Abstract

Scanning near-field optical microscopy (SNOM) in combination with interference structures is a powerful tool for imaging and analysis of surface plasmon polaritons (SPPs). However, the correct interpretation of SNOM images requires profound understanding of principles behind their formation. To study fundamental principles of SNOM imaging in detail, we performed spectroscopic measurements by an aperture-type SNOM setup equipped with a supercontinuum laser and a polarizer, which gave us all the degrees of freedom necessary for our investigation. The series of wavelength- and polarization-resolved measurements, together with results of numerical simulations, then allowed us to identify the role of individual near-field components in formation of SNOM images, and to show that the out-of-plane component generally dominates within a broad range of parameters explored in our study. Our results challenge the widespread notion that this component does not couple to the aperture-type SNOM probe and indicate that the issue of SNOM probe sensitivity towards the in-plane and out-of-plane near-field components – one of the most challenging tasks of near field interference SNOM measurements – is not yet fully resolved.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Apertureless near-field optical microscopy: influence of the illumination conditions on the image contrast

Pierre-Michel Adam, Pascal Royer, Reda Laddada, and Jean-Louis Bijeon
Appl. Opt. 37(10) 1814-1819 (1998)

Near-field imaging of the interference pattern of counterpropagating evanescent waves

Sergey I. Bozhevolnyi and Elena A. Bozhevolnaya
Opt. Lett. 24(11) 747-749 (1999)

Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy

S. Schmidt, A. E. Klein, T. Paul, H. Gross, S. Diziain, M. Steinert, A. C. Assafrao, T. Pertsch, H. P. Urbach, and C. Rockstuhl
Opt. Express 24(4) 4128-4142 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. D. Pohl, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  2. W. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [Crossref]
  3. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  4. M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
    [Crossref] [PubMed]
  5. R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004).
    [Crossref] [PubMed]
  6. B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
    [Crossref] [PubMed]
  7. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
    [Crossref]
  8. B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
    [Crossref]
  9. P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
    [Crossref] [PubMed]
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  11. M. C. Quong and A. Y. Elezzabi, “Selective optical-optical switching for planar plasmonic waveguides and nodes,” Opt. Express 16(11), 8198–8212 (2008).
    [Crossref] [PubMed]
  12. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  13. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [Crossref] [PubMed]
  14. Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
    [Crossref]
  15. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  16. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  17. C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
    [Crossref] [PubMed]
  18. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
    [Crossref] [PubMed]
  19. L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
    [Crossref] [PubMed]
  20. Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
    [Crossref] [PubMed]
  21. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express 19(20), 19093–19103 (2011).
    [Crossref] [PubMed]
  22. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
    [Crossref] [PubMed]
  23. A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, and T. Pertsch, “Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system,” Nano Lett. 14(9), 5010–5015 (2014).
    [Crossref] [PubMed]
  24. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
    [PubMed]
  25. X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
    [Crossref] [PubMed]
  26. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
    [Crossref] [PubMed]
  27. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
    [Crossref] [PubMed]
  28. H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
    [Crossref] [PubMed]
  29. B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
    [Crossref]
  30. N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
    [Crossref]
  31. M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
    [Crossref] [PubMed]
  32. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  33. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
    [Crossref]
  34. T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
    [Crossref]
  35. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
    [Crossref]
  36. M. Mansuripur, X. Yong, A. R. Zakharian, and J. V. Moloney, “Transmission of light through slit apertures in metallic films,” IEEE Trans. Magn. 41(2), 1012–1015 (2005).
    [Crossref]
  37. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
    [Crossref] [PubMed]
  38. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).
  39. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
    [Crossref] [PubMed]
  40. M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
    [Crossref] [PubMed]
  41. Q. Wang, J. Bu, and X.-C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
    [Crossref] [PubMed]
  42. E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
    [Crossref]
  43. X. Li, Y. Gao, S. Jiang, L. Ma, C. Liu, and C. Cheng, “Experimental solution for scattered imaging of the interference of plasmonic and photonic mode waves launched by metal nano-slits,” Opt. Express 23(3), 3507–3522 (2015).
    [Crossref] [PubMed]
  44. M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano 6(9), 8173–8182 (2012).
    [Crossref] [PubMed]
  45. S. Schmidt, A. E. Klein, T. Paul, H. Gross, S. Diziain, M. Steinert, A. C. Assafrao, T. Pertsch, H. P. Urbach, and C. Rockstuhl, “Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy,” Opt. Express 24(4), 4128–4142 (2016).
    [Crossref] [PubMed]
  46. M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
    [Crossref] [PubMed]
  47. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
    [Crossref] [PubMed]
  48. D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
    [Crossref] [PubMed]
  49. P. Ginzburg, E. Hirshberg, and M. Orenstein, “Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114024 (2009).
    [Crossref]
  50. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
    [Crossref] [PubMed]

