Abstract

Research thrusts in silicon photonics are developing control operations using higher order waveguide modes for next generation high-bandwidth communication systems. In this context, devices allowing optical processing of multiple waveguide modes can reduce architecture complexity and enable flexible on-chip networks. We propose and demonstrate a hybrid resonator dually resonant at the 1st and 2nd order modes of a silicon waveguide. We observe 8 dB extinction ratio and modal conversion range of 20 nm for the 1st order quasi-TE mode input.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-mode division multiplexing in a silicon-on-insulator ring resonator

Bryce A. Dorin and Winnie N. Ye
Opt. Express 22(4) 4547-4558 (2014)

Mode-selective modulation by silicon microring resonators and mode multiplexers for on-chip optical interconnect

Hao Jia, Xin Fu, Ting Zhou, Lei Zhang, Shanglin Yang, and Lin Yang
Opt. Express 27(3) 2915-2925 (2019)

Compact filters and demultiplexers based on long-range air-hole assisted subwavelength waveguides

Wen Zhou and Xu Guang Huang
Opt. Express 21(23) 28456-28468 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
    [Crossref] [PubMed]
  2. P. Dong, J. Lee, Y. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-Channel 100-Gb / s per Channel Discrete Multi-Tone Modulation Using Silicon Photonic Integrated Circuits,” in OFC 2015 (2015), paper Th5B.4.
  3. M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
    [Crossref] [PubMed]
  4. A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20(19), 21341–21345 (2012).
    [Crossref] [PubMed]
  5. M. Ye, Y. Yu, G. Chen, Y. Luo, and X. Zhang, “On-chip WDM mode-division multiplexing interconnection with optional demodulation function,” Opt. Express 23(25), 32130–32138 (2015).
    [Crossref] [PubMed]
  6. G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. L. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
    [Crossref] [PubMed]
  7. A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum Interference between Transverse Spatial Waveguide Modes,” in CLEO 2015 (2015), paper FTu4A.5.
  8. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530 (2015).
    [Crossref]
  9. C. Williams, B. Banan, G. Cowan, and O. Liboiron-Ladouceur, “A Source-Synchronous Architecture Using Mode-Division Multiplexing for On-Chip Silicon Photonic Interconnects,” IEEE J. Sel. Top. Quantum Electron. 22(6), 8300109 (2016).
  10. Y. Ho, D. Lee, J. Cardenas, and M. Lipson, “Linear silicon PN junction phase modulator,” in CLEO 2015 (2015), paper SW3N.5.
  11. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
    [Crossref]
  12. G. Chen, Y. Yu, and X. Zhang, “Monolithically mode division multiplexing photonic integrated circuit for large-capacity optical interconnection,” Opt. Lett. 41(15), 3543–3546 (2016).
    [Crossref] [PubMed]
  13. T. Mulugeta and M. Rasras, “Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing,” Opt. Express 23(2), 943–949 (2015).
    [Crossref] [PubMed]
  14. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  15. B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
    [Crossref] [PubMed]
  16. J. D. Love and N. Riesen, “Single-, Few-, and Multimode Y-Junctions,” J. Lightwave Technol. 30(3), 304–309 (2012).
    [Crossref]
  17. A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
    [Crossref]
  18. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
    [Crossref] [PubMed]
  19. A. Grieco, G. Porter, and Y. Fainman, “Integrated space-division multiplexer for application to data center networks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 2361 (2016).
    [Crossref]
  20. H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, and X. Jiang, “Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide,” Opt. Lett. 41(11), 2450–2453 (2016).
    [Crossref] [PubMed]
  21. W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
    [Crossref] [PubMed]
  22. J. St-Yves, H. Bahrami, P. Jean, S. LaRochelle, and W. Shi, “Widely bandwidth-tunable silicon filter with an unlimited free-spectral range,” Opt. Lett. 40(23), 5471–5474 (2015).
    [Crossref] [PubMed]
  23. J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc., J Optoelectron. 140(5), 275–284 (1993).
    [Crossref]
  24. W. Shi, V. Veerasubramanian, D. V. Plant, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic Bragg-grating couplers for optical communications,” Optoelectron. Devices Mater. 9010, 90100F (2014).
  25. K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 20–23 (2008).
    [Crossref]
  26. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
    [Crossref] [PubMed]
  27. M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Two-period contra-directional grating assisted coupler,” Opt. Express 24(20), 22865–22874 (2016).
    [Crossref] [PubMed]
  28. C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry – Pérot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
    [Crossref]
  29. A. Grieco and Y. Fainman, “Characterization of distributed Bragg reflectors,” J. Quantum Elect. 50(6), 453–457 (2014).
    [Crossref]
  30. X. Chen, M. Mohamed, Z. Li, L. Shang, and A. R. Mickelson, “Process variation in silicon photonic devices,” Appl. Opt. 52(31), 7638–7647 (2013).
    [Crossref] [PubMed]
  31. L. Chrostowski and M. Hochberg, Silicon Photonics Design (2015).
    [Crossref]
  32. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
    [Crossref] [PubMed]

