Abstract

We have proposed a synthetic approach to produce self-supported and bendable surface-enhanced Raman scattering (SERS)-based 3D chemical sensors with high adsorptivity. Such 3D substrates consist of foam-like graphene macrostructures obtained by template-directed chemical vapour deposition on nickel foams (interconnected 3D scaffold of nickel) and uniform and high-density Ag nanoparticles wrapping around the foam graphene, via seed-mediated in situ growth process. Such 3D AgNPs/G@Ni foam substrates show high-quality SERS performance in terms of Raman signal reproducibility and sensitivity for the analyte, resulting from the high density and homogeneity of “hot spots” on AgNPs/G@Ni foam, multiple cascaded amplication (localized surface plasmon mode and optical standing waves or optical refraction) of incident laser to the 3D foam structures and powerful support from nickel scaffold. Moreover, in virtue of the high adsorptivity and sensitivity of AgNPs/G@Ni foam, the low-concentration crystal violet molecules can be easily traced in the curvilinear fish surface, by simply swabbing the surface to achieve molecules concentration effect in the practical applicability. This work shows promising potential in developing the applications of SERS in the foodstuffs processing and security field.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Toward the highly sensitive SERS detection of bio-molecules: the formation of a 3D self-assembled structure with a uniform GO mesh between Ag nanoparticles and Au nanoparticles

Xu Gao, Hao Zhang, Xiangyu Fan, Chao Zhang, Yang Sun, Chundong Liu, Zhen Li, Shouzhen Jiang, Baoyuan Man, and Cheng Yang
Opt. Express 27(18) 25091-25106 (2019)

High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection

Wen Yang, Zhen Li, Zhengyi Lu, Jing Yu, Yanyan Huo, Baoyuan Man, Jie Pan, Haipeng Si, Shouzhen Jiang, and Chao Zhang
Opt. Express 27(3) 3000-3013 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Pumera, “Graphene-based nanomaterials and their electrochemistry,” Chem. Soc. Rev. 39(11), 4146–4157 (2010).
    [Crossref] [PubMed]
  2. Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
    [Crossref] [PubMed]
  3. W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
    [Crossref] [PubMed]
  4. J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
    [Crossref] [PubMed]
  5. W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
    [Crossref] [PubMed]
  6. G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
    [Crossref]
  7. Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
    [Crossref]
  8. C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).
  9. S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).
  10. J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
    [Crossref] [PubMed]
  11. M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
    [Crossref] [PubMed]
  12. C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
    [Crossref]
  13. M. D. Huntington, C. J. Engel, A. J. Hryn, and T. W. Odom, “Polymer nanowrinkles with continuously tunable wavelengths,” ACS appl. Mater. Inter. 5(13), 6438–6442 (2013).
    [Crossref]
  14. C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).
  15. R. Bhat and V. M. Gómez-López, eds., Practical food safety: Contemporary issues and future directions (John Wiley & Sons, 2014).
  16. D. Hurtaud-Pessel, P. Couëdor, and E. Verdon, “Liquid chromatography-tandem mass spectrometry method for the determination of dye residues in aquaculture products: Development and validation,” J. Chromatogr. A 1218(12), 1632–1645 (2011).
    [Crossref] [PubMed]
  17. M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
    [Crossref] [PubMed]
  18. C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
    [Crossref]
  19. W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
    [Crossref] [PubMed]
  20. S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).
  21. S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
    [Crossref]
  22. Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
    [Crossref] [PubMed]
  23. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  24. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1-2), 47–57 (2007).
    [Crossref]
  25. S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).
  26. X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
    [Crossref] [PubMed]
  27. J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
    [Crossref]
  28. J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
    [Crossref]
  29. K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
    [Crossref] [PubMed]
  30. A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
    [Crossref] [PubMed]
  31. D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene,” Nano Lett. 15(4), 2582–2587 (2015).
    [Crossref] [PubMed]
  32. M. Asl, P. Bristowe, K. Koziol, and T. Heine, “Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions,” 2D Mater. 3(2), 025018 (2016).