2016 (2)

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

S. Schmidt, A. E. Klein, T. Paul, H. Gross, S. Diziain, M. Steinert, A. C. Assafrao, T. Pertsch, H. P. Urbach, and C. Rockstuhl, “Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy,” Opt. Express 24(4), 4128–4142 (2016).
[Crossref] [PubMed]

2015 (4)

X. Li, Y. Gao, S. Jiang, L. Ma, C. Liu, and C. Cheng, “Experimental solution for scattered imaging of the interference of plasmonic and photonic mode waves launched by metal nano-slits,” Opt. Express 23(3), 3507–3522 (2015).
[Crossref] [PubMed]

B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
[Crossref] [PubMed]

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

2014 (4)

A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, and T. Pertsch, “Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system,” Nano Lett. 14(9), 5010–5015 (2014).
[Crossref] [PubMed]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

2013 (9)

Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
[Crossref] [PubMed]

B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
[Crossref]

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
[Crossref] [PubMed]

2012 (3)

M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano 6(9), 8173–8182 (2012).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

2011 (6)

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
[Crossref] [PubMed]

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express 19(20), 19093–19103 (2011).
[Crossref] [PubMed]

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[Crossref] [PubMed]

2010 (2)

Q. Wang, J. Bu, and X.-C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
[Crossref] [PubMed]

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

2009 (3)

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

P. Ginzburg, E. Hirshberg, and M. Orenstein, “Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114024 (2009).
[Crossref]

2008 (2)

M. C. Quong and A. Y. Elezzabi, “Selective optical-optical switching for planar plasmonic waveguides and nodes,” Opt. Express 16(11), 8198–8212 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

2007 (1)

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[Crossref] [PubMed]

2005 (4)

M. Mansuripur, X. Yong, A. R. Zakharian, and J. V. Moloney, “Transmission of light through slit apertures in metallic films,” IEEE Trans. Magn. 41(2), 1012–1015 (2005).
[Crossref]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

2004 (1)

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

1998 (1)

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
[Crossref]

1997 (1)

T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
[Crossref]

1984 (1)

W. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ahn, J.

Ahn, K.

Aieta, F.

B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
[Crossref] [PubMed]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[Crossref] [PubMed]

Aizpurua, J.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Alferov, S. V.

E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
[Crossref]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Alonso-González, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Assafrao, A. C.

Baba, T.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

Bábor, P.

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Bagheri, S.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Baillargeat, D.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Bak, W. S.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Bao, K.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartoli, F. J.

Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
[Crossref] [PubMed]

Beggs, D. M.

B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

Beneš, L.

T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
[Crossref]

Bezus, E. A.

E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
[Crossref]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Bohn, B. J.

B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
[Crossref] [PubMed]

Boreman, G. D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Brínek, L.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

Brolo, A. G.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Bu, J.

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Capasso, F.

B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Cheng, C.

Cheng, X.

Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Denk, W.

W. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Denkova, D.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ditrichová, L.

T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
[Crossref]

Diziain, S.

S. Schmidt, A. E. Klein, T. Paul, H. Gross, S. Diziain, M. Steinert, A. C. Assafrao, T. Pertsch, H. P. Urbach, and C. Rockstuhl, “Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy,” Opt. Express 24(4), 4128–4142 (2016).
[Crossref] [PubMed]

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Doskolovich, L. L.

