Abstract

A novel metric named Gamut Volume Index (GVI) is proposed for evaluating the colour preference of lighting. This metric is based on the absolute gamut volume of optimized colour samples. The optimal colour set of the proposed metric was obtained by optimizing the weighted average correlation between the metric predictions and the subjective ratings for 8 psychophysical studies. The performance of 20 typical colour metrics was also investigated, which included colour difference based metrics, gamut based metrics, memory based metrics as well as combined metrics. It was found that the proposed GVI outperformed the existing counterparts, especially for the conditions where correlated colour temperatures differed.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Memory colours and colour quality evaluation of conventional and solid-state lamps

Kevin A. G. Smet, Wouter R. Ryckaert, Michael R. Pointer, Geert Deconinck, and Peter Hanselaer
Opt. Express 18(25) 26229-26244 (2010)

Toward a unified model for predicting color quality of light sources

Fuzheng Zhang, Haisong Xu, and Heng Feng
Appl. Opt. 56(29) 8186-8195 (2017)

Color discrimination metric based on cone cell sensitivity

Liting Jiang, Peng Jin, and Peng Lei
Opt. Express 23(11) A741-A751 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60, 262–271 (1965).
  2. K. W. Houser, M. Wei, A. David, M. R. Krames, and X. S. Shen, “Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition,” Opt. Express 21(8), 10393–10411 (2013).
    [Crossref] [PubMed]
  3. K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19(9), 8151–8166 (2011).
    [Crossref] [PubMed]
  4. T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room,” Light. Res. Technol., 1477153516643359 (2015).
  5. T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol., 1477153516643570 (2016).
  6. T. Khanh and P. Bodrogi, “Colour preference, naturalness, vividness and colour quality metrics, Part 3: Experiments with makeup products and analysis of the complete warm white dataset,” Light. Res. Technol., 1477153516669558 (2016).
  7. S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
    [Crossref]
  8. L. Jiang, P. Jin, and P. Lei, “Color discrimination metric based on cone cell sensitivity,” Opt. Express 23(11), A741–A751 (2015).
    [Crossref] [PubMed]
  9. Q. Wang, H. Xu, F. Zhang, and Z. Wang, “Influence of color temperature on comfort and preference for LED indoor lighting,” Optik (Stuttg.) 129, 21–29 (2017).
    [Crossref]
  10. M. Wei and K. W. Houser, “Systematic changes in gamut size affect color preference,” Leukos 13(1), 23–32 (2017).
    [Crossref]
  11. Y. Lin, M. Wei, K. Smet, A. Tsukitani, P. Bodrogi, and T. Q. Khanh, “Colour preference varies with lighting application,” Light. Res. Technol., 1477153515611458 (2015).
  12. M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
    [Crossref]
  13. M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
    [Crossref]
  14. M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol., 1477153516663615 (2016).
  15. F. L. Schmidt and J. E. Hunter, Methods of Meta-analysis: Correcting Error and Bias in Research Findings (Sage Publications, 2014), Chap. 2.
  16. S. M. C. Nascimento and O. Masuda, “Best lighting for visual appreciation of artistic paintings--experiments with real paintings and real illumination,” J. Opt. Soc. Am. A 31(4), A214–A219 (2014).
    [Crossref] [PubMed]
  17. N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
    [Crossref]
  18. E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
    [Crossref]
  19. N. Kakitsuba, “Comfortable indoor lighting conditions evaluated from psychological and physiological responses,” Leukos 12(3), 163–172 (2016).
    [Crossref]
  20. B. C. Park, J. H. Chang, Y. S. Kim, J. W. Jeong, and A. S. Choi, “A study on the subjective response for corrected colour temperature conditions in a specific space,” Indoor Built Environ. 19(6), 623–637 (2010).
    [Crossref]
  21. F. Szabó, R. Kéri, J. Schanda, P. Csuti, and E. Mihálykó-Orbán, “A study of preferred colour rendering of light sources: Home lighting,” Light. Res. Technol. 48(2), 103–125 (2016).
    [Crossref]
  22. J. P. Freyssinier and M. Rea, “A two-metric proposal to specify the color-rendering properties of light sources for retail lighting,” Proc. SPIE 7784, 7784V (2002).
  23. M. Rea, L. Deng, and R. Wolsey, “NLPIP Lighting Answers: Light Sources and Color,” (Polytechnic Institute, 2004).
  24. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [Crossref]
  25. K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
    [Crossref]
  26. W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
    [Crossref] [PubMed]
  27. S. A. Fotios, “The perception of light sources of different colour properties,” Doctor of Philosophy Thesis, UMIST, United Kingdom (1997).
    [Crossref]
  28. W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4(1), 48–52 (1974).
    [Crossref]
  29. M. R. Luo, “The quality of light sources,” Color. Technol. 127(2), 75–87 (2011).
    [Crossref]
  30. K. A. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Light. Res. Technol. 45(6), 689–709 (2013).
    [Crossref]
  31. A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
    [Crossref] [PubMed]
  32. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
    [Crossref] [PubMed]
  33. S. Jost-Boissard, P. Avouac, and M. Fontoynont, “Assessing the colour quality of LED sources: Naturalness, attractiveness, colourfulness and colour difference,” Light. Res. Technol. 47(7), 769–794 (2014).
    [Crossref]
  34. M. S. Rea and J. P. Freyssinier Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
    [Crossref]
  35. P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35(2), 85–93 (2010).
  36. J. M. Quintero, A. Sudrià, C. E. Hunt, and J. Carreras, “Color rendering map: a graphical metric for assessment of illumination,” Opt. Express 20(5), 4939–4956 (2012).
    [Crossref] [PubMed]
  37. Z. Huang, Q. Liu, S. Westland, M. R. Pointer, M. R. Luo, and K. Xiao, “Light dominates colour preference when correlated colour temperature differs,” Light. Res. Technol. (posted 6 June 2017, in press).
  38. P. R. Mills, S. C. Tomkins, and L. J. Schlangen, “The effect of high correlated colour temperature office lighting on employee wellbeing and work performance,” J. Circadian Rhythms 5(1), 2 (2007).
    [Crossref] [PubMed]
  39. Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
    [Crossref]
  40. J. Schanda, CIE Colorimetry (Wiley Online Library, 2007), Chap. 3.
  41. C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
    [Crossref]