2017 (1)

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

2016 (8)

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
[Crossref]

M. Asl, P. Bristowe, K. Koziol, and T. Heine, “Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions,” 2D Mater. 3(2), 025018 (2016).

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

2015 (4)

M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
[Crossref] [PubMed]

K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
[Crossref] [PubMed]

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

2014 (1)

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

2013 (5)

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

M. D. Huntington, C. J. Engel, A. J. Hryn, and T. W. Odom, “Polymer nanowrinkles with continuously tunable wavelengths,” ACS appl. Mater. Inter. 5(13), 6438–6442 (2013).
[Crossref]

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

2012 (2)

Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
[Crossref] [PubMed]

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

2011 (3)

G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
[Crossref]

D. Hurtaud-Pessel, P. Couëdor, and E. Verdon, “Liquid chromatography-tandem mass spectrometry method for the determination of dye residues in aquaculture products: Development and validation,” J. Chromatogr. A 1218(12), 1632–1645 (2011).
[Crossref] [PubMed]

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
[Crossref] [PubMed]

2010 (2)

M. Pumera, “Graphene-based nanomaterials and their electrochemistry,” Chem. Soc. Rev. 39(11), 4146–4157 (2010).
[Crossref] [PubMed]

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

2009 (2)

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

2007 (1)

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1-2), 47–57 (2007).
[Crossref]

2006 (2)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

Aizpurua, J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Ashraf, A.

M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
[Crossref] [PubMed]

Asl, M.

M. Asl, P. Bristowe, K. Koziol, and T. Heine, “Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions,” 2D Mater. 3(2), 025018 (2016).

Avouris, P.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

Baumberg, J. J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Blaschke, B. M.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Bohez, E.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Bonaccorso, F.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Bristowe, P.

M. Asl, P. Bristowe, K. Koziol, and T. Heine, “Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions,” 2D Mater. 3(2), 025018 (2016).

Buehler, M. J.

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chae, S. J.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Chen, P.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

Chen, Y.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

Chen, Z.

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
[Crossref] [PubMed]

Cheng, H. M.

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
[Crossref] [PubMed]

Choi, J.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Chun, S.

M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
[Crossref] [PubMed]

Cohen, L. F.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Colli, A.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Colombo, L.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Couëdor, P.

D. Hurtaud-Pessel, P. Couëdor, and E. Verdon, “Liquid chromatography-tandem mass spectrometry method for the determination of dye residues in aquaculture products: Development and validation,” J. Chromatogr. A 1218(12), 1632–1645 (2011).
[Crossref] [PubMed]

Danvirutai, P.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Dresselhaus, M. S.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Drieschner, S.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Eiamchai, P.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Eiden, A. L.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Ekpanyapong, M.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Engel, C. J.

M. D. Huntington, C. J. Engel, A. J. Hryn, and T. W. Odom, “Polymer nanowrinkles with continuously tunable wavelengths,” ACS appl. Mater. Inter. 5(13), 6438–6442 (2013).
[Crossref]

Espinosa, H. D.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Farmer, D. B.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

Feng, X.

Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1-2), 47–57 (2007).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ferri, C. G. L.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Francescato, Y.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Fu, C.-C.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Gao, L.

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
[Crossref] [PubMed]

Garrido, J. A.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Geim, A. K.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ghosh, S.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Giannini, V.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Gilbertson, A. M.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Gopinathan, A.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Grimes, A.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Gunes, F.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Guo, J.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

Han, G. H.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Han, R. S.

M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
[Crossref] [PubMed]

Hao, Y.

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

He, Y.

J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
[Crossref]

Heine, T.

M. Asl, P. Bristowe, K. Koziol, and T. Heine, “Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions,” 2D Mater. 3(2), 025018 (2016).

Hone, J. C.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Hong, M.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Horprathum, M.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Hryn, A. J.