2016 (6)

2015 (8)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
[Crossref] [PubMed]

J. St-Yves, H. Bahrami, P. Jean, S. LaRochelle, and W. Shi, “Widely bandwidth-tunable silicon filter with an unlimited free-spectral range,” Opt. Lett. 40(23), 5471–5474 (2015).
[Crossref] [PubMed]

T. Mulugeta and M. Rasras, “Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing,” Opt. Express 23(2), 943–949 (2015).
[Crossref] [PubMed]

M. Ye, Y. Yu, G. Chen, Y. Luo, and X. Zhang, “On-chip WDM mode-division multiplexing interconnection with optional demodulation function,” Opt. Express 23(25), 32130–32138 (2015).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. L. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530 (2015).
[Crossref]

2014 (6)

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
[Crossref] [PubMed]

W. Shi, V. Veerasubramanian, D. V. Plant, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic Bragg-grating couplers for optical communications,” Optoelectron. Devices Mater. 9010, 90100F (2014).

A. Grieco and Y. Fainman, “Characterization of distributed Bragg reflectors,” J. Quantum Elect. 50(6), 453–457 (2014).
[Crossref]

2013 (2)

2012 (2)

2008 (1)

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 20–23 (2008).
[Crossref]

2006 (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

2004 (1)

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry – Pérot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

1993 (1)

J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc., J Optoelectron. 140(5), 275–284 (1993).
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Almeida, V. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry – Pérot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Ang, L. K.

Babinec, T. M.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Baehr-Jones, T.

Bahrami, H.

Banan, B.

C. Williams, B. Banan, G. Cowan, and O. Liboiron-Ladouceur, “A Source-Synchronous Architecture Using Mode-Division Multiplexing for On-Chip Silicon Photonic Interconnects,” IEEE J. Sel. Top. Quantum Electron. 22(6), 8300109 (2016).

Barrios, C. A.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry – Pérot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Boeck, R.

Boroojerdi, M. T.

Cardenas, J.

Caverley, M.

Chakravarty, S.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Chee, A. K. L.

Chen, C. P.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Chen, G.

Chen, G. F. R.

Chen, R. T.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Chen, X.

Chrostowski, L.

Cowan, G.

C. Williams, B. Banan, G. Cowan, and O. Liboiron-Ladouceur, “A Source-Synchronous Architecture Using Mode-Division Multiplexing for On-Chip Silicon Photonic Interconnects,” IEEE J. Sel. Top. Quantum Electron. 22(6), 8300109 (2016).

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Dai, T.

de Ronde, B.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Dehollain, J. P.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Ding, Y.

Dorin, B. A.

Dzurak, A. S.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Fainman, Y.

A. Grieco, G. Porter, and Y. Fainman, “Integrated space-division multiplexer for application to data center networks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 2361 (2016).
[Crossref]

A. Grieco and Y. Fainman, “Characterization of distributed Bragg reflectors,” J. Quantum Elect. 50(6), 453–457 (2014).
[Crossref]

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 20–23 (2008).
[Crossref]

Frandsen, L. H.

Frellsen, L. F.

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Grieco, A.

A. Grieco, G. Porter, and Y. Fainman, “Integrated space-division multiplexer for application to data center networks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 2361 (2016).
[Crossref]

A. Grieco and Y. Fainman, “Characterization of distributed Bragg reflectors,” J. Quantum Elect. 50(6), 453–457 (2014).
[Crossref]

Griffith, A.

Hochberg, M.

Hosseini, A.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Hudson, F. E.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Hwang, J. C. C.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Ikeda, K.

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 20–23 (2008).
[Crossref]

Itoh, K. M.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Jaeger, N. A. F.

Jean, P.