2017 (3)

Q. Wang, H. Xu, F. Zhang, and Z. Wang, “Influence of color temperature on comfort and preference for LED indoor lighting,” Optik (Stuttg.) 129, 21–29 (2017).
[Crossref]

M. Wei and K. W. Houser, “Systematic changes in gamut size affect color preference,” Leukos 13(1), 23–32 (2017).
[Crossref]

Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
[Crossref]

2016 (2)

N. Kakitsuba, “Comfortable indoor lighting conditions evaluated from psychological and physiological responses,” Leukos 12(3), 163–172 (2016).
[Crossref]

F. Szabó, R. Kéri, J. Schanda, P. Csuti, and E. Mihálykó-Orbán, “A study of preferred colour rendering of light sources: Home lighting,” Light. Res. Technol. 48(2), 103–125 (2016).
[Crossref]

2015 (2)

2014 (4)

S. M. C. Nascimento and O. Masuda, “Best lighting for visual appreciation of artistic paintings--experiments with real paintings and real illumination,” J. Opt. Soc. Am. A 31(4), A214–A219 (2014).
[Crossref] [PubMed]

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

S. Jost-Boissard, P. Avouac, and M. Fontoynont, “Assessing the colour quality of LED sources: Naturalness, attractiveness, colourfulness and colour difference,” Light. Res. Technol. 47(7), 769–794 (2014).
[Crossref]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

2013 (3)

M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
[Crossref]

K. W. Houser, M. Wei, A. David, M. R. Krames, and X. S. Shen, “Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition,” Opt. Express 21(8), 10393–10411 (2013).
[Crossref] [PubMed]

K. A. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Light. Res. Technol. 45(6), 689–709 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (4)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

B. C. Park, J. H. Chang, Y. S. Kim, J. W. Jeong, and A. S. Choi, “A study on the subjective response for corrected colour temperature conditions in a specific space,” Indoor Built Environ. 19(6), 623–637 (2010).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[Crossref] [PubMed]

P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35(2), 85–93 (2010).