E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
[Crossref]

Dub, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Dvorák, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

Eah, S. H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Elezzabi, A. Y.

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Engelen, R. J. P.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

Esslinger, M.

M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano 6(9), 8173–8182 (2012).
[Crossref] [PubMed]

Fasold, S.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Fu, Y.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Gan, Q.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
[Crossref] [PubMed]

Gao, Y.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

X. Li, Y. Gao, S. Jiang, L. Ma, C. Liu, and C. Cheng, “Experimental solution for scattered imaging of the interference of plasmonic and photonic mode waves launched by metal nano-slits,” Opt. Express 23(3), 3507–3522 (2015).
[Crossref] [PubMed]

Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
[Crossref] [PubMed]

García de Abajo, F. J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Giessen, H.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Ginzburg, P.

P. Ginzburg, E. Hirshberg, and M. Orenstein, “Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114024 (2009).
[Crossref]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Gross, H.

Guo, L.

L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
[Crossref] [PubMed]

Halas, N. J.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

Heitmann, D.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
[Crossref]

Hentschel, M.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Hillenbrand, R.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004).
[Crossref] [PubMed]

Hirshberg, E.

P. Ginzburg, E. Hirshberg, and M. Orenstein, “Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114024 (2009).
[Crossref]

Ho, H.-P.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Hrncír, T.

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

Hu, H.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Huang, Y.

L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
[Crossref] [PubMed]

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[Crossref] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Janunts, N.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, and T. Pertsch, “Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system,” Nano Lett. 14(9), 5010–5015 (2014).
[Crossref] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[Crossref] [PubMed]

Ji, D.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Jiang, S.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[Crossref] [PubMed]

Kalousek, R.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

Kats, M. A.

B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
[Crossref] [PubMed]

Khanikaev, A. B.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Kihm, H. W.

H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
[Crossref] [PubMed]

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Kihm, J. E.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Kikutani, Y.

L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
[Crossref] [PubMed]

Kim, D.-H.

L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
[Crossref] [PubMed]

Kim, D.-S.

H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, and D.-S. Kim, “Optical magnetic field mapping using a subwavelength aperture,” Opt. Express 21(5), 5625–5633 (2013).
[Crossref] [PubMed]

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Kim, H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Kim, J.

Kim, Q. H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Kitamori, T.

L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
[Crossref] [PubMed]

Kivshar, Y. S.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[Crossref] [PubMed]

Klein, A. E.

S. Schmidt, A. E. Klein, T. Paul, H. Gross, S. Diziain, M. Steinert, A. C. Assafrao, T. Pertsch, H. P. Urbach, and C. Rockstuhl, “Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy,” Opt. Express 24(4), 4128–4142 (2016).
[Crossref] [PubMed]

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, and T. Pertsch, “Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system,” Nano Lett. 14(9), 5010–5015 (2014).
[Crossref] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[Crossref] [PubMed]

Kley, E.-B.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Kolíbalová, E.

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

Koo, S.

Koo, S. M.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Koppens, F. H. L.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Kuipers, L.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[Crossref] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

Lanz, M.

W. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

le Feber, B.

B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

Lee, K.

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Li, F.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Li, X.

Lienau, C.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Liu, C.

Liu, H.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Liu, K.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Lu, Z.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ma, L.

Maeda, N.

Mansuripur, M.

M. Mansuripur, X. Yong, A. R. Zakharian, and J. V. Moloney, “Transmission of light through slit apertures in metallic films,” IEEE Trans. Magn. 41(2), 1012–1015 (2005).
[Crossref]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[Crossref] [PubMed]

Minovich, A.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[Crossref] [PubMed]

Miyanishi, T.

Moloney, J. V.

M. Mansuripur, X. Yong, A. R. Zakharian, and J. V. Moloney, “Transmission of light through slit apertures in metallic films,” IEEE Trans. Magn. 41(2), 1012–1015 (2005).
[Crossref]

Mori, D.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

Morozov, A. A.