M. D. Huntington, C. J. Engel, A. J. Hryn, and T. W. Odom, “Polymer nanowrinkles with continuously tunable wavelengths,” ACS appl. Mater. Inter. 5(13), 6438–6442 (2013).
[Crossref]

Hu, H.

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

Hu, L.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

Huang, F.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Huang, Y.

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

Huntington, M. D.

M. D. Huntington, C. J. Engel, A. J. Hryn, and T. W. Odom, “Polymer nanowrinkles with continuously tunable wavelengths,” ACS appl. Mater. Inter. 5(13), 6438–6442 (2013).
[Crossref]

Huo, Y.

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

Hurtaud-Pessel, D.

D. Hurtaud-Pessel, P. Couëdor, and E. Verdon, “Liquid chromatography-tandem mass spectrometry method for the determination of dye residues in aquaculture products: Development and validation,” J. Chromatogr. A 1218(12), 1632–1645 (2011).
[Crossref] [PubMed]

Ji, J.

K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
[Crossref] [PubMed]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Jiang, S.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

Kang, P.

M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
[Crossref] [PubMed]

Keten, S.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Khine, M.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Kim, E. S.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Kim, K. K.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Kim, S. M.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Kong, J.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Koziol, K.

M. Asl, P. Bristowe, K. Koziol, and T. Heine, “Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions,” 2D Mater. 3(2), 025018 (2016).

Kysar, J. W.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Lai, K.

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Lee, C.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Lee, L. P.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Lee, Y. H.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Li, C.

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

Li, H.

G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
[Crossref]

Li, X.

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

Li, Y.

K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
[Crossref] [PubMed]

Li, Z.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

Ling, X.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Liu, B.

K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
[Crossref] [PubMed]

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
[Crossref] [PubMed]

Liu, X.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

Liu, Z.

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Liusman, C.

G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
[Crossref]

Lombardo, A.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Long, M.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Low, T.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

Lu, G.

G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
[Crossref]

Luo, J.

J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
[Crossref]

Ma, Y.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

Maier, S. A.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Makrygiannis, E.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Man, B.

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

Mao, N.

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Meng, Z.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Mertens, J.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Milana, S.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Morandi, V.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Müllen, K.

Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
[Crossref] [PubMed]

Nam, S.

M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
[Crossref] [PubMed]

Natan, M. J.

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

Ni, Z.

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

Ning, T.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

Novoselov, K. S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Nuntawong, N.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Odom, T. W.

M. D. Huntington, C. J. Engel, A. J. Hryn, and T. W. Odom, “Polymer nanowrinkles with continuously tunable wavelengths,” ACS appl. Mater. Inter. 5(13), 6438–6442 (2013).
[Crossref]

Oulton, R. F.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Park, M. H.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Parvez, K.

Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
[Crossref] [PubMed]

Pei, L.

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

Pei, S.

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
[Crossref] [PubMed]

Phokharatkul, D.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Pribat, D.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Pugno, N.

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

Pumera, M.

M. Pumera, “Graphene-based nanomaterials and their electrochemistry,” Chem. Soc. Rev. 39(11), 4146–4157 (2010).
[Crossref] [PubMed]

Qiu, H.

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

Rasco, B. A.

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

Ren, W.

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
[Crossref] [PubMed]

Rich, B. D.

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

Rodrigo, D.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

Roschuk, T.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ruiz, L.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Ryu, S.

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Shautsova, V.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Shen, Z. X.

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

Shin, H.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Sidiropoulos, T. P. H.

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

Sigle, D. O.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Srichan, C.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Sun, Y.

Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
[Crossref] [PubMed]

Sun, Z.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Sundaram, R. S.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Thong, J. T. L.

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

Tserkezis, C.

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

Tu, Q.

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

Tuantranont, A.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Verdon, E.

D. Hurtaud-Pessel, P. Couëdor, and E. Verdon, “Liquid chromatography-tandem mass spectrometry method for the determination of dye residues in aquaculture products: Development and validation,” J. Chromatogr. A 1218(12), 1632–1645 (2011).
[Crossref] [PubMed]

Vieten, J.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Wang, J.