2009 (1)

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[Crossref]

2008 (1)

M. S. Rea and J. P. Freyssinier Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

2007 (2)

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

P. R. Mills, S. C. Tomkins, and L. J. Schlangen, “The effect of high correlated colour temperature office lighting on employee wellbeing and work performance,” J. Circadian Rhythms 5(1), 2 (2007).
[Crossref] [PubMed]

2002 (2)

J. P. Freyssinier and M. Rea, “A two-metric proposal to specify the color-rendering properties of light sources for retail lighting,” Proc. SPIE 7784, 7784V (2002).

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[Crossref]

1996 (1)

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]

1974 (1)

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4(1), 48–52 (1974).
[Crossref]

1972 (1)

1965 (1)

D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60, 262–271 (1965).

Allen, G. R.

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

Avouac, P.

S. Jost-Boissard, P. Avouac, and M. Fontoynont, “Assessing the colour quality of LED sources: Naturalness, attractiveness, colourfulness and colour difference,” Light. Res. Technol. 47(7), 769–794 (2014).
[Crossref]

Barber, C. B.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]

Beers, W. W.

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

Bhusal, P.

M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
[Crossref]

Blanc-Gonnet, J.

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[Crossref]

Bodrogi, P.

Y. Lin, M. Wei, K. Smet, A. Tsukitani, P. Bodrogi, and T. Q. Khanh, “Colour preference varies with lighting application,” Light. Res. Technol., 1477153515611458 (2015).

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol., 1477153516643570 (2016).

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room,” Light. Res. Technol., 1477153516643359 (2015).

T. Khanh and P. Bodrogi, “Colour preference, naturalness, vividness and colour quality metrics, Part 3: Experiments with makeup products and analysis of the complete warm white dataset,” Light. Res. Technol., 1477153516669558 (2016).

Burns, G. J.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Carreras, J.

Chang, J. H.

B. C. Park, J. H. Chang, Y. S. Kim, J. W. Jeong, and A. S. Choi, “A study on the subjective response for corrected colour temperature conditions in a specific space,” Indoor Built Environ. 19(6), 623–637 (2010).
[Crossref]

Choi, A. S.

B. C. Park, J. H. Chang, Y. S. Kim, J. W. Jeong, and A. S. Choi, “A study on the subjective response for corrected colour temperature conditions in a specific space,” Indoor Built Environ. 19(6), 623–637 (2010).
[Crossref]

Csuti, P.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, and E. Mihálykó-Orbán, “A study of preferred colour rendering of light sources: Home lighting,” Light. Res. Technol. 48(2), 103–125 (2016).
[Crossref]

Dangol, R.

M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
[Crossref]

David, A.

Davis, R.

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol., 1477153516663615 (2016).

Davis, W.

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Deconinck, G.

Deng, L.

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[Crossref]

Dikel, E. E.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Dobkin, D. P.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]

Fini, P. T.

Fontoynont, M.

S. Jost-Boissard, P. Avouac, and M. Fontoynont, “Assessing the colour quality of LED sources: Naturalness, attractiveness, colourfulness and colour difference,” Light. Res. Technol. 47(7), 769–794 (2014).
[Crossref]

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[Crossref]

Freyssinier, J. P.

J. P. Freyssinier and M. Rea, “A two-metric proposal to specify the color-rendering properties of light sources for retail lighting,” Proc. SPIE 7784, 7784V (2002).

Freyssinier Nova, J. P.

M. S. Rea and J. P. Freyssinier Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

Halonen, L.

M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
[Crossref]

Hanselaer, P.

Hashimoto, K.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Houser, K.

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol., 1477153516663615 (2016).

Houser, K. W.

Huhdanpaa, H.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]

Hunt, C. E.

Hyvärinen, M.

M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
[Crossref]

Islam, M.