E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
[Crossref]

Mortier, M.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[Crossref] [PubMed]

Moshchalkov, V. V.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Nedyalkov, N. N.

Neshev, D. N.

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[Crossref] [PubMed]

Neuman, T.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

Nordlander, P.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Obara, G.

Obara, M.

Oh, S.-H. H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Opheij, A.

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

Orenstein, M.

P. Ginzburg, E. Hirshberg, and M. Orenstein, “Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114024 (2009).
[Crossref]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Park, N.

Park, N. K.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Paul, T.

Perina, V.

T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
[Crossref]

Pertsch, T.

S. Schmidt, A. E. Klein, T. Paul, H. Gross, S. Diziain, M. Steinert, A. C. Assafrao, T. Pertsch, H. P. Urbach, and C. Rockstuhl, “Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy,” Opt. Express 24(4), 4128–4142 (2016).
[Crossref] [PubMed]

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, and T. Pertsch, “Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system,” Nano Lett. 14(9), 5010–5015 (2014).
[Crossref] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[Crossref] [PubMed]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Pohl, W. D.

W. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Quong, M. C.

Rafaja, D.

T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
[Crossref]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rockstuhl, C.

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

Rotenberg, N.

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

Šamoril, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

Sarriugarte, P.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Schmidt, S.

Schnell, M.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
[Crossref] [PubMed]

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Schröter, U.

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Shvets, G.

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Šikola, T.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
[Crossref]

Silhanek, A. V.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Sison, M.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Song, H.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Spousta, J.

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
[Crossref]

Steinert, M.

S. Schmidt, A. E. Klein, T. Paul, H. Gross, S. Diziain, M. Steinert, A. C. Assafrao, T. Pertsch, H. P. Urbach, and C. Rockstuhl, “Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy,” Opt. Express 24(4), 4128–4142 (2016).
[Crossref] [PubMed]

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, and T. Pertsch, “Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system,” Nano Lett. 14(9), 5010–5015 (2014).
[Crossref] [PubMed]

Sun, Q.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Tanaka, Y.

L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
[Crossref] [PubMed]

Terakawa, M.

Thongrattanasiri, S.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

Tugchin, B. N.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Tukmakov, K. N.

E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
[Crossref]

Tünnermann, A.

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, and T. Pertsch, “Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system,” Nano Lett. 14(9), 5010–5015 (2014).
[Crossref] [PubMed]

Uhlír, V.

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

Urbach, H. P.

Urbánek, M.

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

Valev, V. K.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Valsecchi, C.

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Van Dorpe, P.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

Varga, P.

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

Verellen, N.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

Vogelgesang, R.

M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano 6(9), 8173–8182 (2012).
[Crossref] [PubMed]

Volodkin, B. O.

E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
[Crossref]

Wang, Q.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Q. Wang, J. Bu, and X.-C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
[Crossref] [PubMed]

Wang, T.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Weiss, T.

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Xie, Z.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Xin, Z.

Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
[Crossref] [PubMed]

Yong, K.-T.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Yong, X.

M. Mansuripur, X. Yong, A. R. Zakharian, and J. V. Moloney, “Transmission of light through slit apertures in metallic films,” IEEE Trans. Magn. 41(2), 1012–1015 (2005).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, W.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Yuan, X.-C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Q. Wang, J. Bu, and X.-C. Yuan, “High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays,” Opt. Express 18(3), 2662–2667 (2010).
[Crossref] [PubMed]

Zakharian, A. R.

M. Mansuripur, X. Yong, A. R. Zakharian, and J. V. Moloney, “Transmission of light through slit apertures in metallic films,” IEEE Trans. Magn. 41(2), 1012–1015 (2005).
[Crossref]

Zeng, B.

Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
[Crossref] [PubMed]

Zeng, S.

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Zeng, X.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

Zhang, H.

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Zhang, N.