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

Wang, M. C.

M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
[Crossref] [PubMed]

Wang, Q.

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

Wang, W.

J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
[Crossref]

Wang, Y.

J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
[Crossref]

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

Weber, M.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Wei, J.

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

Wei, X.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Wisitsoraat, A.

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Wohlketzetter, J.

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

Wong, C. P.

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

Wu, S.

G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
[Crossref]

Wu, W.

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

Wu, Z.-S.

Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
[Crossref] [PubMed]

Xia, W.

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Xiao, J.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Xu, H.

K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
[Crossref] [PubMed]

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Xu, S.

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

Xu, W.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Xu, Y.

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

Yan, L.

J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
[Crossref]

Yang, C.

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

Yang, C. W.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Yang, S.

Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
[Crossref] [PubMed]

Yin, Z.

G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
[Crossref]

Yoon, S.

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

Yu, T.

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

Yu, W.

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

Yue, W.

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

Zang, J.

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

Zhang, C.

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

Zhang, H.

G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
[Crossref]

Zhang, J.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Zhang, K.

K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
[Crossref]

K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
[Crossref] [PubMed]

Zhao, X.

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

2D Mater. (2)

S. Drieschner, M. Weber, J. Wohlketzetter, J. Vieten, E. Makrygiannis, B. M. Blaschke, V. Morandi, L. Colombo, F. Bonaccorso, and J. A. Garrido, “High surface area graphene foams by chemical vapor deposition,” 2D Mater. 3(4), 045013 (2016).

M. Asl, P. Bristowe, K. Koziol, and T. Heine, “Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions,” 2D Mater. 3(2), 025018 (2016).

ACS appl. Mater. Inter. (1)

M. D. Huntington, C. J. Engel, A. J. Hryn, and T. W. Odom, “Polymer nanowrinkles with continuously tunable wavelengths,” ACS appl. Mater. Inter. 5(13), 6438–6442 (2013).
[Crossref]

ACS Appl. Mater. Interf. (1)

K. Zhang, J. Zhao, H. Xu, Y. Li, J. Ji, and B. Liu, “Multifunctional paper strip based on self-assembled interfacial plasmonic nanoparticle arrays for sensitive SERS detection,” ACS Appl. Mater. Interf. 7(30), 16767–16774 (2015).
[Crossref] [PubMed]

ACS Nano (1)

X. Wei, Z. Meng, L. Ruiz, W. Xia, C. Lee, J. W. Kysar, J. C. Hone, S. Keten, and H. D. Espinosa, “Recoverable slippage mechanism in multilayer graphene leads to repeatable energy dissipation,” ACS Nano 10(2), 1820–1828 (2016).
[Crossref] [PubMed]

Adv. Mater. (3)

C.-C. Fu, A. Grimes, M. Long, C. G. L. Ferri, B. D. Rich, S. Ghosh, S. Ghosh, L. P. Lee, A. Gopinathan, and M. Khine, “Tunable nanowrinkles on shape memory polymer sheets,” Adv. Mater. 21(44), 4472–4476 (2009).
[Crossref]

S. J. Chae, F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. Shin, S. Yoon, J. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, “Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapour deposition: Wrinkle formation,” Adv. Mater. 21(22), 2328–2333 (2009).
[Crossref]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Y. Wang, Z. Ni, H. Hu, Y. Hao, C. P. Wong, T. Yu, J. T. L. Thong, and Z. X. Shen, “Gold on graphene as a substrate for surface enhanced Raman scattering study,” Appl. Phys. Lett. 97(16), 163111 (2010).
[Crossref]

Appl. Surf. Sci. (1)

J. Guo, S. Xu, X. Liu, Z. Li, L. Hu, Z. Li, P. Chen, Y. Ma, S. Jiang, and T. Ning, “Graphene oxide-Ag nanoparticles-pyramidal silicon hybrid system for homogeneous, long-term stable and sensitive SERS activity,” Appl. Surf. Sci. 396, 1130–1137 (2017).
[Crossref]

Carbon (1)

C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li, and B. Man, “Shell-isolated graphene@Cu nanoparticles on graphene@Cu substrates for the application in SERS,” Carbon 98, 526–533 (2016).

