Abstract

We report results from characterizing the HgCdTe avalanche photodiode (APD) arrays developed for lidar at infrared wavelengths by using the high density vertically integrated photodiodes (HDVIP®) technique. The results show >90% quantum efficiencies between 0.8 μm and the cut-off wavelength, >600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and <0.5 fW/Hz1/2 noise equivalent power (NEP). The detectors provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD gain settings. They have been used successfully in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as precursors for use in space lidar.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).
  2. M. P. McCormick, “Airborne and spaceborne lidar,” in Lidar: Range Resolved Optical Remote Sensing of the Atmosphere, Ch. 13, C. Weitkamp ed. (Springer Science + Business Media, 2005).
  3. M. A. Kinch, Fundamental of Infrared Detector Materials (SPIE, 2007).
  4. M. A. Kinch, State-of-the-Art Infrared Detector Technology (SPIE, 2014).
  5. J. D. Beck, C. F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
    [Crossref]
  6. J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
    [Crossref]
  7. G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, “Gain and dark current characteristics of planar HgCdTe avalanche photodiodes,” J. Electron. Mater. 36(8), 963–970 (2007).
    [Crossref]
  8. S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
    [Crossref]
  9. G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
    [Crossref]
  10. J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, “History dependent impact ionization theories applied to HgCdTe e-APDs,” J. Electron. Mater. 40(8), 1757–1768 (2011).
    [Crossref]
  11. J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
    [Crossref]
  12. J. D. Beck, M. Kinch, and X. Sun, “Update on linear mode photon counting with the HgCdTe linear mode avalanche photodiode,” Opt. Eng. 53(8), 081906 (2014).
    [Crossref]
  13. G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
    [Crossref]
  14. W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
    [Crossref]
  15. I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy – present and future,” Proc. SPIE 9915, 991505 (2016).
    [Crossref]
  16. J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
    [Crossref]
  17. X. Sun, J. B. Abshire, and J. D. Beck, “HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications,” Proc. SPIE 9114, 91140K (2014).
    [Crossref]
  18. J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
    [Crossref]
  19. G. R. Allan, H. Riris, J. B. Abshire, M. A. Stephen, ramanathan, chen, W. Hasselbrack, X. Sun, K. Numata, and S. Wu, “CO2 Sounder lidar development at NASA-GSFC for the ASCENDS mission,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STh1H.3.
    [Crossref]
  20. J. B. Abshire, NASA Goddard Space Flight Center, Greenbelt, MD 20771, is preparing a manuscript to be called “Airborne measurements of XCO2 made with a pulsed, multi-wavelength-locked laser and HgCdTe detector.”
  21. H. Riris, NASA Goddard Space Flight Center, Greenbelt, MD 20771, is preparing a manuscript to be called “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” Appl. Remote Sens. (submitted to).
  22. P. G. Lucey, X. Sun, J. B. Abshire, and G. A. Neumann, “An orbital lidar spectrometer for lunar polar compositions,” 45th Lunar and Planetary Science Conference (2014), paper 2335.
  23. D. Rawlings and G. Averitt, “A linear drive cryocooler for ultra-small infrared sensor systems,” Proc. SPIE 9070, 90702R (2014).
    [Crossref]
  24. R. Fields, X. Sun, J. Abshire, J. Beck, R. M. Rawlings, and D. Hinkley, “A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements,” in International Geoscience And Remote Sensing Symposium (IGARSS),5312–5315, Paper FR2.B1 (2015).
    [Crossref]
  25. W. H. Southwell, “Focal-plane pixel-energy redistribution and concentration by use of microlens arrays,” Appl. Opt. 33(16), 3460–3464 (1994).
    [Crossref] [PubMed]
  26. R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed, (John Wiley and Sons, 1995), Ch. 4.

2016 (1)

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy – present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

2015 (1)

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

2014 (5)

D. Rawlings and G. Averitt, “A linear drive cryocooler for ultra-small infrared sensor systems,” Proc. SPIE 9070, 90702R (2014).
[Crossref]

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

X. Sun, J. B. Abshire, and J. D. Beck, “HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications,” Proc. SPIE 9114, 91140K (2014).
[Crossref]

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

J. D. Beck, M. Kinch, and X. Sun, “Update on linear mode photon counting with the HgCdTe linear mode avalanche photodiode,” Opt. Eng. 53(8), 081906 (2014).
[Crossref]

2013 (2)

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

2011 (2)

J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, “History dependent impact ionization theories applied to HgCdTe e-APDs,” J. Electron. Mater. 40(8), 1757–1768 (2011).
[Crossref]