Jiang, J.

Jiang, X.

Kirk, A. G.

Lagoudakis, K. G.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

LaRochelle, S.

Leenstra, A. W.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Li, Z.

Liboiron-Ladouceur, O.

C. Williams, B. Banan, G. Cowan, and O. Liboiron-Ladouceur, “A Source-Synchronous Architecture Using Mode-Division Multiplexing for On-Chip Silicon Photonic Interconnects,” IEEE J. Sel. Top. Quantum Electron. 22(6), 8300109 (2016).

Lin, C.

Lipson, M.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20(19), 21341–21345 (2012).
[Crossref] [PubMed]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry – Pérot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Liu, Y.

Love, J. D.

Lu, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Luo, Y.

Ménard, M.

Mickelson, A. R.

Mohamed, M.

Morello, A.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Muhonen, J. T.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Mulugeta, T.

Nezhad, M.

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 20–23 (2008).
[Crossref]

Ooi, K. J. A.

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Panepucci, R. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry – Pérot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Piggott, A. Y.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Plant, D. V.

W. Shi, V. Veerasubramanian, D. V. Plant, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic Bragg-grating couplers for optical communications,” Optoelectron. Devices Mater. 9010, 90100F (2014).

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20(19), 21341–21345 (2012).
[Crossref] [PubMed]

Porter, G.

A. Grieco, G. Porter, and Y. Fainman, “Integrated space-division multiplexer for application to data center networks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 2361 (2016).
[Crossref]

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Qiu, H.

Rasras, M.

Riesen, N.

Schmidt, B. S.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry – Pérot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Shang, L.

Shi, W.

Sigmund, O.

Stern, B.

St-Yves, J.

Tan, D. T. H.

Tzuang, L. D.

Veerasubramanian, V.

W. Shi, V. Veerasubramanian, D. V. Plant, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic Bragg-grating couplers for optical communications,” Optoelectron. Devices Mater. 9010, 90100F (2014).

Veldhorst, M.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Vuckovic, J.

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Wang, T.

Wang, X.

Weber, J.-P.

J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc., J Optoelectron. 140(5), 275–284 (1993).
[Crossref]

Williams, C.

C. Williams, B. Banan, G. Cowan, and O. Liboiron-Ladouceur, “A Source-Synchronous Architecture Using Mode-Division Multiplexing for On-Chip Silicon Photonic Interconnects,” IEEE J. Sel. Top. Quantum Electron. 22(6), 8300109 (2016).

Xu, X.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Yang, C. H.

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Yang, J.

Ye, M.

Ye, W. N.

Yu, H.

Yu, P.

Yu, Y.

Yun, H.

Zhang, X.

Zhu, L.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Zhu, X.

Zou, Y.

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Ikeda, M. Nezhad, and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92(20), 20–23 (2008).
[Crossref]

S. Chakravarty, A. Hosseini, X. Xu, L. Zhu, Y. Zou, and R. T. Chen, “Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors,” Appl. Phys. Lett. 104(19), 191109 (2014).
[Crossref] [PubMed]

IEE Proc., J Optoelectron. (1)

J.-P. Weber, “Spectral characteristics of coupled-waveguide Bragg-reflection tunable optical filter,” IEE Proc., J Optoelectron. 140(5), 275–284 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Grieco, G. Porter, and Y. Fainman, “Integrated space-division multiplexer for application to data center networks,” IEEE J. Sel. Top. Quantum Electron. 22(6), 2361 (2016).
[Crossref]

C. Williams, B. Banan, G. Cowan, and O. Liboiron-Ladouceur, “A Source-Synchronous Architecture Using Mode-Division Multiplexing for On-Chip Silicon Photonic Interconnects,” IEEE J. Sel. Top. Quantum Electron. 22(6), 8300109 (2016).