Chem. Sci. (1)

G. Lu, H. Li, C. Liusman, Z. Yin, S. Wu, and H. Zhang, “Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules,” Chem. Sci. 2(9), 1817–1821 (2011).
[Crossref]

Chem. Soc. Rev. (1)

M. Pumera, “Graphene-based nanomaterials and their electrochemistry,” Chem. Soc. Rev. 39(11), 4146–4157 (2010).
[Crossref] [PubMed]

Faraday Discuss. (1)

M. J. Natan, “Surface enhanced Raman scattering,” Faraday Discuss. 132, 321–328 (2006).
[Crossref] [PubMed]

Food Anal. Methods (1)

C. Li, Y. Huang, L. Pei, W. Wu, W. Yu, B. A. Rasco, and K. Lai, “Analyses of trace crystal violet and leucocrystal violet with gold nanospheres and commercial gold nanosubstrates for surface-enhanced Raman spectroscopy,” Food Anal. Methods 7(10), 2107–2112 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Müllen, “3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction,” J. Am. Chem. Soc. 134(22), 9082–9085 (2012).
[Crossref] [PubMed]

J. Chromatogr. A (1)

D. Hurtaud-Pessel, P. Couëdor, and E. Verdon, “Liquid chromatography-tandem mass spectrometry method for the determination of dye residues in aquaculture products: Development and validation,” J. Chromatogr. A 1218(12), 1632–1645 (2011).
[Crossref] [PubMed]

Nano Lett. (4)

A. M. Gilbertson, Y. Francescato, T. Roschuk, V. Shautsova, Y. Chen, T. P. H. Sidiropoulos, M. Hong, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon-Induced Optical Anisotropy in Hybrid Graphene-Metal Nanoparticle Systems,” Nano Lett. 15(5), 3458–3464 (2015).
[Crossref] [PubMed]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon-Plasmon Hybridization and Bandwidth Enhancement in Nanostructured Graphene,” Nano Lett. 15(4), 2582–2587 (2015).
[Crossref] [PubMed]

J. Mertens, A. L. Eiden, D. O. Sigle, F. Huang, A. Lombardo, Z. Sun, R. S. Sundaram, A. Colli, C. Tserkezis, J. Aizpurua, S. Milana, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett. 13(11), 5033–5038 (2013).
[Crossref] [PubMed]

M. C. Wang, S. Chun, R. S. Han, A. Ashraf, P. Kang, and S. Nam, “Heterogeneous, three-dimensional texturing of graphene,” Nano Lett. 15(3), 1829–1835 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, and H. M. Cheng, “Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition,” Nat. Mater. 10(6), 424–428 (2011).
[Crossref] [PubMed]

J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao, “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. 12(4), 321–325 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Xu, X. Ling, J. Xiao, M. S. Dresselhaus, J. Kong, H. Xu, Z. Liu, and J. Zhang, “Surface enhanced Raman spectroscopy on a flat graphene surface,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9281–9286 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Srichan, M. Ekpanyapong, M. Horprathum, P. Eiamchai, N. Nuntawong, D. Phokharatkul, P. Danvirutai, E. Bohez, A. Wisitsoraat, and A. Tuantranont, “Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles as SERS substrate,” Sci. Rep. 6, 23733 (2016).

Sens. Actuat. Biol. Chem. (2)

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

S. Xu, S. Jiang, J. Wang, J. Wei, W. Yue, and Y. Ma, “Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering,” Sens. Actuat. Biol. Chem. 222, 1175–1183 (2016).

