Abstract

It has been experimentally shown that a Cr:ZnSe optical amplifier can be successfully used for self-amplification of the cascade Er:Y2O3 laser. This is to our best knowledge the first demonstration of an optical amplifier where both signal and pump are delivered from a single laser source. Absorption and emission spectra of the Cr:ZnSe are perfectly positioned to amplify the output of the cascade Er:Y2O3 laser, when the 1.6 μm emission of the cascade laser serves as a pump, while 2.7 μm as a signal. We have also shown that this concept is valid for any bulk or fiber cascade erbium laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient cryogenic mid-IR and eye-safe Er:YAG laser

Tigran Sanamyan
J. Opt. Soc. Am. B 33(11) D1-D6 (2016)

Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 µm

Sergey Vasilyev, Igor Moskalev, Mike Mirov, Sergey Mirov, and Valentin Gapontsev
Opt. Express 24(2) 1616-1623 (2016)

Spectroscopic analysis of Er3+:Y2O3 relevant to 2.7µm mid-IR laser

Zackery D. Fleischman and Tigran Sanamyan
Opt. Mater. Express 6(10) 3109-3118 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Kaminskii, “Cascade laser generation of Er3+ ions in crystals of YALO3 according to the scheme 4S3/2→4F9/2→4I9/2→4I11/2→4I13/2→4I15/2,” Dokl. Akad. Nauk SSSR 267, 1106–1109 (1982).
  2. B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
    [Crossref]
  3. M. Pollnau, C. Ghisler, W. Luthy, H. P. Weber, J. Schneider, and U. B. Unrau, “Three-transition cascade erbium laser at 1.7, 2.7, and 1.6 μm,” Opt. Lett. 22(9), 612–614 (1997).
    [Crossref] [PubMed]
  4. T. Sanamyan, “Diode pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(12), 125804 (2015).
    [Crossref]
  5. T. Sanamyan, “Efficient cryogenic mid-IR and eye-safe Er:YAG laser,” J. Opt. Soc. Am. B 33(11), D1–D6 (2016).
    [Crossref]
  6. S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
    [Crossref]
  7. J. Schneider, “Mid-Infrared fluoride fiber lasers in multiple cascade operation,” IEEE Photonics Technol. Lett. 7(4), 354–356 (1995).
    [Crossref]
  8. Y. O. Aydin, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallee, and M. Bernier, “Diode pumped mid-infrared fiber laser with 50% slope efficiency,” Optica 4(2), 235–238 (2017).
    [Crossref]
  9. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
    [Crossref]
  10. B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum. Electron. 18(5), 925–930 (1982).
    [Crossref]

2017 (1)

2016 (1)

2015 (1)

T. Sanamyan, “Diode pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(12), 125804 (2015).
[Crossref]

2011 (1)

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

2010 (1)

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

1997 (1)

1995 (1)

J. Schneider, “Mid-Infrared fluoride fiber lasers in multiple cascade operation,” IEEE Photonics Technol. Lett. 7(4), 354–356 (1995).
[Crossref]

1993 (1)

B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

1982 (2)

A. A. Kaminskii, “Cascade laser generation of Er3+ ions in crystals of YALO3 according to the scheme 4S3/2→4F9/2→4I9/2→4I11/2→4I13/2→4I15/2,” Dokl. Akad. Nauk SSSR 267, 1106–1109 (1982).

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum. Electron. 18(5), 925–930 (1982).
[Crossref]

Aull, B. F.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum. Electron. 18(5), 925–930 (1982).
[Crossref]

Aydin, Y. O.

Bass, M.

B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Bernier, M.

Chai, B.

B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Clausen, R.

B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Fortin, V.

Ghisler, C.

Huber, G.

B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Jackson, S. D.

Y. O. Aydin, V. Fortin, F. Maes, F. Jobin, S. D. Jackson, R. Vallee, and M. Bernier, “Diode pumped mid-infrared fiber laser with 50% slope efficiency,” Optica 4(2), 235–238 (2017).
[Crossref]

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

Jenssen, H. P.

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum. Electron. 18(5), 925–930 (1982).
[Crossref]

Jobin, F.

Kaminskii, A. A.