IEEE Photonics Technol. Lett. (1)

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact Silicon Tunable Fabry – Pérot Resonator With Low Power Consumption,” IEEE Photonics Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Quantum Elect. (1)

A. Grieco and Y. Fainman, “Characterization of distributed Bragg reflectors,” J. Quantum Elect. 50(6), 453–457 (2014).
[Crossref]

Nat. Commun. (1)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat. Nanotechnol. 9(12), 981–985 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, “Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,” Nat. Photonics 9(6), 374–377 (2015).
[Crossref]

Opt. Express (10)

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24(15), 16866–16873 (2016).
[Crossref] [PubMed]

B. A. Dorin and W. N. Ye, “Two-mode division multiplexing in a silicon-on-insulator ring resonator,” Opt. Express 22(4), 4547–4558 (2014).
[Crossref] [PubMed]

T. Mulugeta and M. Rasras, “Silicon hybrid (de)multiplexer enabling simultaneous mode and wavelength-division multiplexing,” Opt. Express 23(2), 943–949 (2015).
[Crossref] [PubMed]

A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20(19), 21341–21345 (2012).
[Crossref] [PubMed]

M. Ye, Y. Yu, G. Chen, Y. Luo, and X. Zhang, “On-chip WDM mode-division multiplexing interconnection with optional demodulation function,” Opt. Express 23(25), 32130–32138 (2015).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, K. J. A. Ooi, A. K. L. Chee, L. K. Ang, and D. T. H. Tan, “Wavelength selective mode division multiplexing on a silicon chip,” Opt. Express 23(6), 8095–8103 (2015).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
[Crossref] [PubMed]

W. Shi, X. Wang, C. Lin, H. Yun, Y. Liu, T. Baehr-Jones, M. Hochberg, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic grating-assisted, contra-directional couplers,” Opt. Express 21(3), 3633–3650 (2013).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Process calibration method for designing silicon-on-insulator contra-directional grating couplers,” Opt. Express 23(8), 10573–10588 (2015).
[Crossref] [PubMed]

M. T. Boroojerdi, M. Ménard, and A. G. Kirk, “Two-period contra-directional grating assisted coupler,” Opt. Express 24(20), 22865–22874 (2016).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Optoelectron. Devices Mater. (1)

W. Shi, V. Veerasubramanian, D. V. Plant, N. A. F. Jaeger, and L. Chrostowski, “Silicon photonic Bragg-grating couplers for optical communications,” Optoelectron. Devices Mater. 9010, 90100F (2014).

Other (4)

L. Chrostowski and M. Hochberg, Silicon Photonics Design (2015).
[Crossref]

A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, and M. Lipson, “Quantum Interference between Transverse Spatial Waveguide Modes,” in CLEO 2015 (2015), paper FTu4A.5.

Y. Ho, D. Lee, J. Cardenas, and M. Lipson, “Linear silicon PN junction phase modulator,” in CLEO 2015 (2015), paper SW3N.5.

P. Dong, J. Lee, Y. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-Channel 100-Gb / s per Channel Discrete Multi-Tone Modulation Using Silicon Photonic Integrated Circuits,” in OFC 2015 (2015), paper Th5B.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematics of a hybrid multimode resonator. Periodic perturbations with a 50% duty cycle create mirrors that routes light to the through-port (on resonance) or the drop-port (off resonance). On resonance injected light from the input circulates in the cavity between the single mode and multimode waveguides. The cavity length is equal to one period length, Λ, of the mirror. Curved arrows in the cavity correspond to the resonant directionality of light. (b) Scanning electron microscope image of the cavity and surrounding mirrors. (c) Dispersion curves for a waveguide of 400 nm (n1), 600 nm (n2), and the average of the two indices. The phase matching condition is shown by the intersection with the dashed black line.
Fig. 2
Fig. 2 (a) Simulated and (b) measured spectral response for the 1st order quasi-TE over the phase matched region for the through, drop, and add-ports. (c) Associated images of the 1st and 2nd order modes at the output of the through-port (on resonance) and drop-port (off resonance), respectively. (d) Measured drop-port spectra of multiple resonators with varying mirror period length.
Fig. 3
Fig. 3 Measured spectra of a resonator with a 200-μm-long cavity and mirrors with 60 periods.
Fig. 4
Fig. 4 Two concatenated devices that are resonant at different wavelengths as determined by the grating periods. Slightly detuning each device from resonance allows the TE1 mode from device 2 to be injected into the add port of device 1, allowing co-propagation of two TE1 modes at different wavelengths in a single waveguide.
Fig. 5
Fig. 5 Simulated spectral response of the resonances as seen from the drop-port for a device with (a) cavity length of Λ/2 and (b) cavity length of 100 μm. (Inset) Enlarged image of the central resonance for a device with cavity length 100 μm. Device performance, as determined by the extinction ratio, can be potentially improved by reducing internal losses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ( n 1 + n 2 )= λ 0
FSR= λ 2 n g L

Metrics