Abstract

In this contribution we demonstrate the generation of a frequency comb with sub-picosecond pulses by seeding an amplifier with two narrow linewidth laser diodes separated by 50 GHz. The results are achieved in the normal dispersion regime with parameters where the forming of the comb is dominated by self-phase modulation. A numerical simulation is performed with different nonlinear interaction lengths, whereas the experimental realization is done in a high power Yb-doped fiber amplifier to generate the necessary nonlinearity. An output power of 750 W with compression to sub-picosecond pulse durations is shown. Further perspectives towards higher power levels and larger comb-line spacing are discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression

Hung-Wen Chen, JinKang Lim, Shu-Wei Huang, Damian N. Schimpf, Franz X. Kärtner, and Guoqing Chang
Opt. Express 20(27) 28672-28682 (2012)

Gigahertz self-referenceable frequency comb from a semiconductor disk laser

Christian A. Zaugg, Alexander Klenner, Mario Mangold, Aline S. Mayer, Sandro M. Link, Florian Emaury, Matthias Golling, Emilio Gini, Clara J. Saraceno, Bauke W. Tilma, and Ursula Keller
Opt. Express 22(13) 16445-16455 (2014)

High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper
Opt. Express 14(21) 9611-9616 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
    [Crossref]
  2. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  3. T. Khayim, M. Yamauchi, D.-S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
    [Crossref]
  4. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010).
    [Crossref] [PubMed]
  5. R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fibers,” Proc. IEEE 78(8), 1344–1368 (1990).
    [Crossref]
  6. C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
    [Crossref]
  7. A. Ryabtsev, B. Nie, and M. Dantus, “45 fs optical pulses from phase corrected broadband cascaded four wave mixing products,” Laser Phys. Lett. 10(12), 125109 (2013).
    [Crossref]
  8. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).
  9. H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
    [Crossref]
  10. S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260(1), 301–306 (2006).
    [Crossref]
  11. Z. Tong, A. O. J. Wiberg, E. Myslivets, B. P. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012).
    [Crossref] [PubMed]
  12. R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
    [Crossref] [PubMed]
  13. T. Schreiber, F. Beier, N. Haarlammert, R. Eberhardt, and A. Tünnermann, “Single-mode ytterbium-doped fibers for 3kW lasers and beyond,” SPIE Newsroom (2016).
  14. Fiberdesk (5.0) [Software]. (2017).
  15. J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
    [Crossref]
  16. A. Antikainen and G. P. Agrawal, “Dual-pump frequency comb generation in normally dispersive optical fibers,” J. Opt. Soc. Am. B 32(8), 1705 (2015).
    [Crossref]
  17. J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of optical undular bores in multiple four-wave mixing,” Phys. Rev. X 4(2), 867 (2014).
    [Crossref]
  18. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  19. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tünnermann, “High-average-power femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 28(20), 1984–1986 (2003).
    [Crossref] [PubMed]
  20. F. Beier, C. Hupel, J. Nold, S. Kuhn, S. Hein, J. Ihring, B. Sattler, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Narrow linewidth, single mode 3 kW average power from a directly diode pumped ytterbium-doped low NA fiber amplifier,” Opt. Express 24(6), 6011–6020 (2016).
    [Crossref] [PubMed]
  21. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550 (2010).
    [Crossref]

2016 (1)

2015 (1)

2014 (1)

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of optical undular bores in multiple four-wave mixing,” Phys. Rev. X 4(2), 867 (2014).
[Crossref]

2013 (3)

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

A. Ryabtsev, B. Nie, and M. Dantus, “45 fs optical pulses from phase corrected broadband cascaded four wave mixing products,” Laser Phys. Lett. 10(12), 125109 (2013).
[Crossref]

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

2012 (1)

2010 (2)

2008 (1)

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

2007 (1)

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[Crossref]

2006 (1)

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260(1), 301–306 (2006).
[Crossref]

2003 (1)

1999 (1)

T. Khayim, M. Yamauchi, D.-S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

1997 (1)

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1990 (1)

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fibers,” Proc. IEEE 78(8), 1344–1368 (1990).
[Crossref]

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Agrawal, G. P.

Alic, N.

Antikainen, A.

Armaroli, A.

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of optical undular bores in multiple four-wave mixing,” Phys. Rev. X 4(2), 867 (2014).
[Crossref]

aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Beier, F.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Braun, R.-P.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fibers,” Proc. IEEE 78(8), 1344–1368 (1990).
[Crossref]

Chavez Boggio, J. M.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Clausnitzer, T.

Dantus, M.

A. Ryabtsev, B. Nie, and M. Dantus, “45 fs optical pulses from phase corrected broadband cascaded four wave mixing products,” Laser Phys. Lett. 10(12), 125109 (2013).
[Crossref]

Dudley, J. M.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[Crossref]

Eberhardt, R.

Fatome, J.

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of optical undular bores in multiple four-wave mixing,” Phys. Rev. X 4(2), 867 (2014).
[Crossref]

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260(1), 301–306 (2006).
[Crossref]

Fermann, M. E.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Finot, C.

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of optical undular bores in multiple four-wave mixing,” Phys. Rev. X 4(2), 867 (2014).
[Crossref]

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[Crossref]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260(1), 301–306 (2006).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Fortier, C.

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Friesem, A. A.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fibers,” Proc. IEEE 78(8), 1344–1368 (1990).
[Crossref]

Fuchs, H.-J.

Galvanauskas, A.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Haarlammert, N.

Harter, D.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Haynes, R.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Heidt, A. M.

Hein, S.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Hupel, C.

Ihring, J.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Keller, U.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Khayim, T.

T. Khayim, M. Yamauchi, D.-S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

Kibler, B.