M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
[Crossref]

Jeong, J. W.

B. C. Park, J. H. Chang, Y. S. Kim, J. W. Jeong, and A. S. Choi, “A study on the subjective response for corrected colour temperature conditions in a specific space,” Indoor Built Environ. 19(6), 623–637 (2010).
[Crossref]

Jerome, C. W.

D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60, 262–271 (1965).

Jiang, L.

Jin, P.

Jost-Boissard, S.

S. Jost-Boissard, P. Avouac, and M. Fontoynont, “Assessing the colour quality of LED sources: Naturalness, attractiveness, colourfulness and colour difference,” Light. Res. Technol. 47(7), 769–794 (2014).
[Crossref]

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[Crossref]

Kakitsuba, N.

N. Kakitsuba, “Comfortable indoor lighting conditions evaluated from psychological and physiological responses,” Leukos 12(3), 163–172 (2016).
[Crossref]

Kéri, R.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, and E. Mihálykó-Orbán, “A study of preferred colour rendering of light sources: Home lighting,” Light. Res. Technol. 48(2), 103–125 (2016).
[Crossref]

Khanh, T.

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol., 1477153516643570 (2016).

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room,” Light. Res. Technol., 1477153516643359 (2015).

T. Khanh and P. Bodrogi, “Colour preference, naturalness, vividness and colour quality metrics, Part 3: Experiments with makeup products and analysis of the complete warm white dataset,” Light. Res. Technol., 1477153516669558 (2016).

Khanh, T. Q.

Y. Lin, M. Wei, K. Smet, A. Tsukitani, P. Bodrogi, and T. Q. Khanh, “Colour preference varies with lighting application,” Light. Res. Technol., 1477153515611458 (2015).

Kim, Y. S.

B. C. Park, J. H. Chang, Y. S. Kim, J. W. Jeong, and A. S. Choi, “A study on the subjective response for corrected colour temperature conditions in a specific space,” Indoor Built Environ. 19(6), 623–637 (2010).
[Crossref]

Krames, M. R.

Lei, P.

Li, C.

Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
[Crossref]

Liang, J.

Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
[Crossref]

Lin, Y.

Y. Lin, M. Wei, K. Smet, A. Tsukitani, P. Bodrogi, and T. Q. Khanh, “Colour preference varies with lighting application,” Light. Res. Technol., 1477153515611458 (2015).

Liu, Q.

Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
[Crossref]

Liu, Z.

Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
[Crossref]

Luo, M. R.

M. R. Luo, “The quality of light sources,” Color. Technol. 127(2), 75–87 (2011).
[Crossref]

Luo, R. M.

K. A. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Light. Res. Technol. 45(6), 689–709 (2013).
[Crossref]

Mancini, S.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Masuda, O.

Mihálykó-Orbán, E.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, and E. Mihálykó-Orbán, “A study of preferred colour rendering of light sources: Home lighting,” Light. Res. Technol. 48(2), 103–125 (2016).
[Crossref]

Mills, P. R.

P. R. Mills, S. C. Tomkins, and L. J. Schlangen, “The effect of high correlated colour temperature office lighting on employee wellbeing and work performance,” J. Circadian Rhythms 5(1), 2 (2007).
[Crossref] [PubMed]

Narendran, N.

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[Crossref]

Nascimento, S. M. C.

Nayatani, Y.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Newsham, G. R.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Nickerson, D.

D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60, 262–271 (1965).

Ohno, Y.

Park, B. C.

B. C. Park, J. H. Chang, Y. S. Kim, J. W. Jeong, and A. S. Choi, “A study on the subjective response for corrected colour temperature conditions in a specific space,” Indoor Built Environ. 19(6), 623–637 (2010).
[Crossref]

Pointer, M. R.

Puolakka, M.

M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
[Crossref]

Quintero, J. M.

Rea, M.

J. P. Freyssinier and M. Rea, “A two-metric proposal to specify the color-rendering properties of light sources for retail lighting,” Proc. SPIE 7784, 7784V (2002).

Rea, M. S.

M. S. Rea and J. P. Freyssinier Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

Royer, M.