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Zhang, X.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

ACS Nano (2)

M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano 6(9), 8173–8182 (2012).
[Crossref] [PubMed]

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7(4), 3168–3176 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

B. N. Tugchin, N. Janunts, A. E. Klein, M. Steinert, S. Fasold, S. Diziain, M. Sison, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields,” ACS Photonics 2(10), 1468–1475 (2015).
[Crossref]

Appl. Phys. Lett. (1)

W. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[Crossref]

Chem. Soc. Rev. (1)

S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

IEEE Trans. Magn. (1)

M. Mansuripur, X. Yong, A. R. Zakharian, and J. V. Moloney, “Transmission of light through slit apertures in metallic films,” IEEE Trans. Magn. 41(2), 1012–1015 (2005).
[Crossref]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys. 112(18), 7761–7774 (2000).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

P. Ginzburg, E. Hirshberg, and M. Orenstein, “Rigorous analysis of vectorial plasmonic diffraction: single- and double-slit experiments,” J. Opt. A, Pure Appl. Opt. 11(11), 114024 (2009).
[Crossref]

JETP Lett. (1)

E. A. Bezus, A. A. Morozov, B. O. Volodkin, K. N. Tukmakov, S. V. Alferov, and L. L. Doskolovich, “Formation of high-frequency two-dimensional interference patterns of surface plasmon polaritons,” JETP Lett. 98(6), 317–320 (2013).
[Crossref]

Lab Chip (2)

L. Guo, Y. Huang, Y. Kikutani, Y. Tanaka, T. Kitamori, and D.-H. Kim, “In situ assembly, regeneration and plasmonic immunosensing of a Au nanorod monolayer in a closed-surface flow channel,” Lab Chip 11(19), 3299–3304 (2011).
[Crossref] [PubMed]

Y. Gao, Z. Xin, B. Zeng, Q. Gan, X. Cheng, and F. J. Bartoli, “Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection,” Lab Chip 13(24), 4755–4764 (2013).
[Crossref] [PubMed]

Langmuir (1)

C. Valsecchi and A. G. Brolo, “Periodic metallic nanostructures as plasmonic chemical sensors,” Langmuir 29(19), 5638–5649 (2013).
[Crossref] [PubMed]

Nano Lett. (6)

M. Hentschel, T. Weiss, S. Bagheri, and H. Giessen, “Babinet to the half: coupling of solid and inverse plasmonic structures,” Nano Lett. 13(9), 4428–4433 (2013).
[Crossref] [PubMed]

A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, and T. Pertsch, “Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system,” Nano Lett. 14(9), 5010–5015 (2014).
[Crossref] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

M. Schnell, P. Sarriugarte, T. Neuman, A. B. Khanikaev, G. Shvets, J. Aizpurua, and R. Hillenbrand, “Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces,” Nano Lett. 16(1), 663–670 (2016).
[Crossref] [PubMed]

P. Dvořák, T. Neuman, L. Břínek, T. Šamořil, R. Kalousek, P. Dub, P. Varga, and T. Šikola, “Control and near-field detection of surface plasmon interference patterns,” Nano Lett. 13(6), 2558–2563 (2013).
[Crossref] [PubMed]

B. J. Bohn, M. Schnell, M. A. Kats, F. Aieta, R. Hillenbrand, and F. Capasso, “Near-Field Imaging of Phased Array Metasurfaces,” Nano Lett. 15(6), 3851–3858 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

M. Urbánek, V. Uhlír, P. Bábor, E. Kolíbalová, T. Hrncír, J. Spousta, and T. Šikola, “Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process,” Nanotechnology 21(14), 145304 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

B. le Feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, “Simultaneous measurement of nanoscale electric and magnetic optical fields,” Nat. Photonics 8(1), 43–46 (2013).
[Crossref]

N. Rotenberg and L. Kuipers, “Mapping nanoscale light fields,” Nat. Photonics 8(12), 919–926 (2014).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nature (2)

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. García de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487(7405), 77–81 (2012).
[PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (1)

T. Šikola, J. Spousta, L. Ditrichová, L. Beneš, V. Peřina, and D. Rafaja, “Ion beam assisted deposition of metallic and ceramic thin films,” Nucl. Instrum. Methods Phys. Res. B 127(127–128), 673–676 (1997).
[Crossref]

Opt. Express (6)