A. A. Kaminskii, “Cascade laser generation of Er3+ ions in crystals of YALO3 according to the scheme 4S3/2→4F9/2→4I9/2→4I11/2→4I13/2→4I15/2,” Dokl. Akad. Nauk SSSR 267, 1106–1109 (1982).

Kim, C.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Li, J.

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

LiKamWa, P.

B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Luthy, W.

Maes, F.

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Pollnau, M.

Sanamyan, T.

T. Sanamyan, “Efficient cryogenic mid-IR and eye-safe Er:YAG laser,” J. Opt. Soc. Am. B 33(11), D1–D6 (2016).
[Crossref]

T. Sanamyan, “Diode pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(12), 125804 (2015).
[Crossref]

Schmaul, B.

B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Schneider, J.

Unrau, U. B.

Vallee, R.

Weber, H. P.

Appl. Phys. Lett. (1)

B. Schmaul, G. Huber, R. Clausen, B. Chai, P. LiKamWa, and M. Bass, “Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature,” Appl. Phys. Lett. 62(6), 541–543 (1993).
[Crossref]

Dokl. Akad. Nauk SSSR (1)

A. A. Kaminskii, “Cascade laser generation of Er3+ ions in crystals of YALO3 according to the scheme 4S3/2→4F9/2→4I9/2→4I11/2→4I13/2→4I15/2,” Dokl. Akad. Nauk SSSR 267, 1106–1109 (1982).

IEEE J. Quantum Electron. (1)

S. D. Jackson, M. Pollnau, and J. Li, “Diode pumped erbium cascade fiber lasers,” IEEE J. Quantum Electron. 47(4), 471–478 (2011).
[Crossref]

IEEE J. Quantum. Electron. (1)

B. F. Aull and H. P. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum. Electron. 18(5), 925–930 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Schneider, “Mid-Infrared fluoride fiber lasers in multiple cascade operation,” IEEE Photonics Technol. Lett. 7(4), 354–356 (1995).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Laser Phys. Lett. (1)

T. Sanamyan, “Diode pumped cascade Er:Y2O3 laser,” Laser Phys. Lett. 12(12), 125804 (2015).
[Crossref]

Opt. Lett. (1)

Optica (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Detailed experimental setup for power conversion of the cryogenic cascade Er:Y2O3 laser in Cr:ZnSe. The components are as follows: PM1, PM2, PM3 – optical power meters. MM – removable metallic mirror, OSA - spectrometer for laser wavelengths measurement, and BS2 – ZnSe removable dichroic filter separating 1.6 µm from the 2.7 µm beam for independent measurements by PM1 power meter. T1 – cryogenic semiconductor thermometer, RM, CM – rear and coupling mirrors of the cascade Er:Y2O3 laser, and L1 – focusing lens. The setup also includes a 100-W fiber coupled laser, spectrally stabilized at 974 nm.
Fig. 2
Fig. 2 The simplified diagram explaining the concept for doubling the efficiency of the Er:Y2O3 laser incorporated with Cr:ZnSe amplifier (a), and the image of the 1.6 (yellow) and 2.7 µm (red) Er:Y2O3 laser beam patterns visualized by an IR/mid-IR sensitive viewer (b).
Fig. 3
Fig. 3 Measured 1.6 and 2.7 µm beam sizes as function of distance from the focusing lens. Inset shows the calculated effective beam diameters (FWHM).
Fig. 4
Fig. 4 Absorption and emission cross sections of the Cr:ZnSe sample used in the experiment. Green arrows show the wavelength positions of the cascade Er:Y2O3 laser in the Cr:ZnSe spectrum. The cross-section values in the figure differ from those reported in literature, e.g [9]. by approximately 10%. These deviations are not essential in the context of the current work which is not focused on spectroscopic analyses.
Fig. 5
Fig. 5 The output versus input 2.7 µm mid-IR power and the corresponding optical gain (a), and experimental and calculated power conversion efficiencies as a function of input 2.7 µm peak power for the Cr:ZnSe amplifier pumped and seeded by the Er:Y2O3 laser (b). The absorbed 1.6 µm power value is labeled above each 2.7 µm data point in both (a) and (b) graphs.

Metrics