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol., 1477153516663615 (2016).

Royer, M. P.

Ryckaert, W. R.

Schanda, J.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, and E. Mihálykó-Orbán, “A study of preferred colour rendering of light sources: Home lighting,” Light. Res. Technol. 48(2), 103–125 (2016).
[Crossref]

K. A. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Light. Res. Technol. 45(6), 689–709 (2013).
[Crossref]

Schlangen, L. J.

P. R. Mills, S. C. Tomkins, and L. J. Schlangen, “The effect of high correlated colour temperature office lighting on employee wellbeing and work performance,” J. Circadian Rhythms 5(1), 2 (2007).
[Crossref] [PubMed]

Shen, X. S.

Shimizu, M.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Smet, K.

K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Correlation between color quality metric predictions and visual appreciation of light sources,” Opt. Express 19(9), 8151–8166 (2011).
[Crossref] [PubMed]

Y. Lin, M. Wei, K. Smet, A. Tsukitani, P. Bodrogi, and T. Q. Khanh, “Colour preference varies with lighting application,” Light. Res. Technol., 1477153515611458 (2015).

Smet, K. A.

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

K. A. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Light. Res. Technol. 45(6), 689–709 (2013).
[Crossref]

Smet, K. A. G.

Stojanovic, D.

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol., 1477153516643570 (2016).

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room,” Light. Res. Technol., 1477153516643359 (2015).

Sudrià, A.

Szabó, F.

F. Szabó, R. Kéri, J. Schanda, P. Csuti, and E. Mihálykó-Orbán, “A study of preferred colour rendering of light sources: Home lighting,” Light. Res. Technol. 48(2), 103–125 (2016).
[Crossref]

Thornton, W. A.

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4(1), 48–52 (1974).
[Crossref]

W. A. Thornton, “Color-discrimination index,” J. Opt. Soc. Am. 62(2), 191–194 (1972).
[Crossref] [PubMed]

Tomkins, S. C.

P. R. Mills, S. C. Tomkins, and L. J. Schlangen, “The effect of high correlated colour temperature office lighting on employee wellbeing and work performance,” J. Circadian Rhythms 5(1), 2 (2007).
[Crossref] [PubMed]

Tsukitani, A.

Y. Lin, M. Wei, K. Smet, A. Tsukitani, P. Bodrogi, and T. Q. Khanh, “Colour preference varies with lighting application,” Light. Res. Technol., 1477153515611458 (2015).

van der Burgt, P.

P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35(2), 85–93 (2010).

van Kemenade, J.

P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35(2), 85–93 (2010).

Veitch, J. A.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Vinh, Q.

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room,” Light. Res. Technol., 1477153516643359 (2015).

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol., 1477153516643570 (2016).

Wan, X.

Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
[Crossref]

Wang, Q.

Q. Wang, H. Xu, F. Zhang, and Z. Wang, “Influence of color temperature on comfort and preference for LED indoor lighting,” Optik (Stuttg.) 129, 21–29 (2017).
[Crossref]

Wang, Z.

Q. Wang, H. Xu, F. Zhang, and Z. Wang, “Influence of color temperature on comfort and preference for LED indoor lighting,” Optik (Stuttg.) 129, 21–29 (2017).
[Crossref]

Wei, M.

M. Wei and K. W. Houser, “Systematic changes in gamut size affect color preference,” Leukos 13(1), 23–32 (2017).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

K. W. Houser, M. Wei, A. David, M. R. Krames, and X. S. Shen, “Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition,” Opt. Express 21(8), 10393–10411 (2013).
[Crossref] [PubMed]

Y. Lin, M. Wei, K. Smet, A. Tsukitani, P. Bodrogi, and T. Q. Khanh, “Colour preference varies with lighting application,” Light. Res. Technol., 1477153515611458 (2015).

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol., 1477153516663615 (2016).

Whitehead, L.

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[Crossref] [PubMed]

K. A. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Light. Res. Technol. 45(6), 689–709 (2013).
[Crossref]

Wilkerson, A.