Phys. Rev. B (3)

U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58(23), 15419–15421 (1998).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. H. Oh, G. D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86(23), 235147 (2012).
[Crossref]

Phys. Rev. Lett. (5)

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94(5), 053901 (2005).
[Crossref] [PubMed]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[Crossref] [PubMed]

M. Burresi, R. J. P. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, and L. Kuipers, “Observation of polarization singularities at the nanoscale,” Phys. Rev. Lett. 102(3), 033902 (2009).
[Crossref] [PubMed]

A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of Airy surface plasmons,” Phys. Rev. Lett. 107(11), 116802 (2011).
[Crossref] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95(26), 263902 (2005).
[Crossref] [PubMed]

Plasmonics (1)

Z. Xie, W. Yu, T. Wang, H. Zhang, Y. Fu, H. Liu, F. Li, Z. Lu, and Q. Sun, “Plasmonic Nanolithography: A Review,” Plasmonics 6(3), 565–580 (2011).
[Crossref]

Sci. Rep. (1)

X. Zeng, H. Hu, Y. Gao, D. Ji, N. Zhang, H. Song, K. Liu, S. Jiang, and Q. Gan, “Phase change dispersion of plasmonic nano-objects,” Sci. Rep. 5(1), 12665 (2015).
[Crossref] [PubMed]

Science (2)

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science 326(5952), 550–553 (2009).
[Crossref] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science 340(6130), 331–334 (2013).
[Crossref] [PubMed]

Ultramicroscopy (1)

R. Hillenbrand, “Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction,” Ultramicroscopy 100(3-4), 421–427 (2004).
[Crossref] [PubMed]

Other (3)

L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).

W. D. Pohl, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic of a SPP wave propagating along the metal-air interface with the marked near-field vectors. (b) Schematic of the sample cross-section with the slits carved into the metal layers using FIB. Note that the laser beam is not drawn in scale. (c) AFM topography image of the interference structure.

Fig. 2
Fig. 2

Schematic of the SNOM microscope with the supercontinuum laser light source. The inverted microscope enables to focus the light beam to an interference structure and set its polarization. The optical signal is detected via the home-made SNOM probe and guided by the optical fiber into the photodetector.

Fig. 3
Fig. 3

Interference patterns of the square of modulus of (a) out-of-plane and (b) in-plane electric field components calculated for linearly polarized illumination (polarization direction marked by the white double arrows) at λ = 632 nm. Note that the dimensions of the interference structures were only (5 x 5) μm2 for better visualization and the |Ein|2 values in (b) are multiplied by a factor of 10. The purple dashed lines represent the symmetry axes. The zoomed images show a schematic of the central region of the interference patterns with the colored squares indicating their character. (c) Schematic of individual interference patterns of the Ein and Eout components and their superposition together with the intensity profile along the axis of symmetry. Note that the bright spots (maxima) of both patterns do not overlap. (d) Experimental interference pattern for linearly polarized light (λ = 632 nm). All scale bars are 1 μm.

Fig. 4
Fig. 4

(a) Schematic of the formation of SPP interference patterns at the 4-slit structure for illumination polarized in the direction perpendicular to the diagonal of the structure. (b) Creation of the diamond-like interference pattern by the superposition of the SPP out-of-plane components. The resulting pattern motif is marked by a green diamond. (c) Creation of the square-like interference pattern (red square) by the superposition of the SPP in-plane components. The arrows in (b) and (c) depict the electric field orientation and the resulting amplitudes are indicated numerically for each grid point. The corresponding SPP wavelength is indicated by the bar at the top of the schemes.