Small (1)

W. Xu, N. Mao, and J. Zhang, “Graphene: a platform for surface-enhanced Raman spectroscopy,” Small 9(8), 1206–1224 (2013).
[Crossref] [PubMed]

Solid State Commun. (1)

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143(1-2), 47–57 (2007).
[Crossref]

Tribol. Int. (1)

J. Zhao, Y. He, Y. Wang, W. Wang, L. Yan, and J. Luo, “An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications,” Tribol. Int. 97, 14–20 (2016).
[Crossref]

Other (1)

R. Bhat and V. M. Gómez-López, eds., Practical food safety: Contemporary issues and future directions (John Wiley & Sons, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) The schematic illustration of preparing the 3D G@Ni foam structure. (b) Processes of in situ growth of silver nanoparticles from electroless-deposited seeds in G@Ni foam. (c) The details of constructing AgNPs/G@Ni foam.
Fig. 2
Fig. 2 SEM images of foam Ni sample (a) and at larger magnification (b). SEM images of foam Ni sample after graphene growth for 5 minutes (c) and for 10 minutes (d). Inset: the corresponding TEM images of foam graphene samples. (e) and (f) Raman spectra of graphene collected from the samples shown in (c)and (d) respectively.
Fig. 3
Fig. 3 (a) Raman spectra of R6G on AgNPs/G@Ni substrates at various silver nanoparticle growing periods. (b) Relative Raman intensity of 612 cm−1 at different growth time. (d)-(f) SEM images of AgNPs/G@Ni substrates under different magnification.
Fig. 4
Fig. 4 (a) Raman spectra of R6G with different concentrations from 10−5 to10−10M. (b) Raman intensity of R6G at 613, 1365 and 1510.5 cm−1 as a function of the R6G concentration.
Fig. 5
Fig. 5 (a) SERS spectra were collected from 6 different batches of AgNPs/G@Ni substrates. (b) Intensity distribution of the 612 cm−1 peak in the 8 branches from a same AgNPs/G@Ni substrate. (c) SERS mapping of vibration modes at 612 cm−1 of R6G molecules at 10-5 M dispensed on the AgNPs/G@Ni foam after growing for three minutes. (d) Average SERS spectrum of the R6G molecules from 8 positions on a same branch of AgNPs/G@Ni substrate (red line).
Fig. 6
Fig. 6 (a) SERS spectra were collected from 6 randomly selected spots on the single branch from the AgNPs/G@Ni foam. (b) SERS spectra were collected from 6 randomly selected spots on the single branch from the AgNPs @Ni foam. (c) Intensity distribution of the 912cm−1 peak in the 6 spectra shown in Fig. 6(a). (d) Intensity distribution of the 915cm−1 peak in the 6 spectra shown in Fig. 6(b)
Fig. 7
Fig. 7 (a) Comparison of SERS intensity of 10−5 M R6G on different SERS substrates including AgNPs/G@Ni foam, AgNPs/G@Ni plane, graphene and Si. (b) Amplification scheme for AgNPs/G@Ni foam.
Fig. 8
Fig. 8 (a-c) are respectively the y-z x-y views of the electric feld distribution on the AgNPs/G@Ni, AgNPs/G and AgNPs/Si substrate.
Fig. 9
Fig. 9 (a) and (d) Schematic of swabbing and concentrating process. (b) Chemical structure of CV. (c) The photo of swabbing process.
Fig. 10
Fig. 10 Raman spectra of CV molecules of different concentration swabbed from the fish surface.
Fig. 11
Fig. 11 (a)-(d) show the distribution density of the silver nanoparticles after different number of times of growing. The inset is SERS mapping of vibration modes at 612 cm−1 of R6G molecules at 10−5 M over 10 μm × 10 μm area. Raman intensity ranges from 2542 to 39127 counts.
Fig. 12
Fig. 12 (a) The distribution situation of Ag seeds thick graphene. (b) SERS mapping of vibration modes at 612 cm−1 of R6G molecules at 10−10 M dispensed on AgNPs/G@Ni foam substrate.

Metrics