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol., 1477153516663615 (2016).

Xie, D.

Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
[Crossref]

Xu, H.

Q. Wang, H. Xu, F. Zhang, and Z. Wang, “Influence of color temperature on comfort and preference for LED indoor lighting,” Optik (Stuttg.) 129, 21–29 (2017).
[Crossref]

Yano, T.

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Zhang, F.

Q. Wang, H. Xu, F. Zhang, and Z. Wang, “Influence of color temperature on comfort and preference for LED indoor lighting,” Optik (Stuttg.) 129, 21–29 (2017).
[Crossref]

ACM Trans. Math. Softw. (1)

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Softw. 22(4), 469–483 (1996).
[Crossref]

Color Res. Appl. (3)

M. S. Rea and J. P. Freyssinier Nova, “Color rendering: A tale of two metrics,” Color Res. Appl. 33(3), 192–202 (2008).
[Crossref]

P. van der Burgt and J. van Kemenade, “About color rendition of light sources: The balance between simplicity and accuracy,” Color Res. Appl. 35(2), 85–93 (2010).

K. Hashimoto, T. Yano, M. Shimizu, and Y. Nayatani, “New method for specifying color rendering properties of light sources based on feeling of contrast,” Color Res. Appl. 32(5), 361–371 (2007).
[Crossref]

Color. Technol. (2)

M. R. Luo, “The quality of light sources,” Color. Technol. 127(2), 75–87 (2011).
[Crossref]

Q. Liu, X. Wan, J. Liang, Z. Liu, D. Xie, and C. Li, “Neural network approach to a colorimetric value transform based on a large scale spectral dataset,” Color. Technol. 133(1), 73–80 (2017).
[Crossref]

Illum. Eng. (1)

D. Nickerson and C. W. Jerome, “Color rendering of light sources: CIE method of specification and its application,” Illum. Eng. 60, 262–271 (1965).

Indoor Built Environ. (1)

B. C. Park, J. H. Chang, Y. S. Kim, J. W. Jeong, and A. S. Choi, “A study on the subjective response for corrected colour temperature conditions in a specific space,” Indoor Built Environ. 19(6), 623–637 (2010).
[Crossref]

J. Circadian Rhythms (1)

P. R. Mills, S. C. Tomkins, and L. J. Schlangen, “The effect of high correlated colour temperature office lighting on employee wellbeing and work performance,” J. Circadian Rhythms 5(1), 2 (2007).
[Crossref] [PubMed]

J. Illum. Eng. Soc. (1)

W. A. Thornton, “A validation of the color-preference index,” J. Illum. Eng. Soc. 4(1), 48–52 (1974).
[Crossref]

J. Mod. Opt. (1)

S. Jost-Boissard, M. Fontoynont, and J. Blanc-Gonnet, “Perceived lighting quality of LED sources for the presentation of fruit and vegetables,” J. Mod. Opt. 56(13), 1420–1432 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Leukos (4)

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

N. Kakitsuba, “Comfortable indoor lighting conditions evaluated from psychological and physiological responses,” Leukos 12(3), 163–172 (2016).
[Crossref]

M. Wei, K. W. Houser, G. R. Allen, and W. W. Beers, “Color Preference under LEDs with diminished yellow emission,” Leukos 10(3), 119–131 (2014).
[Crossref]

M. Wei and K. W. Houser, “Systematic changes in gamut size affect color preference,” Leukos 13(1), 23–32 (2017).
[Crossref]

Light. Res. Technol. (4)

M. Islam, R. Dangol, M. Hyvärinen, P. Bhusal, M. Puolakka, and L. Halonen, “User preferences for LED lighting in terms of light spectrum,” Light. Res. Technol. 45(6), 641–665 (2013).
[Crossref]

F. Szabó, R. Kéri, J. Schanda, P. Csuti, and E. Mihálykó-Orbán, “A study of preferred colour rendering of light sources: Home lighting,” Light. Res. Technol. 48(2), 103–125 (2016).
[Crossref]