G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
[Crossref]

2009 (2)

S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
[Crossref]

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

2007 (1)

G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, “Gain and dark current characteristics of planar HgCdTe avalanche photodiodes,” J. Electron. Mater. 36(8), 963–970 (2007).
[Crossref]

2006 (1)

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

2001 (1)

J. D. Beck, C. F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[Crossref]

1994 (1)

Abshire, J.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

R. Fields, X. Sun, J. Abshire, J. Beck, R. M. Rawlings, and D. Hinkley, “A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements,” in International Geoscience And Remote Sensing Symposium (IGARSS),5312–5315, Paper FR2.B1 (2015).
[Crossref]

Abshire, J. B.

X. Sun, J. B. Abshire, and J. D. Beck, “HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications,” Proc. SPIE 9114, 91140K (2014).
[Crossref]

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

P. G. Lucey, X. Sun, J. B. Abshire, and G. A. Neumann, “An orbital lidar spectrometer for lunar polar compositions,” 45th Lunar and Planetary Science Conference (2014), paper 2335.

Allan, G. R.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

Averitt, G.

D. Rawlings and G. Averitt, “A linear drive cryocooler for ultra-small infrared sensor systems,” Proc. SPIE 9070, 90702R (2014).
[Crossref]

Baker, I.

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy – present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

Barnes, K.

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy – present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

Baylet, J.

G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, “Gain and dark current characteristics of planar HgCdTe avalanche photodiodes,” J. Electron. Mater. 36(8), 963–970 (2007).
[Crossref]

Beck, J.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

R. Fields, X. Sun, J. Abshire, J. Beck, R. M. Rawlings, and D. Hinkley, “A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements,” in International Geoscience And Remote Sensing Symposium (IGARSS),5312–5315, Paper FR2.B1 (2015).
[Crossref]

Beck, J. D.

X. Sun, J. B. Abshire, and J. D. Beck, “HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications,” Proc. SPIE 9114, 91140K (2014).
[Crossref]

J. D. Beck, M. Kinch, and X. Sun, “Update on linear mode photon counting with the HgCdTe linear mode avalanche photodiode,” Opt. Eng. 53(8), 081906 (2014).
[Crossref]

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

J. D. Beck, C. F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[Crossref]

Bernhardt, S.

S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
[Crossref]

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

Bonnefond, L.

J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, “History dependent impact ionization theories applied to HgCdTe e-APDs,” J. Electron. Mater. 40(8), 1757–1768 (2011).
[Crossref]

Browell, E. V.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

Campbell, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Carpenter, D.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

Cavanaugh, J. F.

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

Chamonal, J.-P.

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

Derelle, S.

S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
[Crossref]

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

Deschamps, J.

S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
[Crossref]

Destefanis, G.

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, “Gain and dark current characteristics of planar HgCdTe avalanche photodiodes,” J. Electron. Mater. 36(8), 963–970 (2007).
[Crossref]

Feautrier, P.

G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
[Crossref]

Fields, R.

R. Fields, X. Sun, J. Abshire, J. Beck, R. M. Rawlings, and D. Hinkley, “A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements,” in International Geoscience And Remote Sensing Symposium (IGARSS),5312–5315, Paper FR2.B1 (2015).
[Crossref]

Foubert, K.

G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
[Crossref]

Gleckler, A. D.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Goût, S.

J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, “History dependent impact ionization theories applied to HgCdTe e-APDs,” J. Electron. Mater. 40(8), 1757–1768 (2011).
[Crossref]

Gravrand, O.

G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, “Gain and dark current characteristics of planar HgCdTe avalanche photodiodes,” J. Electron. Mater. 36(8), 963–970 (2007).
[Crossref]

Guellec, F.

G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
[Crossref]

Haïdar, R.

S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
[Crossref]

Harding, D. J.

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

Hasselbrack, W. E.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

Hinkley, D.

R. Fields, X. Sun, J. Abshire, J. Beck, R. M. Rawlings, and D. Hinkley, “A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements,” in International Geoscience And Remote Sensing Symposium (IGARSS),5312–5315, Paper FR2.B1 (2015).
[Crossref]

Hipwood, L.

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy – present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

Kinch, M.

J. D. Beck, M. Kinch, and X. Sun, “Update on linear mode photon counting with the HgCdTe linear mode avalanche photodiode,” Opt. Eng. 53(8), 081906 (2014).
[Crossref]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Kinch, M. A.

J. D. Beck, C. F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[Crossref]

Lane, B.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

Lucey, P. G.