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

Kim, D.-S.

T. Khayim, M. Yamauchi, D.-S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

Kley, E.-B.

Kobayashi, T.

T. Khayim, M. Yamauchi, D.-S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kracht, D.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Kuhn, S.

Kuo, B. P. P.

Leaird, D. E.

Lichtman, E.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fibers,” Proc. IEEE 78(8), 1344–1368 (1990).
[Crossref]

Liem, A.

Limpert, J.

Long, C. M.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Millot, G.

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of optical undular bores in multiple four-wave mixing,” Phys. Rev. X 4(2), 867 (2014).
[Crossref]

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[Crossref]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260(1), 301–306 (2006).
[Crossref]

Morgner, U.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Myslivets, E.

Neumann, J.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Nie, B.

A. Ryabtsev, B. Nie, and M. Dantus, “45 fs optical pulses from phase corrected broadband cascaded four wave mixing products,” Laser Phys. Lett. 10(12), 125109 (2013).
[Crossref]

Nold, J.

Pitois, S.

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260(1), 301–306 (2006).
[Crossref]

Radic, S.

Richardson, D. J.

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[Crossref]

Roth, M. M.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Ryabtsev, A.

A. Ryabtsev, B. Nie, and M. Dantus, “45 fs optical pulses from phase corrected broadband cascaded four wave mixing products,” Laser Phys. Lett. 10(12), 125109 (2013).
[Crossref]

Sattler, B.

Sayinc, H.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Schreiber, T.

Sinardet, B.

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260(1), 301–306 (2006).
[Crossref]

Sucha, G.

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

Supradeepa, V. R.

Tong, Z.

Torres-Company, V.

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Trillo, S.

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of optical undular bores in multiple four-wave mixing,” Phys. Rev. X 4(2), 867 (2014).
[Crossref]

Tünnermann, A.

Waarts, R. G.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fibers,” Proc. IEEE 78(8), 1344–1368 (1990).
[Crossref]

Weiner, A. M.

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wiberg, A. O. J.

Wu, R.

Wysmolek, M.

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

Yaffe, H. H.

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fibers,” Proc. IEEE 78(8), 1344–1368 (1990).
[Crossref]

Yamauchi, M.

T. Khayim, M. Yamauchi, D.-S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

Zellmer, H.

Appl. Phys. B (2)

M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B 65(2), 259–275 (1997).
[Crossref]

H. Sayinc, M. Wysmolek, J. M. Chavez Boggio, R. Haynes, M. M. Roth, U. Morgner, J. Neumann, and D. Kracht, “Broadband-cascaded four-wave mixing in a photonic crystal fiber around 1 μm,” Appl. Phys. B 110(3), 299–302 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

T. Khayim, M. Yamauchi, D.-S. Kim, and T. Kobayashi, “Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation,” IEEE J. Quantum Electron. 35(10), 1412–1418 (1999).
[Crossref]

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (2)

C. Fortier, B. Kibler, J. Fatome, C. Finot, S. Pitois, and G. Millot, “All-fibered high-quality low duty-cycle 160-GHz femtosecond pulse source,” Laser Phys. Lett. 5(11), 817–820 (2008).
[Crossref]

A. Ryabtsev, B. Nie, and M. Dantus, “45 fs optical pulses from phase corrected broadband cascaded four wave mixing products,” Laser Phys. Lett. 10(12), 125109 (2013).
[Crossref]

Nat. Phys. (1)

J. M. Dudley, C. Finot, D. J. Richardson, and G. Millot, “Self-similarity in ultrafast nonlinear optics,” Nat. Phys. 3(9), 597–603 (2007).
[Crossref]

Opt. Commun. (1)

S. Pitois, C. Finot, J. Fatome, B. Sinardet, and G. Millot, “Generation of 20-GHz picosecond pulse trains in the normal and anomalous dispersion regimes of optical fibers,” Opt. Commun. 260(1), 301–306 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. X (1)

J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, “Observation of optical undular bores in multiple four-wave mixing,” Phys. Rev. X 4(2), 867 (2014).
[Crossref]

Proc. IEEE (1)

R. G. Waarts, A. A. Friesem, E. Lichtman, H. H. Yaffe, and R.-P. Braun, “Nonlinear effects in coherent multichannel transmission through optical fibers,” Proc. IEEE 78(8), 1344–1368 (1990).
[Crossref]

Other (3)

T. Schreiber, F. Beier, N. Haarlammert, R. Eberhardt, and A. Tünnermann, “Single-mode ytterbium-doped fibers for 3kW lasers and beyond,” SPIE Newsroom (2016).

Fiberdesk (5.0) [Software]. (2017).

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simulation results of the influence of SPM for three different lengths (10, 20 and 30 times the nonlinear length), starting with two laser lines at 1070.0 nm and 1070.2 nm, considering spectrum and temporal signal in linear scale for the pulse train (black) and single pulse (red) in (a) and compressed pulses for single pulse as temporal pulse profile and autocorrelation trace in (b).
Fig. 2
Fig. 2 Experimental setup, ECDL: external cavity diode laser, EOM: electro optical modulator, M: mirror, L: lens, EC: endcap, LD: laser diode, YDF: Ytterbium doped fiber.
Fig. 3
Fig. 3 Spectrum generated at highest output power with calculated envelope (red line) on linear scale and inserted logarithmic scale with wider spectral range.
Fig. 4
Fig. 4 Autocorrelation trace at highest output power with inserted longer scan.
Fig. 5
Fig. 5 a) Spectrum of 4.3 kW output power with about 80 GHz line spacing and b) Spectrum of 500 GHz spacing. Both results are not yet studied in terms of their temporal characteristic.

Metrics