K. A. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Light. Res. Technol. 45(6), 689–709 (2013).
[Crossref]

S. Jost-Boissard, P. Avouac, and M. Fontoynont, “Assessing the colour quality of LED sources: Naturalness, attractiveness, colourfulness and colour difference,” Light. Res. Technol. 47(7), 769–794 (2014).
[Crossref]

Opt. Eng. (1)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Opt. Express (6)

Optik (Stuttg.) (1)

Q. Wang, H. Xu, F. Zhang, and Z. Wang, “Influence of color temperature on comfort and preference for LED indoor lighting,” Optik (Stuttg.) 129, 21–29 (2017).
[Crossref]

Proc. SPIE (2)

N. Narendran and L. Deng, “Color rendering properties of LED light sources,” Proc. SPIE 4776, 61–67 (2002).
[Crossref]

J. P. Freyssinier and M. Rea, “A two-metric proposal to specify the color-rendering properties of light sources for retail lighting,” Proc. SPIE 7784, 7784V (2002).

Other (10)

M. Rea, L. Deng, and R. Wolsey, “NLPIP Lighting Answers: Light Sources and Color,” (Polytechnic Institute, 2004).

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room,” Light. Res. Technol., 1477153516643359 (2015).

T. Khanh, P. Bodrogi, Q. Vinh, and D. Stojanovic, “Colour preference, naturalness, vividness and colour quality metrics, Part 2: Experiments in a viewing booth and analysis of the combined dataset,” Light. Res. Technol., 1477153516643570 (2016).

T. Khanh and P. Bodrogi, “Colour preference, naturalness, vividness and colour quality metrics, Part 3: Experiments with makeup products and analysis of the complete warm white dataset,” Light. Res. Technol., 1477153516669558 (2016).

Y. Lin, M. Wei, K. Smet, A. Tsukitani, P. Bodrogi, and T. Q. Khanh, “Colour preference varies with lighting application,” Light. Res. Technol., 1477153515611458 (2015).

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Light. Res. Technol., 1477153516663615 (2016).

F. L. Schmidt and J. E. Hunter, Methods of Meta-analysis: Correcting Error and Bias in Research Findings (Sage Publications, 2014), Chap. 2.

Z. Huang, Q. Liu, S. Westland, M. R. Pointer, M. R. Luo, and K. Xiao, “Light dominates colour preference when correlated colour temperature differs,” Light. Res. Technol. (posted 6 June 2017, in press).

S. A. Fotios, “The perception of light sources of different colour properties,” Doctor of Philosophy Thesis, UMIST, United Kingdom (1997).
[Crossref]

J. Schanda, CIE Colorimetry (Wiley Online Library, 2007), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Gamut comparison of colour sample sets used by different metrics in (a) the xy chromaticity diagram and (b) the a*b* plane under the D50/2 illuminant/observer condition. The circles represent the samples adopted by GVI while the squares represent the omitted samples. The lines denote the gamut boundary derived from a convex hull algorithm.

Fig. 2
Fig. 2

Weighted average Spearman correlation coefficient between metrics prediction and visual scaling of colour preference of each metameric lighting scenario. (‘F & V’ is short for ‘fruit and vegetables’)

Fig. 3
Fig. 3

Weighted average Spearman correlation coefficient between metrics prediction and visual scaling of colour preference of each multi-CCT scenario.

Fig. 4
Fig. 4

The colour distributions of the best 100 sample combinations. The Y-axis represents the frequency of a sample (denoted by the colour of the bar) selected in those combinations.

Tables (2)

Tables Icon

Table 1 The weighted average spearman correlation coefficient between metric predictions and preference ratings of individual studies.

Tables Icon

Table 2 The weighted average spearman correlation coefficient between metric predictions and preference ratings of individual studies regarding to other forms of GVI with different sample set.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r ¯ = i=1 K N i r i / i=1 K N i
GVI=5* V optset
σ ρ 2 = σ r 2 σ e 2
σ r 2 = i=1 K [ N i ( r i r ¯ ) 2 ] / i=1 K N i
σ e 2 = (1 r ¯ 2 ) 2 /( N ¯ 1)

Metrics