PubMed]

D. Y. Tang and L. M. Zhao, “Generation of 47-fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32(1), 41–43 (2007).
[Crossref] [PubMed]

Y. Zhou, K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, “Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber,” Opt. Lett. 34(7), 989–991 (2009).
[Crossref] [PubMed]

G. Wang, C. Wang, Z. Yan, and L. Zhang, “Highly efficient spectrally encoded imaging using a 45° tilted fiber grating,” Opt. Lett. 41(11), 2398–2401 (2016).
[Crossref] [PubMed]

Z. Yan, C. Mou, H. Wang, K. Zhou, Y. Wang, W. Zhao, and L. Zhang, “All-fiber polarization interference filters based on 45°-tilted fiber gratings,” Opt. Lett. 37(3), 353–355 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

K. Kieu and N. Peyghambarian, “Synchronized picosecond pulses at two different wavelengths from a compact fiber laser source for Raman microscopy,” Proc. SPIE 7903, 790310 (2011).
[Crossref]

Science (1)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351(6278), 1176–1180 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Measured (a) insertion loss of 45° TFG, and (b) PDL spectrum in the wavelength coverage from 1525 to 1608 nm.
Fig. 2
Fig. 2 The experimental configuration of mode-locked picosecond fiber laser with 45° TFG and the enlarged configuration of the 45° TFG. The inset shows the transmission spectrum of FBG.
Fig. 3
Fig. 3 Optical spectrum of this mode locked EDFL under the pump power of 102 mW. (b) The temporal pulse train. (c) AC trace of the output pulses (olive curve) and its Sech2 fitting (red dotted curve). (d) The RF spectrum with a 500 Hz span and 1 Hz resolution bandwidth. Inset shows the RF spectrum in a 1 GHz range with 10 kHz resolution bandwidth.
Fig. 4
Fig. 4 Optical spectrum at eight different central wavelengths while perform continuous tuning. (b) The corresponding AC traces. (c) Bandwidth and pulse duration variations of different central wavelength. (d) The TBP changes along with different central wavelength.

Metrics