Fig. 5
Fig. 5

FDTD calculations of SPP interference patterns (illumination wavelength λ0 = 650 nm) with a SNOM probe implemented into the model. (a) Amplitude of the electric field in the vicinity of a SNOM probe with the shape and size matching the one used in experiments. (b) The power transmitted through the aperture into the glass core calculated by integrating the Poynting vector over its cross-section 700 nm above the tip apex. Red circles and triangles show this transmitted power as a function of the tip position ξ along the diagonal of the SPP interference pattern for aperture with diameter 60 nm (same as in our experiments) and 80 nm, respectively. The resulting (discrete) ξ-profiles are overlaid with the profiles of SPP near-field components (blue and green line) extracted from simulations without the SNOM probe shown in (c). The energy flux through the smaller aperture corresponds to the out-of-plane component, whereas the flux through the larger one exhibits a mixed character with contribution from both components. Note that each point in (b) corresponds to one simulation and one position of the probe along the diagonal indicated by the white line in (c).

Fig. 6
Fig. 6

(a) Experimental and (b) calculated interference patterns for unpolarized illumination at λ = 650 nm. The four-fold symmetry of the square-like pattern is indicated by the dashed purple lines. Scale bars are 1 μm. (c) The observed square-like pattern is the result of incoherent superposition of two mutually shifted diamond-like patterns corresponding to two mutually perpendicular polarization states of incident light. (d) The absolute position of various interference patterns (polarized vs. unpolarized illumination; Ein vs. Eout components) with respect to the center of the interference structure.

Fig. 7
Fig. 7

(a) Schematic of the excitation of SPPs at the edges of the slit structure and their propagation through it. These SPPs are subsequently partially decoupled into free space radiation at the upper edge of the slits. This effect can be qualitatively modeled as an electric dipole radiation. (b) The corresponding far-field radiation interferes coherently and forms a distinct pattern with spatial periodicity larger than in the case of SPP interference. (c) Transition of the SPP near-field interference towards the far-field interference accompanied by the change in pattern periodicity. (d) Electric field maps (|E|2) at different heights above the gold surface for two different wavelengths. For short wavelengths (below 550 nm), the pattern undergoes a transition from the near-field diamond-like to the far-field square-like character as we increase the distance from the surface. Although we performed our measurements with a conventional a-SNOM, thus with the tip-sample distance < 100 nm, the agreement between these simulations and experiment indicates that we also detect the free space radiation, probably through the probe sidewall: Despite the skin depth of gold below 550 nm is still significantly smaller (≈35 nm) than the probe coating (≈130 nm), the power flux through the sidewall, which was negligible at the longer wavelengths, can become comparable to the power transmitted through the aperture at these shorter wavelengths.

Fig. 8
Fig. 8

Interference patterns measured for linearly polarized illumination at different wavelengths showing the same diamond-like pattern (indicated by the green grids) for all wavelengths ranging from 575 nm to 750 nm in agreement with the numerical simulations in Fig. 2. For shorter wavelengths the square-like pattern originating from the far-field interference of electromagnetic field decoupled from SPPs dominates (cyan grid). The scale bars are 2 μm.

Fig. 9
Fig. 9

(a) SPP wavelengths determined by an image analysis of patterns measured for polarized (green symbols) and unpolarized (red symbols) illumination and analytically calculated SPP wavelengths (black line) as a function of the illumination light wavelength. Note that at shorter wavelengths, the error bars are much longer because the peaks corresponding to the pattern periodicity are gradually approaching the central maximum of the Fourier images and thus becoming less and less resolvable. (b) Ratio of the maximal values of |Eout|2 and |Ein|2 for analytically calculated interfering SPPs at the air-gold interface as a function of the illumination wavelength.

Fig. 10
Fig. 10

Interference patterns measured at different wavelengths using unpolarized illumination. Nearly at all wavelengths a mixture of diamond-like (green) and square-like (red) patterns was observed. As we go towards shorter wavelengths (below 550 nm), a square-like pattern originating from the far-field interference of electromagnetic field decoupled from SPPs (cyan) starts to emerge and eventually dominates the entire image. All scale bars are 2 μm.

Fig. 11
Fig. 11

(a) Formation of the interference pattern for partially polarized light. The breaking of the symmetry results in appearance of the diamond-like pattern on top of the originally square-like pattern. (b) Measured degree of polarization (DoP) of the used laser beam as a function of illumination wavelength. Simulated interference patterns at λ = 650 nm for a degree of polarization set to 0.2 (c) and 0.3 (d).

Metrics