P. G. Lucey, X. Sun, J. B. Abshire, and G. A. Neumann, “An orbital lidar spectrometer for lunar polar compositions,” 45th Lunar and Planetary Science Conference (2014), paper 2335.

Ma, F.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Mao, J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

Martin, R. J.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Mathieu, L.

G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
[Crossref]

Maxey, C.

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy – present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

McGarry, J. F.

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

Mitra, P.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Mollard, L.

J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, “History dependent impact ionization theories applied to HgCdTe e-APDs,” J. Electron. Mater. 40(8), 1757–1768 (2011).
[Crossref]

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

Neumann, G. A.

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

P. G. Lucey, X. Sun, J. B. Abshire, and G. A. Neumann, “An orbital lidar spectrometer for lunar polar compositions,” 45th Lunar and Planetary Science Conference (2014), paper 2335.

Perrais, G.

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, “Gain and dark current characteristics of planar HgCdTe avalanche photodiodes,” J. Electron. Mater. 36(8), 963–970 (2007).
[Crossref]

Primot, J.

S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
[Crossref]

Ramanathan, A.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

Rawlings, D.

D. Rawlings and G. Averitt, “A linear drive cryocooler for ultra-small infrared sensor systems,” Proc. SPIE 9070, 90702R (2014).
[Crossref]

Rawlings, R. M.

R. Fields, X. Sun, J. Abshire, J. Beck, R. M. Rawlings, and D. Hinkley, “A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements,” in International Geoscience And Remote Sensing Symposium (IGARSS),5312–5315, Paper FR2.B1 (2015).
[Crossref]

Reiff, K.

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Riris, H.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

Robinson, J.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Robinson, J. E.

J. D. Beck, C. F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[Crossref]

Rothman, J.

J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, “History dependent impact ionization theories applied to HgCdTe e-APDs,” J. Electron. Mater. 40(8), 1757–1768 (2011).
[Crossref]

G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
[Crossref]

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
[Crossref]

G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, “Gain and dark current characteristics of planar HgCdTe avalanche photodiodes,” J. Electron. Mater. 36(8), 963–970 (2007).
[Crossref]

Scritchfield, R.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Skokan, M.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

Smith, D. E.

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

Smith, J. C.

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

Southwell, W. H.

Strittmatter, R.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Sullivan, W.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

Sullivan, W. W.

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

Sun, X.

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

J. D. Beck, M. Kinch, and X. Sun, “Update on linear mode photon counting with the HgCdTe linear mode avalanche photodiode,” Opt. Eng. 53(8), 081906 (2014).
[Crossref]

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

X. Sun, J. B. Abshire, and J. D. Beck, “HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications,” Proc. SPIE 9114, 91140K (2014).
[Crossref]

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

R. Fields, X. Sun, J. Abshire, J. Beck, R. M. Rawlings, and D. Hinkley, “A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements,” in International Geoscience And Remote Sensing Symposium (IGARSS),5312–5315, Paper FR2.B1 (2015).
[Crossref]

P. G. Lucey, X. Sun, J. B. Abshire, and G. A. Neumann, “An orbital lidar spectrometer for lunar polar compositions,” 45th Lunar and Planetary Science Conference (2014), paper 2335.

Vincent, G.

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

Vojetta, G.

G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
[Crossref]

Wan, C.

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

Wan, C. F.

J. D. Beck, C. F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[Crossref]

Weaver, C. J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

Welch, T.

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Wlassow, J.

J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, “History dependent impact ionization theories applied to HgCdTe e-APDs,” J. Electron. Mater. 40(8), 1757–1768 (2011).
[Crossref]

Zuber, M. T.

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

Zwally, H. J.

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

Appl. Opt. (1)

IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. (1)

X. Sun, J. B. Abshire, J. F. McGarry, G. A. Neumann, J. F. Cavanaugh, J. C. Smith, D. J. Harding, H. J. Zwally, D. E. Smith, and M. T. Zuber, “Space lidar developed at NASA Goddard Space Flight Center – The first 20 years,” IEEE J. Sel. Topics Appl. Earth Observ. In Remote Sens. 6(3), 1660–1675 (2013).

IEEE Trans. Electron Dev. (1)

S. Derelle, S. Bernhardt, R. Haïdar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo study of Hg0.7Cd0.3Te e-APD,” IEEE Trans. Electron Dev. 56(4), 569–577 (2009).
[Crossref]

J. Electron. Mater. (6)

G. Perrais, S. Derelle, L. Mollard, J.-P. Chamonal, G. Destefanis, G. Vincent, S. Bernhardt, and J. Rothman, “Study of the transit-time limitations of the impulse response in mid-wave infrared HgCdTe avalanche photodiodes,” J. Electron. Mater. 38(8), 1790–1799 (2009).
[Crossref]

J. Rothman, L. Mollard, S. Goût, L. Bonnefond, and J. Wlassow, “History dependent impact ionization theories applied to HgCdTe e-APDs,” J. Electron. Mater. 40(8), 1757–1768 (2011).
[Crossref]

J. Beck, C. Wan, M. Kinch, J. Robinson, P. Mitra, R. Scritchfield, F. Ma, and J. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[Crossref]

G. Perrais, O. Gravrand, J. Baylet, G. Destefanis, and J. Rothman, “Gain and dark current characteristics of planar HgCdTe avalanche photodiodes,” J. Electron. Mater. 36(8), 963–970 (2007).
[Crossref]

W. Sullivan, J. Beck, R. Scritchfield, M. Skokan, P. Mitra, X. Sun, J. Abshire, D. Carpenter, and B. Lane, “Linear-mode HgCdTe avalanche photodiodes for photon-counting applications,” J. Electron. Mater. 44(9), 3092–3101 (2015).
[Crossref]

J. Beck, T. Welch, P. Mitra, K. Reiff, X. Sun, and J. Abshire, “A highly sensitive multi-element HgCdTe e-APD Detector for IPDA lidar applications,” J. Electron. Mater. 43(8), 2970–2977 (2014).
[Crossref]

Opt. Eng. (2)

J. D. Beck, R. Scritchfield, P. Mitra, W. W. Sullivan, A. D. Gleckler, R. Strittmatter, and R. J. Martin, “Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode,” Opt. Eng. 53(8), 081905 (2014).
[Crossref]

J. D. Beck, M. Kinch, and X. Sun, “Update on linear mode photon counting with the HgCdTe linear mode avalanche photodiode,” Opt. Eng. 53(8), 081906 (2014).
[Crossref]

Proc. SPIE (5)

G. Vojetta, F. Guellec, L. Mathieu, K. Foubert, P. Feautrier, and J. Rothman, “Linear photon-counting with HgCdTe APDs,” Proc. SPIE 8375, 83750Y (2011).
[Crossref]

X. Sun, J. B. Abshire, and J. D. Beck, “HgCdTe e-APD detector arrays with single photon sensitivity for space lidar applications,” Proc. SPIE 9114, 91140K (2014).
[Crossref]

I. Baker, C. Maxey, L. Hipwood, and K. Barnes, “Leonardo (formerly Selex ES) infrared sensors for astronomy – present and future,” Proc. SPIE 9915, 991505 (2016).
[Crossref]

D. Rawlings and G. Averitt, “A linear drive cryocooler for ultra-small infrared sensor systems,” Proc. SPIE 9070, 90702R (2014).
[Crossref]

J. D. Beck, C. F. Wan, M. A. Kinch, and J. E. Robinson, “MWIR HgCdTe avalanche photodiodes,” Proc. SPIE 4454, 188–197 (2001).
[Crossref]

Remote Sens. (1)

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2013).
[Crossref]

Other (9)

G. R. Allan, H. Riris, J. B. Abshire, M. A. Stephen, ramanathan, chen, W. Hasselbrack, X. Sun, K. Numata, and S. Wu, “CO2 Sounder lidar development at NASA-GSFC for the ASCENDS mission,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2016), paper STh1H.3.
[Crossref]

J. B. Abshire, NASA Goddard Space Flight Center, Greenbelt, MD 20771, is preparing a manuscript to be called “Airborne measurements of XCO2 made with a pulsed, multi-wavelength-locked laser and HgCdTe detector.”

H. Riris, NASA Goddard Space Flight Center, Greenbelt, MD 20771, is preparing a manuscript to be called “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” Appl. Remote Sens. (submitted to).

P. G. Lucey, X. Sun, J. B. Abshire, and G. A. Neumann, “An orbital lidar spectrometer for lunar polar compositions,” 45th Lunar and Planetary Science Conference (2014), paper 2335.

M. P. McCormick, “Airborne and spaceborne lidar,” in Lidar: Range Resolved Optical Remote Sensing of the Atmosphere, Ch. 13, C. Weitkamp ed. (Springer Science + Business Media, 2005).

M. A. Kinch, Fundamental of Infrared Detector Materials (SPIE, 2007).

M. A. Kinch, State-of-the-Art Infrared Detector Technology (SPIE, 2014).

R. Fields, X. Sun, J. Abshire, J. Beck, R. M. Rawlings, and D. Hinkley, “A linear mode photon-counting (LMPC) detector array in a CubeSat to enable earth science LIDAR measurements,” in International Geoscience And Remote Sensing Symposium (IGARSS),5312–5315, Paper FR2.B1 (2015).
[Crossref]

R. M. Gagliardi and S. Karp, Optical Communications, 2nd ed, (John Wiley and Sons, 1995), Ch. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic of the HDVIP® HgCdTe APD, left: side view; right; top view (Conceptual drawing only, the layer thickness and the via size not to scale).

Fig. 2
Fig. 2

Spectral response of a 4.3-μm cut-off HDVIP® HgCdTe APD.

Fig. 3
Fig. 3

Schematic and photograph of a 4x4 pixel HgCdTe APD sensor chip assembly (SCA) developed for NASA GSFC’s CO2 Sounder lidar.

Fig. 4
Fig. 4

Schematic of the ROIC for the 4x4 HgCdTe APD sensor chip assembly.

Fig. 5
Fig. 5

Quantum efficiency of all 16 pixels of the HVDIP HgCdTe APD SCA (Serial Number A8052-16B) at 1.55 μm wavelength based on the responsivity measurements in CTIA mode at 0.5 V APD bias.

Fig. 6
Fig. 6

Responsivity of the HgCdTe APD SCA (A8052-16B) vs. bias voltage at 1.55 μm wavelength. The buffer amplifier gain was 10.7 V/V for this detector assembly.

Fig. 7
Fig. 7

APD gain of the HVDIP HgCdTe APD SCA (A8052-16B). Left: APD gain of Pixel 16 vs. bias voltage with both CTIA and RTIA measurement; right: APD gain for all the pixels at 11 and 12 V APD bias voltage.

Fig. 8
Fig. 8

Normalized HgCdTe APD response vs. light spot position across one center pixel (A8052-13E) at 11 V APD bias. The laser spot size was about 5 μm in diameter and it was moved at 1-μm step size in a raster scan pattern across the APD active area.

Fig. 9
Fig. 9

Dark current of the HgCdTe APD (A8052-16B) at 0.5 V bias voltage measured (unity APD gain) measured with the ROIC in the CTIA mode.

Fig. 10
Fig. 10

Left: NEP of the HgCdTe APD (A8052-16B, Pixel 16); Right: NEP for all pixels at 11 and 12 V APD biases. The RTIA gain was set to 320 kV/A and the buffer amplifier gain was 10.7 V/V.

Fig. 11
Fig. 11

Gain-normalized dark current of the HgCdTe APD (A8052-16B, pixel 16) at 0.5 and 11 V APD bias voltages divided by the APD gain.

Fig. 12
Fig. 12

Noise spectral density of the HgCdTe APD (A8052-16B, pixel 16) under 0 and 11 V APD biases at dark and under a relatively strong CW illumination to determine the electrical bandwidth.

Fig. 13
Fig. 13

NEP and bandwidth of the HgCdTe APD (A8052-4E, pixel 16) vs. the RTIA gain at 11 V APD bias. Note this is from a different device with a narrower bandwidth than that shown in Fig. 12.

Fig. 14
Fig. 14

Normalized impulse response of the HgCdTe APD (A8052-16B, pixel 16) at 11 V APD bias and maximum RTIA gain.

Fig. 15
Fig. 15

Measured HgCdTe APD (A8052-13E, pixel 16) excess noise factor vs. number of incident photons per pulse in response to a 70-ps and a 1-μs pulse width lasers.

Fig. 16
Fig. 16

Dynamic range of the HgCdTe APD (A8052-16B). The APD output pulse amplitude vs. the incident number of photons per pulse at various APD bias settings (left); and the output pulse amplitude divided by the APD gain vs. the incident photons/pulse (right).

Fig. 17
Fig. 17

SNR of integrated pulse area from the HgCdTe APD (A8052-16B) as a function of the APD biases at different incident signal levels in response to a 70-ps short pulse laser (left) and a 1-μs rectangular pulse laser (right). Note the signal calibration for the 70-ps laser pulses was difficult and consequently less accurate than that for the 1-μs pulse laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S N R s i g μ s i g σ s i g = η Q E η f i l l G A P D n s i g η Q E η f i l l F e x G A P D 2 n s i g + σ d a r k 2
F e x = η Q E η f i l l [ ( σ s i g μ s i g ) 2 ( σ d a r k μ s i g ) 2 ] n s i g .

Metrics